Whether you’re responsible for combating financial crimes, online identity theft, or trafficking operations, you know that early fraud detection is essential. For businesses to avoid the risk of losing money to fraudulent schemes, data scientists must be proactive in analyzing and predicting fraud patterns in their data.
Join Nick Johnson, Product Marketing Manager for Graph Data Science, for Smarter Fraud Detection With Graph Data Science as he shows you how graph-based approaches empower data scientists to more easily identify fraudulent actors, phone numbers, IP addresses, and more.
In this 20-minute webinar, you’ll learn:
- What graph data science is
- Why graph data science is better at solving your most challenging data problems
- How data scientists traditionally identify fraud rings and suspicious actors
- How to visually map and identify fraudulent actors and accounts using Neo4j Graph Data Science for fraud detection
||rich text_1482555||
||rich text_1482559||
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.