Traditional fraud prevention measures focus on discrete data points such as specific accounts, individuals, devices or IP addresses. However, today’s sophisticated fraudsters escape detection by forming fraud rings with individuals paid, lured into or unknowingly fronting these activities. To uncover such fraud rings and the people behind them, it is essential to look beyond individual data points to the connections that link them.
Neo4j uncovers difficult-to-detect patterns that far outstrip the power of a relational database. Enterprise organisations use Neo4j to augment their existing fraud detection capabilities to combat a variety of financial crimes including first-party bank fraud, credit card fraud, ecommerce fraud, insurance fraud and money laundering – and all in real time.
Learn more how to battle fraud with the power of graph databases during this webinar. We are pleased to invite you to hear Marius Hartmann from Danish Business Authority talking about how they are combining graph analysis with machine learning to prevent fraud. In context of the COVID-19 compensation scheme controls, he will present use cases currently in production and explain why graph is a good fit for government authorities.
Agenda
- Intro to Graphs - Rik Van Bruggen, Neo4j
- Danish Business Authority Use Case - Marius Hartmann, Danish Business Authority
- Q&A Session
Who attends?
Connect with fellow IT Managers, Directors and CIO/CTOs, Project Managers, Data Architects, Department Heads, etc.



Kelsey Bieri is a Data Governance Analyst at ICC in the Master Data Management and Data Governance Practice. She has contributed to numerous data governance and data lineage projects in the Banking industry, helping organizations build a better understanding of their data universe. Kelsey holds a degree in Management Information Systems from the College of Business at Ohio University.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.