Join us to hear about new supervised machine learning (ML) capabilities in Neo4j and learn how to train and store ML models in Neo4j with the Graph Data Science library (GDS).
Most data science models ignore network structure, but graph technology helps create highly predictive features to ML models, which increase accuracy and answer complex questions based on relationships. The latest GDS update (v1.5) provides a new end-to-end model-building pipeline entirely in Neo4j so you can take advantage of state-of-the-art ML techniques and continually update your graph – all without leaving Neo4j.
In this session, we’ll walk through how to generate representations of your graph using graph embeddings, create ML models for link prediction or node classification, and apply these models to add missing information to an existing graph or incoming graph data. You’ll also hear about other recent updates including new graph algorithms and memory optimization. Your questions will be answered throughout the webinar!
Alicia Frame is the lead product manager for data science at Neo4j. She's spent the last year translating input from customers, early adopters, and the community into the first truly enterprise product for doing data science with graphs: Neo4j's Graph Data Science Library. She has a phd in computational biology from UNC Chapel Hill, and her background is in data science applications in healthcare and life sciences.
She's worked in academia, government, and the private sector to leverage graph techniques for drug discovery, molecular optimization, and risk assessments -- and is super excited to be making it possible for anyone to use advanced graph techniques with Neo4j.
Amy Hodler is the Graph Analytics & AI Program Director at Neo4j. She loves seeing how the community uses graph analytics to reveal structures within real-world networks and infer behavior.
Amy is the co-author of the O'Reilly book Applied Graph Algorithms in Apache Spark and Neo4j, published in early 2019 and updated in July 2020.
Kelsey Bieri is a Data Governance Analyst at ICC in the Master Data Management and Data Governance Practice. She has contributed to numerous data governance and data lineage projects in the Banking industry, helping organizations build a better understanding of their data universe. Kelsey holds a degree in Management Information Systems from the College of Business at Ohio University.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.