Graphs can represent almost any kind of data, from complex supply chains, medical research, customer 360, and fraud detection.
Implemented in production-grade within the Neo4j Graph Data Science library, Graph Embeddings are an advanced AI technology used to translate your connected data – knowledge graphs, customer journeys, and transaction networks – into a predictive signal.
Applications of Graph Embeddings are numerous: finding fraud, entity resolution and disambiguation, improving product recommendations, discovering new drugs and predicting churn.
This workshop will help you:
- Make the most of Graph Embeddings
- Understand how to train high-performing supervised machine learning models to perform tasks like node classification and link prediction.
- Answer questions within your connected data, analyzing 5 different use cases



Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.