

Quickly uncover hidden relationships and patterns
across billions of data connections

https://neo4j.com/cloud/platform/aura-graph-database/?ref=book&utm_source=oreilly&utm_medium=banner&utm_campaign=oreilly-book-kg-banner

Jesús Barrasa and Jim Webber

Building Knowledge Graphs
A Practitioner’s Guide

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-12711-4

[LSI]

Building Knowledge Graphs
by Jesús Barrasa and Jim Webber

Copyright © 2023 Neo4j Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Development Editor: Corbin Collins
Production Editor: Jonathon Owen
Copyeditor: Shannon Turlington
Proofreader: Piper Editorial Consulting, LLC

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2023: First Edition

Revision History for the First Edition
2023-06-21: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Knowledge Graphs, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Neo4j. See our statement of editorial
independence.

https://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. vii

1. Introducing Knowledge Graphs. 1
What Are Graphs? 2
The Motivation for Knowledge Graphs 7
Knowledge Graphs: A Definition 8
Summary 8

2. Organizing Principles for Building Knowledge Graphs. 9
Organizing Principles of a Knowledge Graph 9

Plain Old Graphs 10
Richer Graph Models 11
Knowledge Graphs Using Taxonomies for Hierarchy 14
Knowledge Graphs Using Ontologies for Multilevel Relationships 19

Which Is the Best Organizing Principle for Your Knowledge Graph? 21
Organizing Principles: Standards Versus Create Your Own 23

Creating Your Own Organizing Principle 23
Essential Characteristics of a Knowledge Graph 24
Summary 25

3. Graph Databases. 27
The Cypher Query Language 28

Creating Data in a Knowledge Graph 29
Avoiding Duplicates When Enriching a Knowledge Graph 31
Graph Local Queries 37
Graph Global Queries 42
Calling Functions and Procedures 44
Supporting Tools for Writing Knowledge Graph Queries 45

iii

Neo4j Internals 47
Query Processing 47
ACID Transactions 49

Summary 50

4. Loading Knowledge Graph Data. 51
Loading Data with the Neo4j Data Importer 51
Online Bulk Data Loading with LOAD CSV 56
Initial Bulk Load 61
Summary 64

5. Integrating Knowledge Graphs with Information Systems. 65
Towards a Data Fabric 65
The Database Driver 67
Graph Federation with Composite Databases 71
Server-Side Procedures 73
Data Virtualization with Neo4j APOC 75
Custom Functions and Procedures 79
Complementary Tools and Techniques 81

GraphQL 82
Kafka Connect Plug-In 84
Neo4j Spark Connector 87
Apache Hop for ETL 89

Summary 92

6. Enriching Knowledge Graphs with Data Science. 93
Why Graph Algorithms? 93
Different Classes of Graph Algorithms 94
Graph Data Science Operations 96
Experimenting with Graph Data Science 101
Production Considerations 107
Enriching the Knowledge Graph 109
Summary 111

7. Graph-Native Machine Learning. 113
Machine Learning in a Nutshell 113
Topological Machine Learning 114
Graph-Native Machine Learning Pipelines 116
Recommending Complementary Actors 117
Summary 125

iv | Table of Contents

8. Mapping Data with Metadata Knowledge Graphs. 127
The Challenge of Distributed Data Stewardship 127
Datasets Connected to Data Platforms 128
Tasks and Data Pipelines 129
Data Sinks 130
Metadata Graph Example 130
Querying the Metadata Graph Model 131
Using Relationships to Connect Data and Metadata 133
Summary 134

9. Identity Knowledge Graphs. 135
Knowing Your Customer 135
When Does the Problem Appear? 136
Graph-Based Entity Resolution Step by Step 137

Data Preparation 138
Entity Matching 141
Build/Update a Persisted Record of Master Entities 145

Working with Unstructured Data 149
Summary 154

10. Pattern Detection Knowledge Graphs. 155
Fraud Detection 155

First-Party Fraud 156
Uncovering Fraud from Data 157
Fraud Rings 159
Innocent Bystanders 162
Operationalizing the Fraud Detection Knowledge Graph 164

Skills Matching 165
Organizational Knowledge Graph 165
Skills Knowledge Graph 167
Expertise Knowledge Graph 170
Individual Career Growth 173
Organizational Planning 175
Predicting Organizational Performance 179

Summary 186

11. Dependency Knowledge Graphs. 187
Dependencies as a Graph 187
Advanced Graph Dependency Modeling 190

Qualified Dependencies 190
Semantics of Multidependency 193

Impact Propagation with Cypher 198

Table of Contents | v

Validating a Dependency Knowledge Graph 201
Validation 1: No Cycles 202
Validation 2: Aggregate Multidependencies Add Up to the Expected Total 202

Complex Dependency Processing 205
Single-Point-of-Failure Analysis 205
Root Cause Analysis 206

Summary 210

12. Semantic Search and Similarity. 211
Search over Unstructured Data 211
From Strings to Things: Annotating Documents with Entities 212
Navigating the Connections: Document Similarity for Recommendations 217

The Cold Start Problem 221
Making the Annotation Semantic with an Organizing Principle 222
Summary 232

13. Talking to Your Knowledge Graph. 233
Question Answering: Natural Language as a Source of Facts for a Knowledge

Graph 234
Using Natural Language Query with a Knowledge Graph 238
Natural Language Generation from Knowledge Graphs 245

Annotating the Knowledge Graph’s Organizing Principle to Drive Natural
Language Generation 248

Working with Lexical Databases 253
Graph-Based Semantic Similarity 257

Path Similarity 258
Leacock-Chodorow Similarity 260
Wu and Palmer Similarity 261

Summary 266

14. From Knowledge Graphs to Knowledge Lakes. 267
Conventional Knowledge Graph Deployments 267
From Knowledge Graphs to Knowledge Lakes 268
Looking to the Future 270

Index. 271

vi | Table of Contents

Preface

Graph databases and graph data science have reached a significant level of adoption.
They have been extensively used for a range of discrete use cases like logistics, recom‐
mendations, and fraud detection. But there is a bigger emerging trend to arrange
data in a deliberate manner that enables insight at scale across functional silos. The
technology underpinning this trend is know as a knowledge graph.

The forces behind the trend are clear: organizations are no longer suffering from data
scarcity. In fact, in an era when big data seems to be a solved problem (at least from a
storage point of view), many organizations are practically drowning in data. Industry
anecdotes of many thousands of relational tables per day being ingested into a data
lake abound, but with an abundance of data there comes the unexpected challenge of
what to with it. This is where knowledge graphs help.

A knowledge graph is a purposeful arrangement of data such that information is
put in context and insight is readily available. Individual records are placed in an
associative network of relationships that provide rich semantic connectivity and
context. That network of relationships—a graph—is an incredibly intuitive way of
representing useful knowledge. Data that might have originally existed to serve a
fraud-detection use case can be repurposed seamlessly within the knowledge graph
to provide data for recommending financial products (or vice versa). And from there
it is straightforward to connect other data to support other vertical use cases or
horizontal analysis.

Importantly, while the term knowledge graph has only come to prominence in indus‐
try relatively recently, knowledge graph systems have been in existence for some time.
This book tries to distill our experience of understanding knowledge graphs deployed
in real systems by organizations around the world. It addresses the emerging trend
of building systems on knowledge graphs as well as thinking about knowledge graphs
as a general-purpose underlay for the enterprise. It also addresses the contemporary
intersection of knowledge graphs and artificial intelligence (AI), where knowledge

vii

graphs provide high-quality features for machine learning, are themselves enriched
by AI, and can even tame the hallucinatory nature of large language models (LLMs).

While this is our most in-depth and unapologetically technical book on the topic, this
isn’t our first time writing about knowledge graphs. In fact, in the book Knowledge
Graphs: Data in Context for Responsive Businesses (O’Reilly), we highlighted the busi‐
ness benefits of knowledge graph adoption aimed at an audience of CIOs and CDOs.
But this book goes much deeper technically, and it contains enough implementation
detail for a range of tools, patterns, and practices so that you can build your own
knowledge graphs with confidence. We hope that what you learn here will propel you
to your first successful knowledge graph project and beyond!

Who This Book Is For
This is a technical book, aimed at computing professionals—typically software engi‐
neers, system architects, and techincal managers—who want to understand both the
potential of knowledge graphs and how to go about implementing them. While no
prior experience with knowledge graphs (or graphs in the general sense) is required,
readers will get the most of the book if they are modestly comfortable with database
concepts like queries and have some programming experience.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

viii | Preface

https://oreil.ly/knowledge-graphs
https://oreil.ly/knowledge-graphs

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

Preface | ix

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/building-knowledge-graphs.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia

Acknowledgments
We are grateful to all those who helped us while we were writing this book: the staff at
O’Reilly, especially Corbin Collins, whose efforts kept our prose properly American‐
ized, and our Neo4j colleagues, especially Maya Natarajan and Deb Cameron, who
worked with us on early drafts.

We are grateful to Dr. Nicola Vitucci, who provided deep technical expertise and
patient guidance on our prose.

We would also like to thank Nigel Small, who provided detailed technical feedback on
idiomatic Python graph data science.

Finally, we would like to thank the technical reviewers from O’Reilly, Max de Marzi
and Janit Anjaria, for their enthusiastic and detailed feedback.

x | Preface

https://oreil.ly/building-knowledge-graphs
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

CHAPTER 1

Introducing Knowledge Graphs

We’re overwhelmed by data. It’s everywhere and being collected at a fantastic rate
and stored at substantial cost. But we’re not necessarily getting value from that data,
though there is significant value in it, if only we could understand it.

All is not lost. Over the last decade, a new category of technology based on graphs
has moved from obscurity to prominence. Graphs have come to underpin everything
from consumer-facing systems like navigation and social networks to critical infra‐
structure like supply chains and power grids.

These important graph use cases have reached a common conclusion: applying
knowledge in context is the most powerful tool that most businesses have. A set of
patterns and practices called knowledge graphs has been emerging to help understand
data in context, where the context is represented as a graph of connected data items.
With knowledge graphs, there is hope that you can distill business value from data.
This book is an attempt to show how it can be done.

Knowledge graphs are useful because they provide contextualized understanding of
data. Context derives from the layer of metadata (graph topology and other features)
that provides rules for structure and interpretation. This book shows how the con‐
nected context provided by knowledge graphs enables you to extract greater value
from existing data, drive automation and process optimization, improve predictions,
and support an agile response to changing business environments.

We wrote this book for technology professionals who are interested in building
and operating knowledge graphs within their businesses. In a way, it’s a sequel to
or expansion of O’Reilly’s Knowledge Graphs: Data in Context for Responsive Busi‐
nesses, which we had the pleasure of writing in 2021. That report was intended for
chief information officers (CIOs) and chief data officers (CDOs), helping them to

1

https://oreil.ly/knowledge-graphs
https://oreil.ly/knowledge-graphs

understand the benefits of knowledge graphs. This time we’re aiming at data and
software professionals who build sophisticated information systems.

The book is arranged in two parts. The first part deals with graph fundamentals,
including graph databases, query languages, data wrangling, and graph data science.
It teaches technical practitioners the fundamental tooling needed to understand the
second part of this book, which tackles significant knowledge graph use cases and
how to implement them, complete with code examples and system architectures.

For data and software professionals, this book provides an on-ramp to the world
of knowledge graphs and a language for discussing their implementation with your
peers and management. It also gives deep examples for how to build and use knowl‐
edge graphs—from graph basics all the way to graph machine learning.

For CIOs or CDOs, this book may still be useful since it provides a good overview of
knowledge graphs and how they are delivered. You can skim the earlier chapters and
code examples if that’s not your thing, but you’ll still be able to understand what your
practitioner colleagues are doing and why.

This chapter explains the background and motivation for knowledge graphs. Here
we’ll introduce the notions of graphs and graph data and start to show how to build
smarter systems with knowledge graphs.

What Are Graphs?
Knowledge graphs are a type of graph, so it’s important to have a basic understanding
of graphs. Graphs are simple structures that use nodes (or vertices) connected by
relationships (or edges) to create high-fidelity models of a domain. To avoid any
confusion, the graphs in this book have nothing to do with visualizing data as
histograms or plotting a function, which are called charts, as shown in Figure 1-1.

2 | Chapter 1: Introducing Knowledge Graphs

Figure 1-1. Graphs versus charts

The graphs in this book are sometimes referred to as networks. They are a simple but
powerful way of showing how things connect.

Graphs are not new. In fact, graph theory was invented by Swiss mathematician
Leonhard Euler in the 18th century to help compute the minimum distance that
the emperor of Prussia had to walk to see the town of Königsberg (modern-day
Kaliningrad) by ensuring that each of its seven bridges was crossed only once, as
shown in Figure 1-2.

What Are Graphs? | 3

Figure 1-2. A graphical representation of Königsberg and its seven bridges across the
Pregel River

Euler’s insight was that the problem shown in Figure 1-2 could be reduced to a logical
form, stripping out all the noise of the real world and concentrating solely on how
things are connected. He was able to demonstrate that the problem didn’t need to
involve bridges, islands, or emperors. He proved that in fact the physical geography of
Königsberg was completely irrelevant.

To us, Euler’s approach is similar to modern software development.
The inherent noise of the real world is stripped away so that a
more valuable logical representation—the software—remains. For
software professionals, this feels comfortingly familiar.

You can use the superimposed graph in Figure 1-2 to figure out the shortest route
for walking around Königsberg without having to put on your walking boots and
try it for real. In fact, Euler proved that the emperor could not walk the whole town
crossing each bridge only once, since there would have needed to be (at least) one
island (node) with an even number of connecting bridges (relationships) from which
the emperor could start his walk. No such island existed in Königsberg, so no such
route (path) is possible.

4 | Chapter 1: Introducing Knowledge Graphs

Building on Euler’s work, mathematicians have studied various graph models, all
variations on the theme of nodes connected by relationships. Some models allow
relationships to be directed, where they have an explicit start and end node, while
some have undirected relationships connecting nodes. Some models, like hypergraphs,
allow relationships to connect multiple nodes.

In theory, there’s no single best graph model to choose (though you can usually
transform from one model to another). But there are better or worse models in
practice, especially for building computer systems. In this book we’ve chosen the
labeled property graph model as the foundation. It’s a popular model that is simple for
software and data professionals to understand. It is expressive enough to represent
even the most complicated domains and is information rich (unlike the graphs
beloved of mathematicians).

The Property Graph Model
The property graph model is the most popular model for modern graph databases.
Correspondingly, it’s a common basis for creating knowledge graphs. It consists of the
following elements:

Nodes representing entities in the domain
• Nodes can contain zero or more properties, which are key-value pairs represent‐•

ing entity data such as price or date of birth.
• Nodes can have zero or more labels, which declare the node’s purpose in the•

graph, such as representing a Customer or a Product.

Relationships representing how entities interrelate
• Relationships have a type, such as BOUGHT, FOLLOWS, or LIKES.•
• Relationships have a direction, going from one node to another (or back to the•

same node).
• Relationships can contain zero or more properties, which are key-value pairs•

representing some characteristic of the link, such as a timestamp or distance.
• Relationships never dangle—there are always a start node and an end node•

(which can be the same node).

You can use these primitives (nodes, labels, relationships, and properties) along with
rules to assemble sophisticated, high-fidelity graph data models with relative ease.

Figure 1-3 shows a small social graph, but compared to the example in Figure 1-2,
this graph holds much more information.

What Are Graphs? | 5

Figure 1-3. A graph representing people, their friendships, and their locations

In Figure 1-3 each node has a label that represents its role in the graph. Some
nodes are labeled Person and some are labeled Place, representing people and places
respectively. Stored inside those nodes are properties. For example, one node has
name:'Rosa' and gender:'f' that you can interpret as being a female person called
Rosa. Note that the Karl and Fred nodes have slightly different properties on them,
which is a perfectly fine tool as it accommodates the messiness of the real world.

The property graph model does not enforce any schemas based
on labels or relationship types. It’s deliberately intended to be
flexible and accommodating to help develop high-fidelity models.
If you really need to ensure that nodes with certain labels have
certain properties, you can apply constraints to the label to ensure
those properties exist, are unique, and so on. You can view this
not as schema or schemaless, but schema-ish. The idea is to use
schema-like constraints just where you need them rather than
eagerly locking down the whole data model. Those schema-like
constraints, like everything else in a graph data model, can change
over time. Real-world data is often uneven and incomplete, so your
knowledge graphs should reflect this reality.

Between the nodes in Figure 1-3 you see relationships. The relationships are richer
than in Figure 1-2 since they have a type, a direction, and optional properties.
Relationships cannot “dangle”; they always have a start node and an end node, even if
the start and end nodes are the same.

For instance, there is a Person node with the property name:'Rosa' that has an
outgoing LIVES_IN relationship with the property since: 2020 to the Place node
with the property city:'Berlin'. You can read this as “Rosa has lived in Berlin since
2020,” based on the direction of the relationships. You can also see that Fred is a

6 | Chapter 1: Introducing Knowledge Graphs

FRIEND of Karl and that Karl is a FRIEND of Fred. Rosa and Karl are also friends, but
Rosa and Fred are not.

In the property graph model, there are no limits on the number of nodes or the
number or type of relationships that interconnect them. Some nodes are densely
connected while others are sparsely connected. All that matters is that the model
matches the problem domain. Similarly, some nodes have lots of properties, while
some have few or none. Some relationships have lots of properties, but many have
none at all. This is all perfectly normal for knowledge graphs.

It’s easy to see how the graph in Figure 1-3 can answer questions about friendships
and who lives where. Extending the model to include other data like hobbies,
publications, or jobs is also straightforward: just keep adding nodes and relation‐
ships to match your problem domain. Creating large, complex graphs with millions
or billions of connections isn’t a problem for modern graph databases and graph-
processing software, so building even very large knowledge graphs is achievable.

Graph data models can comfortably represent complex networks of relationships in
a way that is both human readable and machine friendly. Graphs might seem very
technical at first, but they are created from very simple primitives, making them very
accessible in practice. In fact the combination of a simple data model and the ease
of algorithmic processing to discover connections, patterns, and features is what has
made graphs so popular. It’s a powerful combination you will also exploit in your
knowledge graphs.

The Motivation for Knowledge Graphs
Interest in knowledge graphs has exploded, with a myriad of research papers, solutions,
analyst reports, groups, and conferences on this topic. Knowledge graphs have become
so popular partly because graph technology has accelerated in recent years but also
because there is strong demand to make sense of data.

External factors have undoubtedly accelerated knowledge graphs to greater promi‐
nence. Stresses from the COVID-19 pandemic and fallout from geopolitics have
strained some organizations to the point of breaking. Decision making has never
needed to be more rapid. At the same time, businesses are hampered by the lack of
timely and accurate insight.

Now businesses are reconfiguring their operations and processes to flex rapidly.
As historical knowledge ages faster and is invalidated by market dynamics, many
organizations need new ways of capturing, analyzing, and learning from data. Busi‐
nesses need rapid insights and recommendations, from customer experience and
patient outcomes to product innovation, fraud detection, and automation. They need
contextualized data to generate knowledge.

The Motivation for Knowledge Graphs | 7

Knowledge Graphs: A Definition
Now you know a little about graphs and the motivation for using knowledge graphs.
But clearly not all graphs are knowledge graphs (despite the hype). Knowledge graphs
are a specific type of graph with an emphasis on contextual understanding. Knowl‐
edge graphs are interlinked sets of facts that describe real-world entities, events, or
things and their interrelations in a human- and machine-understandable format.

Critically, knowledge graphs must have an organizing principle so that a user (or a
computer system) can reason about the underlying data. The organizing principle
provides an additional layer of structure that adds context to support knowledge
discovery. The organizing principle makes the data itself smarter. This idea runs
contrary to the norm where intelligence resides in applications and data is dumb, just
something to be mined and refined. Having smarter data both simplifies systems and
encourages broad reuse.

Where’s the Data?
A knowledge graph can be a self-contained unit which exists in a graph database, or
it can involve several coordinated graph stores forming a federation of graphs. Or a
knowledge graph can be built on top of a data lake to bring structure and knowledge
to undifferentiated bulk storage. A knowledge graph could also be a logical layer
providing structure and insight over multiple data sources of different kinds so that
data consumers get a holistic, curated view of the data.

In principle, knowledge graphs are agnostic about the physical storage of the underly‐
ing data. They can support different architectural approaches, from virtualized ones
where the knowledge graph is a smart index over externally stored data to the fully
materialized ones where data is fully hosted in a graph platform, and any hybrid
approach between the two.

Summary
Organizing principles, reasoning, and knowledge discovery might seem complicated
at first. But in reality, you can think of knowledge graphs as a rich index over
data that provides curation, much like a skilled librarian recommending books and
journals to a researcher.

From here on things get a little more technical. In Chapter 2 you’ll learn how we
can extend the definition of an organizing principle to act as a contract between a
knowledge graph and its consuming users and systems. You’ll also learn about several
different options for creating organizing principles.

8 | Chapter 1: Introducing Knowledge Graphs

CHAPTER 2

Organizing Principles for Building
Knowledge Graphs

Graphs are common in modern computer systems. They’re a pleasant and flexible
data model for supporting interactive queries, real-time analytics, and data science.
But what transforms a graph into a knowledge graph is the application of an organiz‐
ing principle that helps people and software to understand it. Historically, this has
loftily been called semantics, but you can think of it as making the data smarter.

Knowledge graphs are the result of decades of research in semantic computing. With
modern graph technology, you can easily apply the fruit of all of that research to
contemporary problems.

This chapter introduces common organizing principles for knowledge graphs. Once
you’ve finished reading this chapter, you will be able to choose from different organ‐
izing principles that best suit the problems you want to solve.

Organizing Principles of a Knowledge Graph
The notion that knowledge graphs help make data smarter is appealing. Rather than
having to repeatedly encode smart behavior into applications, it is encoded once,
directly into the data. Smarter data enables knowledge reuse and reduces duplication
and discrepancies.

There are several different approaches to organizing data in a graph, each with its
own benefits and quirks. You’re free to choose the ones that fit your problem, and
you’re free to combine approaches as well.

Starting with a basic (but useful) graph, we’ll show how to add successive layers of
organization, demonstrating how knowledge graphs can be used to solve increasingly
sophisticated problems.

9

Plain Old Graphs
The term graph (as opposed to knowledge graph) is used when we’re thinking about
those graphs that don’t have an explicit organizing principle. But as a graph enthusi‐
ast, you know that regular graphs are also very useful. The difference between a plain
old graph and a knowledge graph is that the interpretation of the information in plain
old graphs is encoded into the systems that use the graph, rather than being part of
the data itself. In other words, the organizing principle is “hidden” in the logic of the
queries and programs that consume the data in the graph.

As a familiar example, think about the sales data for an online store. Sales data
is typically large and dynamic, combining customer shopping information with a
product catalog, including product descriptions, categories, and manufacturers. A
small fragment of a sales and product catalog graph is shown in Figure 2-1.

Figure 2-1. A snapshot of customers and their purchases as a plain old graph

You may not find this graph intuitive at first. But if an engineer has encoded the
knowledge that the P nodes represent products and C nodes represent customers,
and that connections between nodes represent purchases, a program will be able to
answer straightforward questions like “What products did this customer buy?” Such
a program will also be able to answer those questions in reverse, such as “Which
customers bought this product?” The ability to answer questions in both directions is
inherently valuable to a retailer.

Such a program would also be able to compute a product’s popularity by counting
the number of incoming relationships (which is called calculating the indegree of the
node). In this way, the program could identify products that are quite popular as well
as others that are less so.

No doubt there is a lot of value in the graph. But what would happen if a data scientist
with no previous knowledge of the domain wanted to run basket analysis to find

10 | Chapter 2: Organizing Principles for Building Knowledge Graphs

out which products are purchased together? Someone would have to explain how
to interpret the data in the graph because there is no organizing principle to help
the data scientist to make sense of it beyond nodes connected by relationships. The
knowledge of how to interpret the data in the graph is encoded into the software
systems, not into the data.

There’s also a genuine problem if the person who created the graph leaves the organi‐
zation. The user now has to reverse engineer the code in the algorithms to interpret
the graph. In mature businesses, this happens all too often.

Of course, once you understand the meaning of the data in the graph, you could
continue to build new software to process knowledge out of that graph. But a better
solution is to make the data in the graph smarter by applying an organizing principle.
This surfaces the latent and implicit knowledge in a graph, turning it into a knowl‐
edge graph.

Reading the Manual Versus Not Reading the Manual
It might seem like a lot of unnecessary effort to make data self-explanatory. In your
lives, you’re surrounded by examples of things that are not self-explanatory. For
example, you might get a new Ncooking gadget and have to read the instruction
manual to use it.

But you also have devices where there is no need for an instruction manual. The
organizing principle is so good that you can be immediately productive. For example,
the touch interfaces of modern phones and tablets have such good usability that
instruction manuals aren’t needed. In fact, toddlers can use them.

Data can be seen in the same way. An instruction manual might work, but it’s better
to have the data organized in a way that makes it easy and even pleasurable to work
with. Even if creating such a scheme takes effort, it will be repaid many times over by
a useful production system.

Richer Graph Models
Compared to the austere lines-and-circles graphs beloved of mathematicians, there is
already a richer graph model—the property graph model.

The property graph model is far more organized than the plain old graphs. It sup‐
ports labeled nodes, type and direction for relationships, and properties (key-value
pairs) on both nodes and relationships. Any software that understands the property
graph model can process it in accordance with that simple organizing principle.

Figure 2-2 shows an enriched view of the sales and product catalog graph, including
labels, properties, and named relationships.

Organizing Principles of a Knowledge Graph | 11

Figure 2-2. A snapshot of customers and their purchases as a property graph

A property graph gives human and software agents a set of essential clues about
the information it contains: node labels, relationship types and direction, and the
types and names of property data stored on them. It is even possible to get a formal
description of the shape of the graph (its schema) via introspection. Effectively, this
organizing principle makes a graph self-describing (to a certain extent) and is a clear
first step toward making data smarter. Just by using node labels, software can extract
all similar types of entities from a graph. In the case of Figure 2-2, software can easily
extract all the customers, for example. A data scientist will have a much better (and
more productive) time working with this information-rich graph.

Importantly, some processing can be done without knowledge of the domain, just by
using the features of the property graph model. A common example is visualization.
Figure 2-3 shows how nodes with the same labels will be displayed with similar
visual style in two popular visualization tools, Linkurious and Neo4j Bloom. With
just an understanding of the organizing principle, these tools render the data in
a helpful, visual manner. Moreover, Bloom uses the metadata to provide intuitive
Google-query-style exploration atop the graph.

12 | Chapter 2: Organizing Principles for Building Knowledge Graphs

https://linkurio.us
https://oreil.ly/AnvA1

Figure 2-3. Bloom (top) and Linkurious (bottom) visualize property graph data using
the model’s organizing principles

Organizing Principles of a Knowledge Graph | 13

To a consumer application—like visualization tools—the organizing principle is a
contract. The contract tells the tool that it can expect to find labeled nodes, connected
by directed and typed relationships, with properties on both if desired. As long as
the graph and the tools both honor this contract, the system will work, even in the
absence of detailed domain knowledge.

Organizing Principles Are Contracts
The organizing principle provides a contract between the graph and its users. But this
contract doesn’t only apply to humans—it also applies to software.

With the property graph model, consuming software can expect to find labeled nodes
and directed, labeled relationships in the data. The property graph model is a contract,
and software tools that uphold this contract can process, visualize, transform, and
transmit the data in a manner that is consistent with its intent.

Although it’s commonplace and powerful, the property graph model is a relatively
low-level organizing principle. The property graph model becomes even more useful
if it’s combined with other higher-order organizing principles like the taxonomies
and ontologies discussed later in this chapter.

In Figure 2-2 we’ve used the the property graph model to showcase various product
features. A competent user can extract all wireless headphones from the data as easily
as they could extract all audio products. With only slightly more effort, aggregate
sales data per product or per product category can also be computed. But the way the
data is set up does not provide much scope for reasoning: labels don’t give enough
information to know that, for example, one product can be substituted for another.
For that you need a stronger organizing principle.

Knowledge Graphs Using Taxonomies for Hierarchy
In Figure 2-2, you saw that the associative connection between customers and the
products they’ve bought is explicit in the graph in the form of a relationship. Creating
categories of nodes using labels is also clearly useful, but the associativity between
labels was missing.

14 | Chapter 2: Organizing Principles for Building Knowledge Graphs

The Labeled Property Graph Model
In the labeled property graph model, labels are akin to tags which describe the role of
a node in the graph. There is no associativity between labels, so you can’t for example
infer that an apple is a specialization of a fruit. This absence of associativity between
labels is considered to be a feature, not a bug. Type systems and polymorphism are an
application-level concern, while graph databases deal with data and structure only.

Accordingly, the designers of the labeled property graph model separated data
and type system. The database owns data (and its structure of course), while the
applications that use the database may have their own rich type systems for their own
purposes.

Keep in mind that labels are not types with inheritance characteristics. They are
indicators of a node’s role (or roles) in the graph. While labels might be mapped to
types in an application, that’s a design decision left for the implementer of a system
that consumes the knowledge graph.

Labels don’t tell us, for example, that one category is broader than another one or that
certain products are compatible with others or are even possible substitutions based
on the categories to which they belong. You cannot tell from labels alone that giraffe
is a specialization of mammal or that apple could be a reasonable substitution for
banana when you are interested in fruit. This functionality is present in some other
graph models, notably in some implementations of the Semantic Web technology
stack, but the implementation complexity is high, and reasoning over the model is
often computationally slow, even intractable.

At a business level, lacking data about categories and substitutions means lost sales
opportunities. It is clear that better product catalogs mean better shopping experi‐
ences for the customer and more revenue for the retailer. An expressive way of
categorizing products is therefore a worthwhile investment.

Organizing Principles of a Knowledge Graph | 15

As savvy buyers, you know that headphones and earphones are both part of the
more general category of personal audio. You also know that there are specific
styles of wireless and wired headphones and earphones, and you know that some
personal audio can be both wired and wireless. To meet customer expectations, the
retailer needs to be able to use this information. It can also be useful to mix product
information with historic customer preferences, stock levels, profit margins, and so
on to provide an even richer set of data to guide customers’ buying decisions and
maximize value for the seller.

In the example of a product catalog, those questions aren’t limited to buying specific
headphones but also include higher-order questions like “What’s good equipment for
listening to classical music while I’m running?” These kinds of questions cannot be
answered with algorithms alone. You need smarter data. A good place to start is to
enrich the way products are classified with a higher-order organizing principle so that
you can better reason about products’ substitutability. That is, if the retailer is out of
stock of a specific item, it might still win a sale if it is able to offer similar items.

To support x is a kind of y reasoning, you need a more hierarchical view of your data
using a structure known as a taxonomy. A taxonomy is a classification scheme that
organizes categories in a broader-narrower or generalization-specialization hierarchy.
Items that share similar qualities are grouped into the same category, and the taxonomy
organizes concepts by relating categories to one another. This kind of hierarchical
organization places more specific things like products (which are numerous) at the
bottom of the hierarchy while more general things like brands or product families
(which are less numerous) are placed toward the top of the hierarchy.

The hierarchy is constructed with Category nodes connected by SUBCATEGORY_OF
relationships, though on the framework or vocabulary used, these could also be called
NARROWER_THAN or SUBCLASS_OF. Subsequently, products can be connected to the
appropriate part of the taxonomy to classify them as ready for sale. This is shown in
Figure 2-4, where the graph supports better customer service by offering alternative
products in the same category and in nearby categories.

16 | Chapter 2: Organizing Principles for Building Knowledge Graphs

Figure 2-4. A product catalog hierarchy layered on top of the customer and sales data

The beauty of knowledge graphs is that you can choose to compose multiple organi‐
zational hierarchies simultaneously to provide even more insight. In Figure 2-5 you
can see how different taxonomies can coexist in a single knowledge graph.

Organizing Principles of a Knowledge Graph | 17

Figure 2-5. Multiple hierarchies can be dynamically layered on top of the customer and
sales data

18 | Chapter 2: Organizing Principles for Building Knowledge Graphs

Currently, the Bose QC35II headphones are connected via a PROMOTED relationship to
the half price category node, itself a subcategory of Black Friday deals, which
is a seasonal promotion. They are also connected to both the wired headphones
and wireless headphones categories and would be presented to customers browsing
in those categories. At other times of the year, the same pair of headphones would
be classified differently—for example, in a high-end audio category. This is possible
because classification is dynamic in a knowledge graph. The new categories and their
associativity as well as the linkage of products to the categories are just additional
nodes and relationships. This gives you enormous flexibility since it’s just data in a
graph database.

In “Richer Graph Models” on page 11, you achieved a level of domain independence
by using the property graph model. Now you can take things a step further by using
a taxonomy. Any application that understands your taxonomy (simply the meaning
of broader and narrower) can exploit the graph in a much richer way without any
specific knowledge of the domain. For example, algorithms could use the taxonomy
to compute semantic similarity between products by applying standard taxonomy
metrics like path similarity, Leacock-Chodorow, or Wu and Palmer. It makes no
difference whether your domain is audio equipment or fruit: you can process the
smarter data in the taxonomy with these standard algorithms.

Using multiple categories makes the data more expressive and allows for sophistica‐
ted exploitation with low complexity. This modest taxonomical organization provides
immediate benefits in terms of the knowledge that can be extracted.

It is pleasing and convenient that taxonomies map easily onto the labeled property
graph model. But taxonomies are not your only option for organizing knowledge and
making data smarter. There are still higher order organizing principles you can use.

Knowledge Graphs Using Ontologies for Multilevel Relationships
While taxonomies represent collections of topics with SUBCATEGORY_OF relationships
between them, an ontology increases the level of sophistication. Like taxonomies,
ontologies are classification schemes that describe the categories in a domain and
the relationships between them. But ontologies are not restricted to hierarchical
(broader-narrower) structures, so they can offer richer associativity.

Ontologies enable you to define more complex types of relationships between cate‐
gories, such as PART_OF, COMPATIBLE_WITH, or DEPENDS_ON. They also allow you to
define hierarchies of relationships and to characterize those relationships in more
nuanced ways (transitive, symmetric, and so on). These concepts also map comforta‐
bly onto the labeled property graph model.

Organizing Principles of a Knowledge Graph | 19

https://oreil.ly/0G56S

Following the guidance in an ontology, you can explore the categories in a domain
not just vertically (hierarchically) but also horizontally, which allows you to address
cross-cutting concerns. For example, you could reason that an iPhone 12 is a valid
search result for a customer looking for a mobile phone because it is an iOS device.
Using a regular taxonomy you can also express that iOS is a subcategory of mobile
phone. But from the semantics of the UPSELL relationship defined in the ontology,
you can further reason that an iPhone 12 Pro should be recommended to customers
looking at an iPhone 12. Figure 2-6 shows how an ontology supports this upsell
feature using UPSELL relationships to help guide a user of the product catalog toward
better buying decisions.

Figure 2-6. An ontology showing upgrade paths (upsell opportunities) for products in the
catalog

At a still higher level, for graphs that span systems you can use an ontology to act as
a semantic bridge. An ontology that defines cross-equivalence (linking between the
same concepts in both systems) allows you to traverse the entirety of the business
domain while mapping it back to a standard, well-understood vocabulary.

As the use cases for ontologies become more sophisticated, such as acting as contracts
between systems, so does their complexity. However, ontologies can be built in a
modular fashion to make them more composable. This allows you to get immediate
value from them and manage their complexity. Figure 2-7 shows a sophisticated use
of layered ontologies to bridge several underlying taxonomies/ontologies. Each layer
in the graph can be queried independently, but when the layers are brought together,
they provide an ability to reason across those domains.

20 | Chapter 2: Organizing Principles for Building Knowledge Graphs

Figure 2-7. A sophisticated layering of ontologies and taxonomies over the same data set

In Figure 2-6, you were only able to reason about electronics that complement one
another through a single ontology. But when you use an overarching cross-domain
ontology, you are able to reason about more wide-ranging needs, including a bigger
range of products, recommendations, special offers and promotions, and more. At
a business level, this is a distinct shift from “tell me what gadgets complement each
other” to “help me get the things I need (at the best price).”

Ontologies make knowledge actionable, enabling human or software
agents to carry out sophisticated tasks. For example, if an online
retailer ties its product hierarchy into stock control data through an
ontological layer, it has a way of offering good alternatives to the
user when the current item is out of stock or even to recommend
products with better margins. All of this value comes at the modest
cost of capturing how the business works in a (machine-readable)
ontology.

Which Is the Best Organizing Principle for Your
Knowledge Graph?
The type of organizing principle for a knowledge graph should always be driven by
its intended use. There is little value in building rich and expressive features if there
is no associated process or agent (human or software) that makes use of them. It is a
very common mistake to aim for an overly ambitious metamodel up front. It will be

Which Is the Best Organizing Principle for Your Knowledge Graph? | 21

an expensive effort in both time and resources at a point where the value of the work
is not yet well understood. It risks the details of the organizing principle being out of
date by the time it is complete.

Don’t Boil the Ocean
From time to time, you see efforts to try to fully understand and capture the whole
language of the business. There’s no doubt that such work is painstaking and time-
consuming.

What’s less certain is its value. Occasionally, you really do need to completely capture
the language of a domain in detail to release value, but usually that’s not the case.

It might provide comfort to some to create an all-encompassing organizing principle
up front, but that will only capture the system as it exists at the moment the work was
done. Usually, it’s better to treat it as malleable (and versionable).

Not only does this incremental approach allow you to gain value earlier, but it also
sets up practices that assume you will learn and adapt as the business domain evolves.

This lesson has been learned well in enterprise software development. Instead of
building monolithic software applications that deliver every feature on day one, today
Agile methods are often used to deliver software that is sufficient to solve a problem
right away, with the understanding that improved software that solves more of the
problem space will follow.

In general, when creating organizing principles for knowledge graphs you should
embrace just-enough semantics. Introduce semantic metadata for the use cases you
currently have and add more as your use cases demand. You should not build a
complex ontology when a simpler taxonomy or even just a property graph is enough
to deliver the current capabilities required. Trying to build the more complicated
system right away is often overengineering.

Building just what you need for now plays well with iterative systems delivery practi‐
ces too. Iterative construction of knowledge graphs helps to avoid the common trap
of ontological perfectionism. This approach ensures knowledge graphs that are fit for
purpose for the long haul, delivers value early, and reduces overall risk.

But the question remains whether you should use an existing ontology off the shelf or
invest the time to create your own. In the next section, you’ll learn about the benefits
and trade-offs of both approaches.

22 | Chapter 2: Organizing Principles for Building Knowledge Graphs

Organizing Principles: Standards Versus Create Your Own
There are several widely used ontologies that serve particular domains. Here are a few
examples:

• SNOMED CT for clinical documentation and reporting•
• Library of Congress Classification (LCC), widely used in academia•
• Financial Industry Business Ontology (FIBO) for finance and business•
• Schema.org, a collaborative effort to create a shared ontology for the web•
• Dublin Core Metadata Initiative (DCMI), which has many schemas used for•

describing web resources and more

If you work in a domain that uses a standard ontology, it’s a good idea to consider
adopting that model wholesale rather than writing one of your own. Adopting an
existing ontology fosters interoperability since the consumers of your knowledge
graph are also able to adopt standards for interoperability. Interoperability is increas‐
ingly important when the communicating parties are separate entities, such as partic‐
ipants in a supply chain. In some cases, it may even be mandatory to use a specific
standard for things like regulatory reporting.

Using a standard ontology is a form of knowledge reuse. You are treading a path
that others have trodden before and can benefit from their efforts. But if there is no
standard for your domain, if existing standards are only a partial fit, or if you really
do need fine-grained control over the organizing principle, then you will need to
write your own from scratch or use a public standard as a starting point for evolution.

Creating Your Own Organizing Principle
If you are faced with the task of creating an organizing principle, there are a few
approaches from which to choose. One is to use natural language like English to
describe the semantics of your organizing principle. This approach has a low barrier
to entry but has other disadvantages. Since the semantics are not machine read‐
able, programmers must turn the specification into code, which tends to introduce
discrepancies.

Another way is to formally define the organizing principle using one of the standard
languages available. The most widely used standard languages are RDF Schema and
Web Ontology Language (called OWL) for ontologies and Simple Knowledge Organi‐
zation System (SKOS) for taxonomical classification schemes. Each of these languages
allows for different expressivity levels: from the basic definition of categories and
relationships to taxonomies and more sophisticated constructs like complex classes.

Organizing Principles: Standards Versus Create Your Own | 23

https://www.snomed.org
https://oreil.ly/qN2Kd
https://oreil.ly/kzpqB
https://schema.org
https://oreil.ly/MEU1Q

An advantage of using a standard ontology language to describe your organizing
principle is that you get support from software. Writing ontologies by hand can be
difficult and prone to error, but (visual) ontology editors can help avoid certain types
of errors. Still, becoming fluent in one or more ontological description languages has
a cost that must be weighed against its benefits.

It’s not only during the creation of the organizing principle that you can benefit from
standards-aware software, though. Once the organizing principle has been applied to
your knowledge graph, software based on standards can run automated tasks on your
data. For example, suppose you use OWL as the framework for the organizing princi‐
ple of a knowledge graph. In that case, a program capable of running OWL-based
reasoning would be able to—within computational limits—derive new facts from
your data without it having to understand the domain of that data.

Automated reasoning is very appealing, but it is important to keep an objective view
before jumping in. What kinds of things can you express with these standards? What
kinds of inferencing can you run on them? And the most important question: how do
they align with your business needs?

We’ve found that organizations that are successful with knowledge graphs tend to lev‐
erage standards to a certain extent while ensuring they can easily layer on additional
meaning as needed to move fast and keep up with business changes. It seems that
a mix of standards and adaptive customization is most aligned with the reality of
modern business.

Essential Characteristics of a Knowledge Graph
It’s not true that a specific graph technology is required for knowledge graphs, despite
the historical association with the Semantic Web and RDF triplestores. Our prefer‐
ence is the property graph model. Property graphs offer a sensible way to develop and
maintain knowledge graphs, and they have excellent tool support and a large, active
community of practice.

Good knowledge graphs are flexible and easy to maintain. Avoid
cumbersome technologies that bog you down. While you’re work‐
ing hard to keep them up to date, the business will have moved on.

A good knowledge graph must be performant. Software teams and users both work
around pain points, and slow systems are painful. A fast, up-to-date knowledge graph
empowers users, while a slow, hard-to-change one will fall into disuse.

24 | Chapter 2: Organizing Principles for Building Knowledge Graphs

Knowledge graphs are not static. People and systems using a knowledge graph enrich
it. Do everything you can to encourage use, and your knowledge graph will flourish
as interactions enrich it in a virtuous cycle.

Data Exchange and RDF
Resource Description Framework (RDF) is often presented as a key differentiator
for knowledge graph implementations and has been conflated with the concept of
knowledge graphs. However, RDF is a model for data exchange, not a guide to storage
or querying. It describes how data is serialized as triples of subject, predicate, and
object (roughly equivalent to start node, relationship, and end node).

The techniques described in this chapter are completely independent from imple‐
mentation decisions. You certainly don’t need an RDF triplestore to build knowledge
graphs, while the market direction is strongly towards labeled property graphs.

In practice, RDF is a reasonable choice as a format for sharing data, but your data
model shouldn’t be dictated by your wire format.

Summary
This chapter has discussed how to organize data to extract knowledge from it. You
now have a good definition of a knowledge graph and the organizing principles
that allow you to derive meaning from it. You’ve seen several different organizing
principles, from labeled property graphs to sophisticated ontologies, and you’ve given
some thought to the trade-offs of each.

Soon, we’ll turn to the applications of knowledge graphs to illustrate how businesses
generate value from knowledge extracted from their smarter data. But to get there,
you’ll need to learn a little about graph technology, from simple things like loading
data into a graph database all the way through to graph algorithms and machine
learning. But first, in Chapter 3 we’re going to learn the basics of graph databases and
graph queries.

Summary | 25

CHAPTER 3

Graph Databases

In our book Knowledge Graphs: Data in Context for Responsive Businesses (O’Reilly),
we said that knowledge graphs predate modern graph data technology. In fact, the
concept of knowledge graphs appeared alongside the Semantic Web, before the term
graph database had been coined.

More recently, graph databases and graph processing have become a significant trend
in contemporary business systems. We’ve observed a correlation between the renewed
interest in knowledge graphs and the widespread emergence of graph databases and
graph data science tools. In a sense, modern graph technology has put knowledge
graphs within practical reach of many organizations, rather than being mostly con‐
fined to academia.

This chapter will introduce you to graph databases at a basic practitioner level. It
shows you how to use a graph database and, in particular, how to use a query lan‐
guage to store and query knowledge graphs. It also shows you how graph databases
work and why they are significantly more performant for knowledge graph workloads
than other data technologies.

27

https://oreil.ly/knowledge-graphs

1 The authors work at Neo4j at the time of writing.

The most popular graph database in terms of its maturity and
reach is Neo4j, and all of the technical examples in this and
subsequent chapters are based on the Neo4j graph database and
associated tooling.1 Neo4j is freely available from https://neo4j.com.
The easiest way to run Neo4j on your computer is via the Neo4j
desktop app. If you’d prefer not to install Neo4j, then consider
Neo4j Sandbox and Neo4j Aura cloud services. Neo4j Sandbox is
a free learning tool to help you get started with graphs. Neo4j
AuraDB is a graph database as a service. It has a free tier, which is
intended for prototyping systems that will (eventually) move into
production.

This is an important chapter, but it is not intended to be comprehensive. Instead,
it gives you the sufficient exposure to be able to work through the solutions con‐
tained in the rest of this book. If you’re interested and looking for more in-depth
information, there are many good books on the topic such as Graph Databases by Ian
Robinson, Jim Webber, and Emil Eifrem (O’Reilly).

The Cypher Query Language
For most knowledge graph developers (and even some users), the majority of interac‐
tions with the database will be via the Cypher query language. Cypher is a declarative,
pattern-matching query language, originally created by Neo4j but now implemented
by several other systems and currently under standardization by the International
Organization for Standardization (ISO) as GQL (Graph Query Language, or “SQL for
Graphs” informally) at the time of writing.

Cypher’s primary design goal was to be humane and expressive. Its creators saw that
people are quite comfortable drawing diagrams with labeled arrows and boxes in
drawing tools like Microsoft Visio. Even more importantly, people are comfortable
reading those diagrams. Having learned from hard experience with database query
languages like SQL and SPARQL, the creators of Cypher reasoned that a good graph
query language should be predominantly visual, like a drawing tool. Correspondingly,
a visual notation for graphs is at the heart of Cypher.

28 | Chapter 3: Graph Databases

https://neo4j.com
https://neo4j.com
https://oreil.ly/ZMRQJ
https://oreil.ly/ZMRQJ
https://oreil.ly/aDLJh
https://oreil.ly/NwRAZ
https://oreil.ly/NwRAZ
https://oreil.ly/jwgiN

Creating Data in a Knowledge Graph
Don’t worry; being visual doesn’t mean you have to be good at graphics! Being visual
means that the structure of queries visually resembles the knowledge graph structure
in a way that is intuitive. This is best demonstrated with an example. You might
remember the small graph in Figure 3-1, which you first saw in Chapter 1. It shows a
group of friends and friends of friends along with some data about where they live.

Figure 3-1. A graph representing people, their friendships, and their locations

Looking at the node representing Rosa in Figure 3-1, you can represent her and her
connections as ASCII art with no loss of fidelity. As an example, you can capture
the semantics of “Rosa lives in Berlin” with the pattern (:Person {name:'Rosa'})-
[:LIVES_IN]->(:Place {city:'Berlin', country:'DE'}), where:

• The items in () parentheses represent nodes.•
• The :Person and :Place text represents labels on those nodes.•
• The -[:LIVES_IN]-> arrow syntax is a relationship named LIVES_IN between•

people and places.
• The {name:'Rosa'} and {city:'Berlin', country:'DE'} are key-value proper‐•

ties that can be stored on nodes (and relationships).

Now, if you prepend CREATE to that pattern, you’ll have a valid Cypher query as
shown in Example 3-1.

Example 3-1. Using Cypher’s CREATE keyword to insert a subgraph

CREATE (:Person {name:'Rosa'})-[:LIVES_IN {since:2020}]->
 (:Place {city:'Berlin', country:'DE'})

The Cypher Query Language | 29

In Example 3-1 the graph structure is very clear. Nodes are represented by parenthe‐
ses (), which look like circles in ASCII art. Next, there are labels for the nodes
like :Place and :Person, which indicate the role those nodes play in the graph
(places and people in this case). Nodes can have zero or more of these labels.

Labels group nodes together by role. When a node is created with
a label, it is added to the index for that label. Most of the time,
you won’t notice these indexes, but the database query planner uses
them to make your queries faster. Node labels add fidelity to your
models and increase performance. There’s a good maxim here: if
you know something about your domain, put it in your knowledge
graph.

When storing data, the direction of a relationship is mandatory since it creates a
correct, high-fidelity model, disambiguating that Rosa lives in Berlin, rather than
Berlin living in Rosa. To store data in Neo4j, you can simply type it into the console as
shown in Figure 3-2; after all, what you draw is what you store.

Figure 3-2. Using CREATE to insert graph data into Neo4j

Once you’ve loaded some data into the database, you can query it using Cypher’s
MATCH keyword. The purpose of MATCH is to compare user-defined patterns against the
underlying knowledge graph. You can see this in Figure 3-3, where the pattern MATCH
(n) RETURN n asks the database to find any nodes, represented by parentheses (n),
and bind those matches the variable n to be returned to the caller.

30 | Chapter 3: Graph Databases

Figure 3-3. Using MATCH to find all items in the database

Importantly, you can traverse a relationship in either direction at
the same constant cost. This is a fundamental tenet of the labeled
property graph model. In practice it means that the latency of a
query is proportional to how much of a knowledge graph you
search. Latency is not simply a function of the size of the graph.

The default view in Figure 3-3 also expands any relationships between the nodes
matched, so you can treat this query as “show me the whole graph.” For large graphs,
this is impractical and usually undesirable, so often you’ll append LIMIT plus a
positive integer value to limit the number of records returned, just like in SQL.

Avoiding Duplicates When Enriching a Knowledge Graph
If you want to grow your graph, you need to create more nodes and relationships.
Naively, you might think that just by using CREATE you can build a large graph, but
CREATE always creates new data. If you run the code in Figure 3-2 again and refresh
the graph display, you will see more than one Rosa node and more than one Berlin
node, as shown in Figure 3-4.

The Cypher Query Language | 31

Figure 3-4. Using CREATE always inserts new records in the database

Sometimes you do want to CREATE new records, but often you don’t want duplicates
in your data. Take a step back, clean up the database, and start again. To remove
records from the database, Cypher supports DELETE, which removes the matched
records or cleanly aborts if that would leave any relationships dangling. It also has
a specialized DETACH DELETE, which removes a matched node and its associated
relationships, shown in Example 3-2.

Example 3-2. Using Cypher DELETE and DETACH DELETE

MATCH (n) DELETE n // Deletes nodes
 // Cleanly aborts if it leaves relationships dangling.

MATCH ()-[r:LIVES_IN]->() // Deletes LIVES_IN relationships between any nodes
DELETE r

MATCH (n) DETACH DELETE n // Deletes all nodes and any relationships attached,
 // effectively deleting whole graph.

Reset the database by issuing the command MATCH (n) DETACH DELETE n. This
time around, since you know that CREATE will always insert new records, you’ll use
Cypher’s MERGE keyword, which inserts records only if the entirety of the supplied
pattern does not already exist.

32 | Chapter 3: Graph Databases

First, create a graph where Karl lives in London: MERGE (:Person

{name:'Karl', age:64})-[:LIVES_IN {since:1980}]→(:Place {city:'London',

country:'UK'}). Since there are no records in the database, this MERGE acts like a
CREATE, and as you would expect, two nodes and a single relationship are persisted in
the knowledge graph, as shown in Figure 3-5.

Figure 3-5. MERGE behaves like CREATE when no matching data exists in the database

Now you can see what happens when you MERGE Fred, who also happens to live
in London. If you type MERGE (:Person {name:'Fred'})-[:LIVES_IN]→(:Place

{city:'London', country:'UK'}), you might expect the database to create a new
node to represent Fred and connect it via a new LIVES_IN relationship to the existing
node representing London. But, surprisingly, that is not what happens.

MERGE is subtle. Its semantics are a mix of MATCH and CREATE insofar as it will either
match whole patterns or create new records that match the pattern in its entirety. It
will never partially MATCH and partially CREATE a pattern. As such, in Figure 3-6 what
happens is that MERGE cannot fully match the pattern (:Person {name:'Fred'})-
[:LIVES_IN]->(:Place {city:'London', country:'UK'}), so it creates that pattern
instead, resulting in a unwanted duplicate London node (and no connection between
Fred and Karl).

The Cypher Query Language | 33

Figure 3-6. MERGE can’t wholly MATCH the pattern on existing data, so it acts like CREATE

You’re not too far into creating your data model, so the quickest thing is to type
MATCH (n) DETACH DELETE n, which clears out the whole graph. This time around,
think more carefully about the data model. Clearly, there should be only one London,
UK, and many people can live there. Also clearly, other places called London (e.g.,
London, Ontario, in Canada) exist and should be allowed. You can constrain the data
model to support the existence of a single London, UK, node after which any updates
that try to create additional identical nodes will be (cleanly and safely) rejected.

Create a constraint using CREATE CONSTRAINT no_duplicate_cities FOR

(p:Place) REQUIRE (p.country, p.city) IS NODE KEY. This statement declares
that Place nodes need a unique composite key composed from a combination of
city and country properties. Composite constraints are available in Neo4j Enterprise
Edition, which is available for free for non-production use as part of Neo4j Desk‐
top. In turn, this ensures the coexistence of London, UK, and London, Ontario,
in the database but prevents duplicates of them (and any other city and country
combination).

Now that you have a constraint in place, you can go back to thinking about how you’d
like to connect both Karl and Fred to the node representing London, UK. To do so,
you have to decompose this into three distinct steps:

1. Create or find a node representing London.1.
2. Create or find a node representing Karl and connect it to the node representing2.

London.
3. Create or find a node representing Fred and connect it to the node representing3.

London.

34 | Chapter 3: Graph Databases

Recall that MERGE has the semantics that it exclusively creates or matches patterns
in the graph. The MERGE statements in Example 3-3 are executed as part of a single
transaction and so will be applied (or rejected) atomically. Moreover, because of the
uniqueness constraint, the database won’t accept duplicate Place nodes and will abort
any transactions that try to create them.

Example 3-3. Multiline MERGE query

MERGE (london:Place {city:'London', country:'UK'}) // Creates or matches a node to
 // represent London, UK
 // Binds it to variable "london"

MERGE (fred:Person {name:'Fred'}) // Creates or matches a node to represent Fred
 // Binds it to variable "fred"

MERGE (fred)-[:LIVES_IN]->(london) // Create or match a LIVES_IN relationship
 // between the fred and london nodes

MERGE (karl:Person {name:'Karl'}) // Creates or matches a node to represent Karl
 // Binds it to variable "karl"

MERGE (karl)-[:LIVES_IN]->(london) // Create or match a LIVES_IN relationship
 // between the karl and london nodes

If you run the code in Example 3-3 on a clean database, you can then run MATCH (n)
RETURN (n) to see all of its contents. What you get is a graph like Figure 3-7.

Figure 3-7. Correct multiline MERGE protected by unique constraints

The Cypher Query Language | 35

As developers of knowledge graphs, you have to understand Cypher
at a reasonable level. Sometimes queries are typed in the command
line, usually for prototyping or ad hoc queries that are outside the
normal application workload. Most queries are hosted inside apps
that interact with the knowledge graph. Queries are parameterized
and sent by the app across the network to be evaluated by the
database, just like any relational or NoSQL database. The deploy‐
ment architecture for graph databases is the same as any other
database. It’s the data model that sets graph databases apart from
other technology.

By repeatedly following the same pattern using MERGE, you can build large knowledge
graphs that capture your domain in high fidelity, as shown in Figure 3-8.

Figure 3-8. A small social graph in Neo4j

Of course, since you are interacting with a database, you can update and enrich the
data in your knowledge graph after it has been created. For example, you can add a
property that sets Rosa’s date of birth:

MATCH (p:Person)
WHERE p.name = 'Rosa'
SET p.dob = 19841203

Equally, you can remove properties (without deleting the associated node or
relationship):

MATCH (p:Person)
WHERE p.name = 'Rosa'
REMOVE p.dob

36 | Chapter 3: Graph Databases

2 Graph local queries may process many or few records; the local element simply states that some parts of the
pattern are bound to known nodes or relationships, rather than iterating the whole graph.

REMOVE can also be used to strip a label from a node:

MATCH (p:Person)
WHERE p.name = 'Rosa'
REMOVE p:Person

At this point, you’ve learned to store data in your knowledge graphs along with some
rudimentary querying. It’s time to expand your skills with queries that are bound to
known nodes in the graph.

Graph Local Queries
Now that you can store data in your knowledge graph like in Figure 3-8, you can
turn your attention to querying it. Queries are written using Cypher and follow very
similar patterns to the way you stored nodes, relationships, and properties.

The heart of a Cypher query is the MATCH clause, as you have already seen with the
pattern MATCH (n) RETURN (n). MATCH is used to ask the database to find records in
the knowledge graph which match a particular pattern. Using MATCH, you can specify
parts of the graph that you know, binding the pattern to parts of the graph that exist,
and leave other parts unbound for the database to find. As a simple example, you
could ask the question “Who lives in Berlin?” as shown in Example 3-4. This is called
a graph local query because it is bound to a specific part of the graph—in this case, the
node representing Berlin.2

Example 3-4. Who lives in Berlin?

MATCH (p:Person)-[:LIVES_IN]->(:Place {city:'Berlin', country:'DE'})
RETURN (p)

The query in Example 3-4 is quite readable even if you’re new to Cypher. It starts
with MATCH, which tells the database that you want to find patterns. The pattern
of interest has some parts that you know exist in the knowledge graph and leaves
some parts for the query to find. Specifically, the pattern (:Place {city:'Berlin',
country:'DE'}) will match the node representing Berlin, and -[:LIVES_IN]-> will
match incoming LIVES_IN relationships to that Berlin node. This is a loose pattern
since no properties are specified, but it will still match correctly in your knowledge
graph as it stands. The (p:Person) part of the pattern will match any Person nodes
in the graph and bind those matches to variable p for later use. When taken together,
the pattern asks the database to find any matching patterns where any Person node
has an outgoing LIVES_IN relationship to the specific Place node representing Berlin.

The Cypher Query Language | 37

Finally, the query returns any Person nodes that have been matched as part of this
pattern by RETURN (p), which results in just the node representing Rosa, as shown in
Figure 3-9.

Figure 3-9. Results showing that only Rosa lives in Berlin

This query provides a small amount of useful information from the social graph. But
that query is quite shallow since it only considers paths of length 1, starting from the
node representing Berlin and matching only its immediate neighbors.

More often than not, you’ll want to explore deep into a knowledge graph to find
insight. Fortunately, this is simple to do in Cypher and computationally cheap to
execute in Neo4j. To demonstrate, you can use the social network to find some
friends of friends with whom Rosa might want to interact.

In Example 3-5 you start with the node representing Rosa and then look for any Per
son nodes that are connected to her via two outgoing FRIEND relationships. You can
use the variable-length path syntax *2..2 in this example to specify path lengths from
2 to 2 (that is, exactly length 2). Less compactly, you could have written the pattern
in full to the same effect: (:Person)-[FRIEND]->(:Person)-[FRIEND]->(:Person).
These are equivalent, though the shorter version is preferred since it’s more readable.

Example 3-5. Naive friends of friends

MATCH (:Person {name:'Rosa'})-[:FRIEND*2..2]->(fof:Person)
RETURN (fof)

38 | Chapter 3: Graph Databases

If you run the query from Example 3-5, you get the slightly puzzling results shown in
Figure 3-10.

Figure 3-10. Rosa shouldn’t be considered her own friend of a friend

In Figure 3-10, Rosa appears as a friend of a friend to herself. That doesn’t feel right,
and you can find the reason why if you look at the graph in Figure 3-8. Since Rosa is
a friend of Karl, and Karl is a friend of Rosa, there is a depth-two path that matches
your -[:FRIEND*2..2]-> pattern, from Rosa to Karl and back to Rosa! To avoid
including Rosa, you augment your MATCH clause with a WHERE predicate to constrain
the search pattern, as shown in Example 3-6.

Example 3-6. Correctly finding friends of friends

MATCH (rosa:Person {name:'Rosa'})-[:FRIEND*2..2]->(fof:Person)
WHERE rosa <> fof
RETURN (fof)

The WHERE rosa <> fof predicate enriches the pattern. Now it only matches when
the node representing Rosa is not the same as the node matched, avoiding the
Rosa-Karl-Rosa problem you saw earlier.

The Cypher Query Language | 39

There are more predicates you can apply using WHERE, including
Boolean operations, string matching, path patterns, list operations,
property checks, and more, such as:

• WHERE n.name STARTS WITH 'Ka'•
• WHERE n.name CONTAINS 'os'•
• WHERE NOT n.name ENDS WITH 'y'•
• WHERE NOT (p)-[:KNOWS]->(:Person {name:'Karl'})•
• WHERE n.name IN ['Rosa', 'Karl'] AND (p)-[LIVES_IN]-•
>(:Place {city:'Berlin'})

You’ll see more of these patterns throughout the book.

After adding the predicate into the query, you find that Rosa’s only friend of a friend
is Fred (via her friend Karl), shown in Figure 3-11.

Figure 3-11. Fred is Rosa’s only friend of a friend

Following the same query structure, you could just as easily ask, “Who has friends
or friends of friends of someone who lives in Berlin?” where you mix relationship
types in patterns and increase the depth of the query. This is normal when querying
knowledge graphs and easy to express, as shown in Example 3-7.

40 | Chapter 3: Graph Databases

Example 3-7. Correctly finding friends and friends of friends of someone who lives in
Berlin

MATCH (:Place {city:'Berlin'})<-[:LIVES_IN]-(p:Person)<-[:FRIEND*1..2]-(f:Person)
WHERE f <> p
RETURN f

In this example, you can see that the friends and friends-of-friends
don’t have to live in Berlin themselves. But it would be a sim‐
ple addition of another WHERE predicate to change the pattern to
enforce that, such as:

MATCH (:Place {city:'Berlin'})<-[:LIVES_IN]-(p:Person)
 <-[:FRIEND*1..2]-(f:Person)
WHERE f <> p AND (f)-[:LIVES_IN]->(:Place {city:'Berlin'})
RETURN f

In Example 3-7 a single LIVES_IN relationship must be matched from the node
representing Berlin to a person, meaning a person who lives in Berlin. Then there
is a variable-length path <-[:FRIEND*1..2]- which matches a friend (at depth 1) or
a friend of a friend (at depth 2). As previously shown in Example 3-6, you have to
ensure that the starting person isn’t counted as their own friend of a friend, and for
that you need to add WHERE f <> p.

Expert relational database users might be concerned about a per‐
formance hit from this uninhibited increase in depth but shouldn’t
be. Unlike similar queries in a relational databases which use recur‐
sive joins, the latency of a query in Neo4j is proportional to how
many nodes and relationships are visited, rather than proportional
to the size of the database. There are no join-bomb problems to be
concerned about, and since the cost of traversing a single relation‐
ship is very low (on the order of millionths of a second), a great
deal of graph search work can be performed very quickly.

Now you have an answer to who has friends or friends of friends who live in Berlin:
it’s Karl (Rosa’s friend) and Fred (Karl’s friend), as shown in Figure 3-12.

The Cypher Query Language | 41

Figure 3-12. Karl and Fred have friends or friends of friends who live in Berlin

Graph Global Queries
So far, you’ve anchored your queries to specific nodes, such as asking explicitly about
Rosa or Berlin. These are called called graph local queries and are quite common in
practice.

But what if you want to query the whole graph, as is often the case with knowledge
graphs? These queries are called graph global. You might want to ask the simple
question, “Which are the most popular cities to live in?” In this case, your query
pattern isn’t bound to any specific node but instead must consider all cities and their
populations. In your query, you don’t specify any particular node as a starting point
because you want to process large parts of the knowledge graph (or even all of it).

The Cypher query and results from the very small social network are shown in
Figure 3-13. You can see that London is the most popular city in the social network
with two people living there, followed by Berlin with one person. Tabular results are
used rather than graph visualization since aggregate numerical data is the goal.

42 | Chapter 3: Graph Databases

Figure 3-13. London is the most popular city in your social network, followed by Berlin

The graph global query in Figure 3-13 is quite readable and in fact is very similar to
the graph local queries that you saw earlier. At the start of the query, there is MATCH
(p:Place)<-[l:LIVES_IN]-(:Person), which is a familiar pattern by now. You ask
the database to match any pattern that has a Place node with an incoming LIVES_IN
relationship from any Person node. Whenever the pattern is matched, you can access
variables bound to the matched nodes. Place nodes are bound to the variable p and
LIVES_IN relationships bound to the variable l where they can be accessed elsewhere
in the query.

You don’t strictly need the Person label in this query since you
know that only Place and Person nodes are joined by LIVES_IN
relationships. But when querying graphs, if you know something
about your graph, explicitly put it in your query. For example,
adding the Person label rather than using an anonymous node
() will help the query planner create better query plans, which
improves performance and reduces latency. But never leave out
the relationship type since that will explode the search space for a
query and consequently greatly increase latency.

Following on from the MATCH clause in Figure 3-13, you see RETURN p AS place,
count(l) AS rels ORDER BY rels DESC. This takes more unpacking but will be
familiar to anyone with experience with SQL. First, RETURN p AS place means that
any pattern matches bound to p (Place nodes) will be returned, but instead of being
called p in the results (too pithy), results will be called place. Along with place, the
query returns the number of LIVES_IN relationships attached to a Place node and
with count(l) AS rels where l is matched from the pattern (specifically LIVES_IN

The Cypher Query Language | 43

relationships) and given the friendly name rels. Since you want popular cities, you’ll
need to impose an ordering on results using ORDER BY rels DESC, which says to
order the results on the value of the variable rels and return them in descending
order (highest first).

Since Figure 3-13 is a very small social network, you don’t need to filter the results.
With just two rows of data returned, all that was needed was to make the names
a little more friendly and sort the results. But for production databases, full results
could be much larger and may not even be helpful (too much data overwhelms the
user). Fortunately, Cypher has aggregation functions avg (average), max (maximum),
min (minimum), sum, and so forth, along with clauses like SKIP (skip some results)
and LIMIT (limit the number of results returned). Using these, you can craft graph
global queries that run over very large knowledge graphs and still return compact,
pertinent aggregate information to the user.

Calling Functions and Procedures
Like Cypher, Neo4j supports operations on knowledge graphs by calling functions
and procedures which implement specific tasks. Invoking them is easy: you use
the Cypher CALL syntax followed by the (namespaced) procedure name and any
arguments in parentheses.

For instance, an often-used procedure is to examine the schema of the graph. Fig‐
ure 3-14 shows how to visualize the schema of the social network knowledge graph
that you first saw in Figure 3-8.

Figure 3-14. CALL db.schema.visualization() reveals the schema of the underlying
knowledge graph

44 | Chapter 3: Graph Databases

Another commonly used set of procedure calls comes from the APOC library. APOC
is a popular library that ships with Neo4j and contains a plethora of useful functional‐
ity and shortcuts for operating on knowledge graphs.

APOC is full of useful procedures and functions. It’s a good idea to
get to know them to avoid reinventing them yourself.

Example 3-8 shows how the apoc.atomic.concat procedure atomically joins prop‐
erty strings together (with no partial results visible).

Example 3-8. Concatenating property strings with APOC

MATCH (p:Person {name:'Fred'})
// Fred becomes Freddy
CALL apoc.atomic.concat(p,"name",'dy')
YIELD oldValue, newValue
RETURN oldValue, newValue;

Invoking functions is similar to invoking procedures, but you don’t need the CALL
syntax. Instead, simply insert the function where you’d normally insert a value, as
shown in Example 3-9.

Example 3-9. APOC function for date/time conversion

RETURN apoc.date.convert(datetime().epochSeconds, "seconds", "days") as outputInDays;

Using procedures and functions from libraries can remove drudgery and reduce the
possibility of errors when using a knowledge graph. Before embarking on something
potentially complicated in Cypher, it’s worth checking to see if there’s a procedure that
can help.

Supporting Tools for Writing Knowledge Graph Queries
There are two more tools you should know to become competent at Cypher. The
EXPLAIN and PROFILE keywords help developers understand the performance of their
queries, which is especially important as your knowledge graphs become larger.

EXPLAIN provides a visualization of a query plan, guiding the developer toward
reducing the amount of data (“DB hits”) flowing through the query. The visualization
that EXPLAIN creates, shown in Figure 3-15, is particularly useful for understanding
the behavior of larger queries before actually running them.

The Cypher Query Language | 45

Figure 3-15. EXPLAIN shows how the query planner thinks the query will execute without
actually executing it

PROFILE goes one step further and instruments a running query to see the actual
behavior at runtime. Using PROFILE, developers can see how the query behaves
when executed on the real knowledge graph and tune it accordingly, as shown in
Figure 3-16.

Figure 3-16. PROFILE gives feedback on the actual execution of a query

Careful use of EXPLAIN and PROFILE can significantly boost query performance. For
example, if excessive amounts of data (or DB hits) flow from operator to operator,
look for opportunities to refactor the query to reduce cardinality earlier. At a macro
level, where the visualization shows expensive tasks like scanning, it can indicate that
a useful index is missing, trading brute-force scans for index lookups. The orange
box at the bottom of each operator shows the time cost of execution. Always seek to
minimize that, even at the expense of DB hits.

46 | Chapter 3: Graph Databases

3 If you’re certain that you don’t want to learn how graph databases work, you can skip ahead to Chapter 4.

Neo4j Internals
It might seem slightly strange to read about database internals in a book aimed at
an important use case.3 You definitely don’t need to be a database engineer to get
significant value from knowledge graphs. But this is a good guiding principle:

You don’t have to be an engineer to be a racing driver, but you do have to have
mechanical sympathy.

—Jackie Stewart, three-time Formula 1 racing champion

With a little mechanical sympathy, you can design knowledge graphs that will be
robust and performant, delighting the users of your systems. Knowing a little about
how the database works under the covers will help you to work with the grain, not
against it. At the highest level, a graph database performs two functions on behalf of
its users:

• Queries graph data performantly•
• Stores graph data safely•

You will see how each of these is implemented (at a high level) in Neo4j so that you
can utilize the machinery well and create responsive knowledge graph systems.

For any production system, you need high availability, monitoring,
security, online updates, and many other capabilities. It’s safe to say
that these exist (albeit at varying levels of maturity) across many
of the graph databases available today both in the cloud and on
premises.

Query Processing
To query knowledge graphs performantly, a graph database must make traversals—
the act of moving from one node across a relationship to another node—fast (for
low latency) and cheap (for high concurrent throughput). Accordingly, the way Neo4j
stores its data (both on disk and when it resides in RAM) is optimized for graph
traversals. Neo4j stores the structure of a graph (nodes and relationships) separately
from the property data. The graph structure is stored as fixed-length records: one
store for nodes and a similar one for relationships. Multiplying the ID of a record
by its size in bytes gives you its offset in the corresponding store file. This pattern
is known as index-free adjacency and has been written about in “The Graph Traver‐
sal Pattern” by Marko A. Rodriguez and Peter Neubauer. Index-free adjacency via
pointer-chasing is very efficient on modern computers.

Neo4j Internals | 47

https://oreil.ly/rPmHP
https://oreil.ly/rPmHP

It’s noteworthy that there are typically no indexes involved in tra‐
versing a graph (unless the query optimizer spots a shortcut that
involves indexes). The relationships on a node act as a local “index”
that guides the traversal to where it can (legally) go next.

Index-free adjacency is such a powerful property because it gives you O(1) or “con‐
stant time” traversals. This means that graph query latency is proportional to the
amount of graph traversed, rather than being proportional to the size of the graph. It
has the effect that even complex queries tend to run quickly and at low computational
cost.

Property storage in Neo4j is different, designed for data flexibility. Since properties
can take many forms in knowledge graphs, like strings, numbers, lists, and more, the
storage format needs to be accommodating. In Neo4j, properties are maintained in
lists of descriptive property records where the head of the list is referenced from the
associated node or relationship. Unlike node or relationship stores, property stores
are O(N) or “linear time” for reads, meaning that access to a property is proportional
to the number of properties stored for that node or relationship. For writes, the
property stores remain O(1) since the new property is added to the head of the
relationship chain.

One thing that knowledge graph developers should be aware of is the cumulative
cost of property access. Though each access itself might be cheap in elapsed time
(especially if the data is currently cached in RAM), accessing many properties during
traversals adds up. In the case of larger traversals, frequent access to properties can
increase latency greatly, up to double according to some practitioners.

Where possible, queries should traverse the graph structure first and then retrieve
property data once target nodes and relationships have been found. This ensures
that most work is done quickly and cheaply with O(1) operations, with fewer more
expensive O(N) operations.

Sometimes you can’t avoid lots of property lookups in your knowledge graph queries,
because properties influence how the graph is traversed. While the database can’t do
anything about the theoretical cost of those accesses, it can in practice greatly reduce
their impact by ensuring that the working set is in the faster parts of the memory
hierarchy. Modern computers, of course, have a well-understood memory hierarchy:
from disks (including SSDs) being the slowest, through RAM, to CPU caches being
the fastest.

48 | Chapter 3: Graph Databases

Use Modern Hardware
Don’t use spinning disks. The seek time for a fast spinning disk is 5 ms, which is a
very long time for computers. During that time, the database could have completed
many thousands of traversals instead of waiting for I/O. For any serious project, it’s
worth investing in good disks and plenty of RAM to host the data for the best possible
performance.

It’s the database management system’s job to ensure that the records needed next by a
query are in memory (most of the time) rather than having to go to disk to retrieve
them. It uses locality-aware caching strategies to try to ensure that hot data is in a
fast part of the memory hierarchy. If this is maintained, the physical cost of accessing
any record, including properties, is significantly reduced. To maximize the chances of
this working sustainably, a healthy ratio of RAM to data size should be used. For the
most demanding use cases, the whole knowledge graph should fit in RAM. With this
in mind, sometimes the cheapest and quickest remedy for slow workloads is simply to
add more RAM!

ACID Transactions
To store data safely, Neo4j—like many other databases—has a transactional write
channel that provides fault-tolerant writes. This is based on a classic “write-ahead
log,” whereby intended updates to the database are first persisted in an ordered
fashion on disk before being applied to the knowledge graph. This gives the database
the ability to tolerate power cycling. When power is restored, it can recover any
transactions that have been cleanly persisted in the log and safely discard those whose
data was only partially stored.

Neo4j maintains ACID (atomicity, consistency, isolation, durabil‐
ity) transactions across servers as well as in the single-server case.
To do so, it uses an algorithm called Raft that keeps individual
transaction logs “tied” together (hence the name).
Atop Raft, Neo4j provides a causal barrier, which means that users
of the database always see at least their own writes, even with
servers spread out over a wide-area network. This causal feature
is opt-in and transparent but makes working with the database
cluster as simple as reasoning about a variable in a programming
language.

Making a database fault tolerant is not an easy thing to do, and there are many edge
cases. But from the point of view of a knowledge graph user, your data is kept safe

Neo4j Internals | 49

from corruption and highly available in the presence of software and hardware faults.
A trustworthy, fault-tolerant graph database is the right underlay for knowledge
graphs at enterprise scale (and beyond). Having an “operationally boring” graph
database leaves you to focus on unlocking the value from your knowledge graphs.

Summary
In this chapter, you’ve seen how Cypher queries are a pleasant pattern-matching syn‐
tax based on ASCII art. The underlying graph database provides a high-performance
platform for storing and querying knowledge graph data.

Using what you’ve learned in this chapter, you can query knowledge graphs perform‐
antly and update them safely. But it’s often the case that at least some data for the
knowledge graph already exists in other systems. The next chapter discusses methods
for importing data into a knowledge graph to use it as a foundation for further
enrichment and gaining valuable insight.

50 | Chapter 3: Graph Databases

CHAPTER 4

Loading Knowledge Graph Data

In Chapter 3 you became acquainted with graph databases and query languages, and
even learned a little about database internals. You also saw how to query and update
knowledge graphs. But there’s a special case of updating that warrants more depth:
bulk imports, which are useful across the whole lifecycle of a knowledge graph.

For each of the techniques in this chapter, it makes sense to start
small. Take a small, representative slice of your data and import it
into the database. Check that the model works as intended before
running the full import job. A quick check can save you minutes or
hours of frustration.

In this chapter, you’ll learn about three ways of bulk loading data into a knowledge
graph. You’ll learn how to incrementally load bulk data into a live knowledge graph
and how to bootstrap a knowledge graph with huge amounts of data. But first you’ll
learn how to use a graphical tool to define the structure of a knowledge graph and
map data onto that structure for bulk imports.

Loading Data with the Neo4j Data Importer
You should start with the easiest of the three popular tools for Neo4j bulk data load‐
ing. The Neo4j Data Importer is a visual tool that allows you to draw your domain
model as a graph and then overlay data onto that graph, with comma-separated
values (CSV) files that contain the data for your nodes and relationships.

Data Importer greatly simplifies bootstrapping your knowledge graph, especially for
beginners. However, it does still require that you have your data in CSV files ready to
use.

51

https://oreil.ly/A6Mm_

To keep the examples short, they’ll use the social network data that you saw in
Chapters 1 and 3. Bear in mind that this simple example works but real imports tend
to use much larger files!

First, draw the social network. The diagram in Figure 4-1 shows the domain model,
consisting of Person and Place nodes and FRIEND and LIVES_IN relationships.

Figure 4-1. Setting up the domain model in the Neo4j Data Importer

First, add your CSV files like those shown in Examples 4-1, 4-2, 4-3, and 4-4 by
browsing for them in the left panel of the tool. Draw the nodes and relationships that
constitute the domain model using the simple drawing tools, and annotate each of
them using the mapping details panel on the right.

Example 4-1. people.csv data for Person nodes in the Neo4j Data Importer

:ID(Person),name
23,Rosa
42,Karl
55,Fred

In Example 4-1, the ID of the node and its label are specified as :ID(Person) with
a single property name. In the subsequent rows, you can see data that matches that
pattern, like 23,Rosa. Note that the ID column is used later to link the graph together;
it’s not (necessarily) part of the domain model and can be expunged from the model
at a later point.

52 | Chapter 4: Loading Knowledge Graph Data

Example 4-2. friends.csv for FRIEND relationships between Person nodes in the Neo4j
Data Importer

:START_ID(Person),:END_ID(Person)
23,42
42,23
42,55
55,42

In Example 4-2, the start and end IDs of the Person nodes are specified
with :START_ID(Person),:END_ID(Person). You have a relationship that goes from
one Person node represented as an ID to another. In each row you can see the corre‐
sponding IDs of the start and end nodes of a FRIEND relationship, which matches the
data in Example 4-1.

Example 4-3 follows the same pattern as Example 4-1, but for Place nodes rather
than Person nodes. The header specifies that there will be an ID for Place nodes
followed by city and country properties to be written onto each of those nodes.

Example 4-3. places.csv data for Place nodes in the Neo4j Data Importer

:ID(Place),city,country
143,Berlin,Germany
244,London,UK

Finally, Example 4-4 declares the LIVES_IN relationships between Person and Place
nodes. The header specifies the ID of Person nodes as the start of the relationship, the
ID of Place nodes as the end of the relationship, and an optional since property on
the relationship. The CSV data then follows that pattern.

Example 4-4. lives_in.csv for LIVES_IN relationships between Person and Place
nodes in the Neo4j Data Importer

:START_ID(Person),:END_ID(Place),since
23,143,2020
55,244
42,244,1980

Given these CSV files, you can now run the Neo4j Data Importer. It executes against a
live database and so requires an endpoint and credentials in order to work. Once the
Data Importer has successfully executed, you will receive an import report like the
one shown in Figure 4-2.

Loading Data with the Neo4j Data Importer | 53

Figure 4-2. The Data Importer has finished, and you can see the Cypher queries it used
to load data into Neo4j

In Figure 4-2, you can see some of the Cypher scripts that have executed against the
database along with statistics on the import. A handful of common Cypher idioms
stand out from the report: CREATE CONSTRAINT, UNWIND, and MERGE. Here you should
use UNWIND to feed rows of CSV data into a MERGE operation that creates a Person
node with an ID property. It then writes a since property on that node using SET. If
there is no since property for any row, that’s not a problem because SET tolerates the
absence of data for those relationships.

54 | Chapter 4: Loading Knowledge Graph Data

UNWIND is a Cypher clause that takes a list of values and transforms
them into rows that are fed into subsequent statements. It’s a very
common way to handle input data, and you’ll see it frequently in
this chapter. Its usual form is

UNWIND [1, 2, 3, null] AS x
RETURN x

where the values 1, 2, 3, and null will be returned as individual
rows to the caller.

UNWIND is again used to feed relationship data from Example 4-4 into the graph, as
shown in Figure 4-3.

Figure 4-3. Mixing MERGE and MATCH with data fed by UNWIND

Also in Figure 4-3, you can see how a combination of MERGE and MATCH is used.
Remember that in Chapter 3 you used MERGE when it wasn’t clear whether or not a
node or relationship existed, since MERGE acts like MATCH when a record exists and like
CREATE when it does not. Here you don’t MERGE for Person and Place nodes because
they are guaranteed to exist in the input CSV file. Instead, you only need to MERGE the
LIVES_IN relationship between those existing nodes, where MERGE will ensure there
are no duplicate relationships.

Of course, you could write the equivalent Cypher by hand and run it as a set of
scripts, and it would have the same effect (as per the following section, “Online Bulk
Data Loading with LOAD CSV”). You could also take this Cypher and treat it as
an automatically generated source, which could be modified and hosted in source
control so that it can be evolved as the knowledge graph grows over time.

The Neo4j Data Importer gives you a head start not only with the Cypher code for
ingestion but also by visualizing, verifying, and debugging the model and the data
that will flow into it before you start the import. As such, it’s valuable to experienced
Neo4j developers as well as folks who are new to graph databases.

Loading Data with the Neo4j Data Importer | 55

Online Bulk Data Loading with LOAD CSV
In Chapter 3 you saw how to create (and update) records in the database using
the CREATE and MERGE Cypher commands. In “Loading Data with the Neo4j Data
Importer” on page 51, you learned how a visual tool generates Cypher code that then
loads CSV data into a live database.

But there is another way of scripting CSV imports: using Cypher’s LOAD CSV com‐
mand. LOAD CSV allows you to import CSV data into an online graph from a variety
of places. You can load CSV data via web addresses (like Amazon S3 buckets or
Google Sheets) and filesystems, and LOAD CSV imports happen while the database
is live and serving other queries. Usefully, CSV files can also be compressed, which
helps when transferring large amounts of data.

LOAD CSV is most simply explained by example. First load all the Place nodes from
the social network using LOAD CSV. The CSV file used is in Example 4-5.

Example 4-5. CSV data for Place nodes

city,country
Berlin,Germany
London,UK

Since the place data is uniform, you can use a straightforward LOAD CSV pattern to
insert the nodes into the knowledge graph, as shown in Example 4-6.

Example 4-6. Simple LOAD CSV for Place nodes

LOAD CSV WITH HEADERS FROM 'places.csv' AS line
MERGE (:Place {country: line.country, city: line.city})

While Example 4-6 isn’t a complete solution to loading the knowledge graph (since it
only loads places), it exemplifies the basic pattern for using LOAD CSV. The first line
breaks down as follows:

• LOAD CSV is the Cypher command you want to execute.•
• WITH HEADERS tells the command to expect header definitions in the first line of•

the CSV file. While headers are optional, it’s usually a good idea to use them.
Headers allow you to refer to columns with a friendly name (rather than just a
numerical index), as shown in the the MERGE statement in Example 4-6.

• FROM 'places.csv' tells the command where to find the CSV data. Note that•
Neo4j security permissions may have to be altered if you want to import from
nondefault locations in the filesystem or from remote servers.

56 | Chapter 4: Loading Knowledge Graph Data

• AS line binds each row in the CSV file to a variable in Cypher called line that•
can be accessed subsequently in the query.

The data about people is much less regular. The only thing known for all people is
their name. For some people, you might also know their gender or age, as shown in
Example 4-7.

Example 4-7. CSV data for Person nodes

name,gender,age
Rosa,f,
Karl,,64
Fred,,

Having irregular data (just like in the real world) means you need to take a slightly
more sophisticated LOAD CSV approach. You’ll need to change the script to be like
Example 4-8. Here you can use SET to avoid writing any null properties into the node,
which would cause the operation to fail. If you try to use the simpler approach from
Example 4-6, the query will fail, complaining about null property values.

Example 4-8. More sophisticated LOAD CSV for irregular Person nodes

LOAD CSV WITH HEADERS FROM 'people.csv' AS line
MERGE (p:Person {name: line.name})
SET p.age = line.age
SET p.gender = line.gender

Finally, you can add the LIVES_IN and FRIEND relationships to link the new nodes
into a knowledge graph (or link them to existing nodes if you have a knowledge
graph already). In Example 4-9, the FRIEND relationships are encoded in CSV such
that, for example, there is a FRIEND relationship from Rosa to Karl and another from
Karl to Fred.

Example 4-9. FRIEND relationships in CSV format

from,to
Rosa,Karl
Karl,Rosa
Karl,Fred
Fred,Karl

Online Bulk Data Loading with LOAD CSV | 57

This is a small example, so the names of the people are sufficiently
unique to act as IDs. For a real import, this is unlikely to hold, and
introducing unique numeric IDs for nodes is sensible. In practical
terms, this would mean adding an incrementing integer ID for
each row in the people and places CSV files.

You can use that data to create FRIEND relationships (if they don’t already exist), as
shown in Example 4-10. Note that because you know the Person nodes have already
been populated in Example 4-9, you can just MATCH them and fill in any relationships
between them using MERGE in Example 4-10.

Example 4-10. Loading FRIEND relationships

LOAD CSV WITH HEADERS FROM "friend_rels.csv" AS line
MATCH (p1:Person {name:line.from}), (p2:Person {name:line.to})
MERGE (p1)-[:FRIEND]->(p2)

The LIVES_IN relationships are a little trickier since they optionally have since
properties on them. In Example 4-11, the line Fred,London,, has a trailing double
comma, which indicates no value in the since field. Care is needed when handling
this situation.

Example 4-11. LIVES_IN relationships in CSV format

from,to,since
Rosa,Berlin,2020
Fred,London,,
Karl,London,1980

To load the data from Example 4-11, you use the Cypher code in Example 4-12.
Note that you are not using MERGE (person)-[:LIVES_IN {since:line.since}]-
>(place) to set the since property value because it would fail for those rows where
the property is omitted. Once again, you should use SET after the relationship record
has been created to add the property. This is perfectly fine because the statement
is executed transactionally, so the relationship and its property will be written atomi‐
cally despite being separated syntactically.

58 | Chapter 4: Loading Knowledge Graph Data

Example 4-12. Loading FRIEND relationships with property data

LOAD CSV WITH HEADERS FROM "friend_rels.csv" AS line
MATCH (person:Person {name:line.from}), (place:Place {city:line.to})
MERGE (person)-[r:LIVES_IN]->(place)
SET r.since=line.since

For very large data imports, say one million records and up, it’s often sensible
to break the operation into smaller batches. This ensures that the database isn’t
overwhelmed with large inserts and keeps the other queries on the knowledge graph
running smoothly. Prior to Neo4j 4.4, you would use the apoc.periodic.iterate
function from the APOC library for this purpose. From Neo4j 4.4, similar functional‐
ity is available directly in Cypher using CALL {...} IN TRANSACTIONS OF ... ROWS.
Using this method you can change the loading of Person nodes into smaller batches,
as shown in Example 4-13. In a real system, the number of rows and number of
batches would both, of course, be much higher.

Example 4-13. Loading People nodes in batches (prefix with :auto if running from the
Neo4j Browser)

LOAD CSV WITH HEADERS FROM 'people.csv' AS line
CALL {
 WITH line
 MERGE (p:Person {name: line.name})
 SET p.age = line.age
 SET p.gender = line.gender
} IN TRANSACTIONS OF 1 ROWS

One of the nice things about using LOAD CSV is that it’s regular Cypher. So all
the things you’ve learned about Cypher can be put to use, including EXPLAIN and
PROFILE to analyze, debug, and tune bulk ingestion. For example, the simple query
plan for loading FRIEND relations is shown in Figure 4-4.

Online Bulk Data Loading with LOAD CSV | 59

Figure 4-4. Visualizing the query plan for a LOAD CSV operation

Figure 4-4 looks good overall. Even the Cartesian product operator (which the Neo4j
Browser will warn you about) is not a problem because it’s fed by a filter that reduces
its inputs to just two matching nodes and the corresponding CSV line. Of course, that
might not always be the case, and using EXPLAIN or PROFILE on a small amount of
representative input data can help solve any performance problems before they start.

In addition to Cartesian products, look out for any eager opera‐
tors in the query plan or profile. Eager operators pull in all data
immediately and often create a choke point. Mark Needham has an
excellent blog post on strategies for removing eager operators.

LOAD CSV is fast and can be used at any time during the lifecycle of your knowledge
graph. The database remains online during updates so that it can process other
queries. It can, however, take some tuning to achieve good throughput without

60 | Chapter 4: Loading Knowledge Graph Data

https://oreil.ly/v2idN
https://oreil.ly/v2idN

1 Prior to Neo4j 5, neo4j-admin import could only be used to create an initial knowledge graph for the system.
That constraint has been subsequently relaxed to allow multiple offline imports throughout the system
lifecycle.

dominating regular database operations. But LOAD CSV is not the last option for bulk
inserts—you have one more to add to your toolkit.

Initial Bulk Load
Often there’s an initial import that bootstraps the knowledge graph with potentially
large amounts of data. It’s feasible to use the Neo4j Data Importer or LOAD CSV to do
this, but there is a faster way, albeit one that is somewhat low level.

The Neo4j command-line tool neo4j-admin actually has an offline importer built in.
The neo4j-admin import command builds a new Neo4j database from a set of CSV
files. (For more depth, there’s a full tutorial on neo4j-admin import.)

The neo4j-admin tool ingests data very rapidly, with sustained performance of
around one million records per second, and has optimizations for high-throughput
devices like SSDs and storage area networks (SANs). It’s a high-performance method
for building your bulk imports to your knowledge graph—with the caveat that the
database must be offline each time it is run.1

The caveat with neo4j-admin import is that it’s an offline importer,
which is why it’s so fast. The database will be ready for serving
knowledge graph queries as soon as the import finishes but is
unavailable during building.

To use neo4j-admin import, you first have to assemble your data into CSV files and
place them on a filesystem that the importer can access. The filesystem doesn’t neces‐
sarily have to be local—it can be a network mount. It does have to be a filesystem
since neo4j-admin import will not read data from, for example, S3 buckets or other
data stores that are not filesystems. Since data volumes may be large, the tool also
supports compressed (gzipped) CSV files.

At a minimum, the importer expects the CSV files to be presented as separate files
for nodes and relationships. However, it’s good practice to have separate CSV files
for different kinds of nodes and relationships, for example, splitting out Person and
Place nodes and FRIEND and LIVES_IN relationships.

Very large files should be split into multiple smaller CSV files with the CSV header
itself in a separate file. This makes any text editing of large files much less painful
since smaller files are more convenient for text editing.

Initial Bulk Load | 61

https://oreil.ly/iOA0j

You don’t have to make sure the CSV files are perfect, just in good
enough condition. The importer will tolerate different separator
characters, ignore additional columns, skip duplicates and bad
relationships, and even trim strings for you. However, you’ll still
have to ensure there are no special characters, missing quotes,
unseen byte-order marks, and the like that can affect the importer.

Start by getting your CSV files ready. Example 4-14 is a typical self-contained CSV
file. It has a header row that defines the names of the columns and then rows of data.
The header :ID(Person) says the column represents the ID of a node, and the node
has the Person label. As with the Neo4j Data Importer, the ID isn’t necessarily part
of the domain model but is used by the tool to link nodes together. The name header
declares that the second column is a property called name that will be written into the
current node.

Example 4-14. people.csv contains unique IDs for Person nodes and a name property
for each.

:ID(Person),name
23,Rosa
42,Karl
55,Fred

While Example 4-14 is self-contained, for larger imports it’s more convenient to
separate things out. For example, for FRIEND relationships between Person nodes, you
can split the CSV files into a header file that describes the data and several (typically
large) data files, as shown in Examples 4-15, 4-16, and 4-17. This separation makes
data wrangling much easier since changes to the header don’t involve opening one
really large file in a text editor!

Example 4-15. friends_header.csv contains the signature for relationship data for the
(:Person)-[:FRIEND]→(:Person) pattern

:START_ID(Person),:END_ID(Person)

Example 4-16. friends1.csv contains the first set of relationship data for (:Person)-
[:FRIEND]->(:Person) patterns

23,42
42,23

62 | Chapter 4: Loading Knowledge Graph Data

Example 4-17. friends2.csv contains the second set of relationship data for the
(:Person)-[:FRIEND]→(:Person) pattern

42,55
55,42

The importer treats Examples 4-15, 4-16, and 4-17 logically as a single unit, no matter
how many files there are ultimately. You can use the same separation of concerns for
nodes as well as relationships. Example 4-18 declares a CSV header for Place nodes
which have a Place label and ID, city, and country properties. Examples 4-19 and
4-20 contain the data formatted according to the header.

Example 4-18. places_header.csv contains the signature for Place nodes

:ID(Place), city, country

Example 4-19. places1.csv contains data for Place nodes

143,Berlin,Germany

Example 4-20. places2.csv contains data for Place nodes

244,London,UK

To connect people and places, you need to have something like Example 4-21, which
contains relationships starting with Person nodes and ending with Place nodes.
Some, but not all, of those relationships also have since properties on them repre‐
senting the date when the person began living in the place. The since property will, if
present, come from the third column of the CSV file.

Example 4-21. people_places.csv contains data for LIVES_IN relationships and an
optional since property

:START_ID(Person),:END_ID(Place),since
23,143,2020
55,244
42,244,1980

Assuming the CSV data is sufficiently correct, with no superfluous characters or
dangling relationships, you can run the importer over the data to bootstrap the
knowledge graph. Example 4-22 shows a command-line example that will insert data
from the CSV files into a knowledge graph. Note that it’s a multiline command, so be
careful to include those \ characters at the end of each line.

Initial Bulk Load | 63

Example 4-22. Running neo4j-admin import

bin/neo4j-admin import --nodes=Person=import/people.csv \
--relationships=FRIEND=import/friends_header.csv,import/friends1.csv,\
 import/friends2.csv \
--nodes=Place=import/places_header.csv,import/places1.csv,import/places2.csv \
--relationships=LIVES_IN=import/people_places.csv

The neo4j-admin import tool is very fast and suitable for very large datasets (con‐
taining many billions of records), with approximately a million records per second of
sustained throughput. Bear in mind that large imports need large amounts of RAM
and might still take hours to execute. The tool is not resumable, so be careful not to
type Ctrl-c in the terminal window while it’s running; otherwise, you’ll have to start
the import all over again, which is painful for long-running tasks.

Summary
At this point, you should be comfortable with the concepts of online and offline bulk
imports. You’ve seen how each of these techniques operates and have considered their
pros and cons. You should also be able to make sensible choices around which of
these methods would be appropriate for the knowledge graph that you’re building,
including the possibility of using several tools throughout the knowledge graph’s
lifecycle.

From here you’re going to move further up the stack and explore how data can be
streamed into the knowledge graph to keep it continuously up to date and trigger
further processing.

64 | Chapter 4: Loading Knowledge Graph Data

CHAPTER 5

Integrating Knowledge Graphs with
Information Systems

Knowledge graphs are useful systems in their own right. But the real power of
knowledge graphs is when they are integrated with other systems. When integrated,
a knowledge graph will enrich other systems and in turn be enriched by them in a
virtuous cycle.

There are several ways to integrate knowledge graphs into your data fabric, so this
chapter will guide you through some popular choices. These range from client-side
database drivers, (custom) functions and procedures, and APIs to streaming middle‐
ware and finally ETL (extract, transform, load) tools. For each of these, you’ll be
provided with a technical architecture sufficient to give direction and further pointers
so that you can tackle implementation confidently.

Towards a Data Fabric
Data fabrics are a general-purpose, organization-wide data access layer that offers a
connected view of the data in the underlying systems. A data fabric abstracts away
details of how data is accessed in third-party systems and allows your users to access
that data transparently via the knowledge graph. When supporting a knowledge
graph, the data fabric provides an enterprise-wide index over systems so that relevant
data can be consumed as a dependable layer of master data with golden records for
important entities like customers, products, and events.

While the bytes-over-the-wire part of the data fabric is achieved with traditional
integration methods, the informational model coalesces around a knowledge graph at
the heart of the fabric. The knowledge graph’s job is to provide a sophisticated index

65

to curate data across silos irrespective of how the data is physically stored in those
silos as relational tables or NoSQL keys and values, as shown in Figure 5-1.

Figure 5-1. Using a knowledge graph for data integration

The knowledge graph in Figure 5-1 provides a curated index across multiple underly‐
ing data systems (which are typically unaware of the data fabric). It acts as an entry
point so that when a client application or user requests “Give me the customer John
Smith from Seattle,” it can follow the relationships in the graph to leaf nodes, which
redirect to records in other systems.

In Figure 5-1, customer records are kept in a document database, the product catalog
is stored in another graph database, and billing information is stored in a relational
database. All of these are accessed transparently through an integration layer, using
techniques as part of the data fabric. The knowledge graph retrieves data from the
underlying systems and combines it into a holistic set of data for the client, without
the client having any knowledge that multiple backend systems were used.

Data architects often turn to graphs because they are flexible enough to accommodate
multiple heterogeneous representations of the same entities as described by each of
the source systems. With a graph, it is possible to associate underlying records incre‐
mentally as data is discovered. There is no need for big, up-front design, which serves
only to hamper business agility. This is important because data fabric integration is
not a one-off effort, and a graph data model remains flexible over the lifetime of the
data domains.

66 | Chapter 5: Integrating Knowledge Graphs with Information Systems

To improve the quality and correctness of the data and increase
interoperability across the enterprise, you can overlay an organiz‐
ing principle, such as an ontology, taxonomy, or enterprise canon‐
ical model, atop the integrated data and present it to consumers
as a knowledge graph. The organizing principle makes it possible
to validate data across systems and check for inconsistencies or
violations of the semantics of the data.

Curating your data with a knowledge graph supported by a data fabric has significant
benefits. Characteristics like node degrees, neighborhood information, and centrality
metrics can be used to build sophisticated and effective data integrations. For exam‐
ple, you can define a matching rule as follows: two nodes represent the same product
and therefore can be deduplicated, if their names have a strong string similarity (say
over 95%) and they have identical clustering coefficients (see Chapter 6). The result
is that data owners get significantly improved matching rates when aligning multiple
data sources using a knowledge graph.

But to achieve these goals, you need to deploy a data fabric to integrate your knowl‐
edge graph with underlying systems. It’s time to examine some implementation
options.

The Database Driver
The most commonly used way of integrating with a knowledge graph is through
a driver. A driver is a piece of client-side middleware that sits underneath your
application code and makes network calls to the knowledge graph, integrating the
two parts of the system.

In fact, you’ve already seen drivers in action in this book. Recall that in Chapters
3 and 4 you saw multiple examples of interacting with the database using the
Cypher query language via the Neo4j Browser tool. Neo4j Browser provides a REPL
(read-evaluate-print loop) console through which you can enter Cypher queries for
evaluation by the database.

It might look as if the Browser is directly connected to the database, but that’s not the
case. There’s a connection string which the Browser uses to establish an instance of
a Neo4j driver through which it communicates over the network (even if it’s the local
network interface) to the Neo4j server that hosts the knowledge graph. Neo4j drivers
implement a client-server architecture between a knowledge graph and its consuming
systems (including human users), as shown in Figure 5-2.

The Database Driver | 67

Figure 5-2. A high-level view of the client-server architecture connecting the knowledge
graph to other systems via the network

In the general case, a Neo4j driver is a piece of client-side middleware that allows
your application or microservice code to connect to the Neo4j server which hosts
your knowledge graph. In the case of the Neo4j Browser, the driver happens to be
written in JavaScript. But there are numerous other drivers from which to choose
based on your language and platform preferences.

Neo4j Drivers
Neo4j provides several language drivers for common programming languages and
frameworks:

• Java•
• Spring Framework and optional•

Object-Graph Mapper (Java)
• .NET•

• JavaScript•
• Python•
• Go•

In addition, there are several well-maintained drivers written by the Neo4j
community:

• Ruby•
• PHP•
• Erlang/Elixir•
• Perl•
• C/C++•

• Clojure•
• Haskell•
• R•
• Py2Neo Object-Graph Mapper•

(Python)

You choose the driver for your preferred language (or closest, such as the Java driver
for other Java Virtual Machine languages). Each driver provides the same functional‐
ity: connecting your application code to Neo4j (including clusters of Neo4j servers
and the AuraDB cloud service) via the Bolt protocol or HTTP.

68 | Chapter 5: Integrating Knowledge Graphs with Information Systems

The best way to understand how to use Neo4j drivers to interact with your knowledge
graph is by example. Example 5-1 shows a typical example using the Neo4j Java driver
(noting that other languages follow a similar pattern).

Example 5-1. Using the Neo4j Java driver

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.Driver;
import org.neo4j.driver.GraphDatabase;
import org.neo4j.driver.Result;
import org.neo4j.driver.Session;

import static org.neo4j.driver.Values.parameters;

public class JavaDriverExample implements AutoCloseable
{
 // Driver instances are quite expensive.
 // You typically want just one of these for your whole application lifetime.
 private final Driver driver;

 public JavaDriverExample(String uri, String user, String password)
 {
 // 1. Driver objects are expensive
 driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password));
 }

 @Override
 public void close() {
 driver.close();
 }

 public Result findFriends(final String name)
 {
 // 2. Sessions are cheap. Use them whenever you need them.
 try (Session session = driver.session())
 {
 // 3. Telling the driver whether the query updates the graph (or not)
 // helps to make good routing decisions in a cluster.
 // Session#writeTransaction is also available.
 return session.readTransaction(tx ->
 {
 Result result = tx.run("MATCH (a:Person)-[:FRIEND]->(b:Person) " +
 "WHERE a.name = $name " + // 4. Parameters are good
 "RETURN b.name",
 parameters("name", name));
 return result;
 });
 }
 }

 public static void main(String... args) throws Exception

The Database Driver | 69

 {
 try (JavaDriverExample example =
 new JavaDriverExample("bolt://localhost:7687",
 "neo4j",
 "password"))
 {
 example.findFriends("Rosa");
 }
 }
}

There are four important things in Example 5-1 to keep in mind when you’re using
any of the Neo4j drivers:

1. Drivers objects are expensive. You should only have one of these for the lifetime1.
of the application connecting to the knowledge graph. It’s expensive because it
deals with setting up (and tearing down) network connections, including authen‐
tication. You certainly don’t want to be paying that price on a per-query basis.

2. Session objects are cheap. They’re also quite sophisticated, including various aysnc2.
APIs to help smooth processing on behalf of clients. They also support causal
boundaries (also known as bookmarks) so that clients always see at least their
own writes even on a globally distributed cluster.

3. Tell the receiving server whether a query is read-only or read/write. This helps a3.
cluster make better routing decisions about where queries should be processed to
maintain high throughput.

4. Parameterize all queries. Parameterized queries don’t need to be reparsed or have4.
new query plans generated by the database. They’re faster than just using literal
strings across the network. Instead of concatenating strings like MATCH (:Person
{name:'Karl'}), use MATCH (n:Person {name: $name}) and send parameters
separately. Parameterizing queries also helps protect against injection attacks.

From Neo4j 5 onward, Cypher will try to automatically parameter‐
ize queries, even if they are not constructed that way. It’s still good
practice to identify all parameters to your query, in case the parser
cannot.

70 | Chapter 5: Integrating Knowledge Graphs with Information Systems

The short example in Example 5-1 shows how easy it is to build applications or
microservices to interact with the knowledge graph over the network. But you can
also use logic that is deployed on the database server itself.

Graph Federation with Composite Databases
Neo4j Composite Databases enable you to bring together multiple graph data sources
and provide a single unified point of access to all of them. This technique, called
federation, does not physically combine the databases but creates a virtual composite.
The consumer application is unaware that data is drawn from multiple sources.

Figure 5-3 shows three independent graph databases, one with a product catalog and
two with sales information. The two sales databases use the same graph data model,
but one of them contains orders from Europe, Middle East, and Africa (EMEA)
customers, and the other contains orders from Asia-Pacific (APAC) customers.

Example 5-2. A logical database called globalsales integrates multiple physical
databases

Run in Cypher shell or one line at a time in Neo4j browser
CREATE DATABASE db1;

CREATE DATABASE db2;

CREATE COMPOSITE DATABASE globalsales;

CREATE ALIAS emeasales
 FOR DATABASE db1;

CREATE ALIAS apacsales
 FOR DATABASE db2;

Neo4j Composite Databases allow you to retrieve data from all federated databases
with a single Cypher query. The query in Example 5-3 returns all customers who
placed more than 100,000 orders.

Graph Federation with Composite Databases | 71

Figure 5-3. Graph federation with Neo4j Composite Databases

To create a composite database using Neo4j Composite Databases, add code like
Example 5-2 to the neo4j.conf file. This example creates a composite database called
globalsales.

72 | Chapter 5: Integrating Knowledge Graphs with Information Systems

Example 5-3. A single Cypher query retrieves all customers who placed more than
100,000 orders

UNWIND ['globalsales.apac', 'globalsales.emea'] AS g
CALL {
 USE graph.byName(g)
 MATCH (c:Customer)-[:PURCHASED]->()-[o:ORDERS]->(:Product)
 WITH c, sum(o.quantity * o.unitPrice) AS totalOrdered
 WHERE totalOrdered > 100000
 RETURN c.customerID AS name, c.country AS country, totalOrdered
}
RETURN name, country, totalOrdered

The query in Example 5-3 federates EMEA and APAC sales from separate underlying
graphs to provide an aggregated view to the consuming application. You can easily
extend that to include the product catalog. In Example 5-4, the query returns a
list of global customers who have purchased products of a given category, such as
Beverages.

Example 5-4. A query that returns a list of global customers who purchased beverages
from multiple underlying graphs

CALL {
 USE globalsales.catalog
 MATCH (p:Product{discontinued:false})-[:PART_OF]->(:Category{categoryName:'Beverages'})
 RETURN COLLECT(p.productID) AS pids
}
WITH pids, [g IN fabricnw.graphIds()] AS gids
UNWIND gids AS gid
CALL {
 USE globalsales.graph(gid)

MATCH (c:Customer)-[:PURCHASED]->()-[o:ORDERS]->(p:Product)
 WHERE p.productID
 RETURN distinct c.customerID AS name, c.country country, p.productName AS product
}
RETURN name, country, product

Aside from the graph itself, the most compelling aspect of Example 5-4 is that the
implementation complexity is abstracted away from the user. The fact that (at least)
two underlying graph databases are composed to a single virtual database is handled
by Neo4j Fabric, leaving you to focus on your domain.

Server-Side Procedures
Client-server interactions using Cypher and Neo4j drivers are commonplace. But
sometimes your needs aren’t wholly met by that paradigm and you need specific logic
to run close to the knowledge graph on the server (like a stored procedure in SQL
databases).

Server-Side Procedures | 73

Neo4j has an excellent library of functions and procedures that come with the data‐
base (e.g., for managing users and roles, visualizing the inferred knowledge graph
schema, or doing data science operations, as you’ll see in Chapter 6). APOC, as you
saw in Chapter 4, has lots of different functions and procedures you can call on to
help with common and not-so-common cases.

Since knowledge graphs are better when they are integrated with other systems, why
not use use APOC to make calls into a SQL database to enrich the knowledge graph
data at query time? Using the pattern shown in Example 5-5, you can extract data
from a SQL database as part of a Cypher query and have that data mixed in with the
knowledge graph data. No copying required.

Example 5-5. Calling to a SQL database from a procedure

CALL apoc.load.driver("com.mysql.jdbc.Driver");

WITH "select firstname, lastname from employees
 where firstname like ? and lastname like ?" AS sql

CALL apoc.load.jdbcParams("northwind", sql, ['F%', '%w'])
YIELD row

MATCH (row)-[:WORKS_FOR*1..3]->(boss:Person)
RETURN (boss)

The Cypher code in Example 5-5 loads a SQL database driver into Neo4j and then
uses it to access a SQL database called northwind. The code runs a SQL query against
northwind, which retrieves the first and last names of employees in the database and
returns them as nodes in Cypher. From here, you can mix those nodes into regular
Cypher queries on the graph. In this case, the query tries to find who the person from
the SQL database works for in the knowledge graph, up to three levels up.

Using procedures, you can enrich the knowledge graph with data
from other databases at query time without having to move or
copy that data from its source system. No need to rip and replace,
but you do need to take the latency (and reliability) of the remote
call into consideration since it will add to the latency of your
knowledge graph query.

Example 5-6 shows an interoperability procedure from the APOC library to extract
some data from MongoDB (a store which itself has no knowledge graph capabilities).
The intent is to enrich your knowledge graph with data from the other system.
The CALL deals with connecting to the remote database, and returns data from a
MongoDB query in a format suitable for further Cypher processing. Specifically you
take the id of a document in MongoDB and MATCH it to a node in the knowledge

74 | Chapter 5: Integrating Knowledge Graphs with Information Systems

graph. With that data, you then search at depth 1 or 2 out from the matching experi
ment node in the knowledge graph to try to find any environmental contaminants
that may be present. The query then returns those contaminants to the caller.

Example 5-6. Using APOC to access data in a different database

CALL apoc.mongodb.find('mongodb://mongo:neo4j@mongo:27017', 'results',
 '2022-02-22-wetlab', {`status`: "failed"}, null, null)
YIELD failed_experiments
MATCH (:Experiment { id, failed_experiments.id})-[*1..2]->(environmental_factors)
RETURN environmental_factors.contaminants AS contaminants

Now that you have seen the principle established, it’s not hard to imagine how you
might also bring in data from other sources, not just other databases. APOC has
a simple solution to load JSON data from a file or web page (e.g., a file stored in
Amazon S3), which you can see in Example 5-7.

Example 5-7. Calling a JSON Web API from a procedure

WITH "https://example.org/karl.json" AS url
CALL apoc.load.json(url) YIELD value
UNWIND value.products AS product

WITH product

MATCH (k:Person {name:'Karl'})
MERGE (k)-[:BOUGHT]->(:Product {name:product.name,
 price:product.price,
 description:product.description})

Like the equivalent SQL example in Example 5-5, Example 5-7 shows how you
can consume JSON-formatted data easily in the context of a query running on a
knowledge graph. In this specific example, you use that JSON data to enrich the
underlying graph via MERGE with people who have bought products.

Data Virtualization with Neo4j APOC
Sometimes you won’t have the luxury of combining underlying graph databases into
a single virtual knowledge graph. If your underlying data is in different nongraph
sources, like time-series data, clickstream data, or log data, you’re going to have to use
a different approach.

Fortunately, the APOC library supports the definition of a catalog of virtual resources.
A virtual resource is an external data source that Neo4j can use to query and retrieve
data on demand, presenting it as virtual nodes enriching the data stored in the graph,
as shown in Figure 5-4.

Data Virtualization with Neo4j APOC | 75

Figure 5-4. Virtual nodes and relationships mapping to external data sources

Figure 5-4 shows the architecture for the system. The library call sits as an intermedi‐
ary between the end user and the databases they want to use, which include a Neo4j
graph, a CSV file, and a relational database. As queries are executed on the graph
database, the APOC library retrieves data from the CSV file and relational database
and presents it as virtual nodes and relationships to the query engine where they are
mixed in with the native graph data from Neo4j.

Bear in mind that accessing data from CSV files or other databases
will usually have higher latency than accessing the local knowledge
graph. Figure 5-4 and similar are useful insofar as they hide the
difference between graph and nongraph data and allow seamless
enrichment of your knowledge graph without having to take copies
of other data. But you can’t hide latency, so be judicious how you
use it.

As an example, using the approach in Figure 5-4, you can build a digital twin of
a telecom network, as shown in Example 5-8. The graph contains a representation
of the network, with all of the physical, logical, and virtualized devices and the
connections between them. The Cypher fragment in Example 5-8 shows how the
digital twin’s graph is built.

76 | Chapter 5: Integrating Knowledge Graphs with Information Systems

Example 5-8. Building a digital twin of a telecom network

// network topology creation
// adding network devices
MERGE (nsm:NetworkDevice { name: "Nogent sur Marne", nd_id: "N08",
 pos: point({latitude:2.46995, longitude:48.834374}), gtype: 1, code: "nog-1" });
MERGE (ms:NetworkDevice { name: "Montrouge Sud", nd_id: "N11",
 pos: point({latitude:2.316613, longitude:48.805473}), gtype: 1, code: "mon-3"});
...
// adding links betweeen network devices
MATCH (nsm:NetworkDevice { code: "nog-1" })
MATCH (ms:NetworkDevice { code: "mon-3" })
MERGE (nsm)-[l:LINK]->(ms)
SET l= { linkId: "s1_385/ol", bundleId: "s1_128/ob",
 linkType: "OTN Line", capacity: 1920 };

If you run the code in Example 5-8, it creates the top-level graph structure for the
digital twin. Figure 5-5 shows a visualization of its initial state.

Figure 5-5. Digital twin of a telecom network

Though the knowledge graph in Figure 5-5 is functionally incomplete, it is already
of some use. For example, the Cypher query shown in Example 5-9 retrieves the two
endpoints of a failing network link.

Example 5-9. Retrieving the endpoints for a failing link

MATCH (aend:NetworkDevice)-[l:LINK]->(zend:NetworkDevice)
WHERE l.linkId = "s1_385/ol"
RETURN aend.code, zend.code

For a simple root cause analysis, you correlate the failure of a link with the recent
performance metrics of the two endpoints. But this is a static view of the system. To
make a functionally complete system, you need to add real-time performance metrics
for each network device to enrich the model. But those performance metrics aren’t

Data Virtualization with Neo4j APOC | 77

in the graph, and probably shouldn’t be since they are rapidly changing counters on
hardware deployed into the physical telecommunications network.

In this case, you use a procedure from APOC to combine data from an external
system (a SQL-queriable database) with the knowledge graph’s topological data. The
SQL query in Example 5-10 returns the performance metrics for the last 24 hours. It
queries the device_perf table in the metrics_collector database, which is indexed
by device_id and by timestamp.

Example 5-10. A SQL query that returns performance metrics for the last 24 hours

SELECT latency, packetloss, packetdupl, jitter, throughput
FROM device_perf
 WHERE device_id = $device_id
 AND timestamp > now() - interval '1 day' ;

You can create a virtualized resource to handle this integration between the knowl‐
edge graph and the other database. To do so, invoke the the apoc.dv.catalog.add
stored procedure, then specify the SQL query to be executed. Creating the virtualized
resource is shown in Example 5-11.

Example 5-11. Creating a virtualized resource using APOC

CALL apoc.dv.catalog.add("metrics-by-device-id", {
 type: "JDBC",
 url: "jdbc:postgresql://localhost/metrics_collector?user=bob&password=bobby",
 labels: ["Town","PopulatedPlace"],
 query: "SELECT latency, packetloss, packetdupl, jitter, throughput
 FROM device_perf
 where device_id = $device_id
 and timestamp > now() - interval '1 day' ;",
 desc: "french towns by department number"
})

Now that you have created a virtualized resource, you can use it. Example 5-12 shows
how to use the virtualized resource created in Example 5-11 to retrieve data from the
metrics database on demand.

Example 5-12. Querying the virtualized resource using APOC

MATCH (aend:NetworkDevice)-[l:LINK]->(zend:NetworkDevice)
WHERE l.linkId = "s1_385/ol"
WITH aend, zend
CALL apoc.dv.query("metrics-by-device-id",{device_id: aend.nd_id}) YIELD node
RETURN aend.code, properties(node), zend.code

78 | Chapter 5: Integrating Knowledge Graphs with Information Systems

The query results combine data from the graph (topology information) with data
retrieved on demand from the performance metrics database. The knowledge graph
acts as a logical integration layer (a data fabric) offering users and consumer apps
a unified view of the network and real-time metrics in the form of a digital twin.
While you’ll be aware of the technical implementation, users just see a single holistic
knowledge graph with transparently up-to-date data.

Custom Functions and Procedures
The existing library of Cypher procedures is extensive, both the built-in Neo4j proce‐
dures and the APOC library. But sometimes you need to operate on your knowledge
graph in a highly domain-specialized fashion, which isn’t covered by Cypher or other
procedure libraries.

Fortunately, Cypher is extensible. It allows both user-defined functions and user-
defined procedures, so you can build functions and procedures to suit your own
exacting needs.

User-defined functions and procedures in Neo4j do not carry the
same stigma as stored procedures in SQL. You write JVM (Java,
Scala, etc.) code, which can be tested independently of the database.
You can adopt the same version control and build practices that
you use for your solution as a whole so that the custom code is
robust.

In Figure 5-6 you can see how user-defined functions and procedures (including
the built-in ones) fit into (a simplified version of) the Neo4j architecture. Those
user-defined functions and procedures are written in Java or another JVM language
and invoked from Cypher.

Figure 5-6. User-defined functions and procedures in the Neo4j stack

Custom Functions and Procedures | 79

Unlike plain Cypher where the Cypher query is executed against the kernel (low-
level) API from the Cypher runtime, user-defined functions and procedures are
defined using Neo4j’s Java API (a friendlier level of abstraction). By decorating your
custom functions and procedures with the correct annotations and implementing
the correct interfaces implied, you can create a procedure or function with arbitrary
functionality.

For example, you might want a procedure that inspects, computes over, or even
updates the knowledge graph stored in Neo4j. To demonstrate how straightforward it
is to build such a procedure, Example 5-13 shows a simple algorithm for counting the
degree (number of attached relationships) of all nodes in the knowledge graph.

Example 5-13. A custom procedure for creating a histogram of node degree

public class GetNodeDegrees {

 @Context
 public GraphDatabaseService graphDatabaseService;

 @Procedure(value = "getNodeDegrees")
 @Description("Get degrees of all nodes in the knowledge graph")
 public Stream<NodeDegree> getNodeDegrees() {

 Map<Long, Long> nodeDegrees = new TreeMap<>(Long::compare);

 graphDatabaseService.getAllNodes().forEach(n -> {
 final long nodeDegree = n.getDegree();
 long numberOfNodeWithCurrentDegree =
 nodeDegrees.getOrDefault(nodeDegree, 0L);
 nodeDegrees.put(nodeDegree, numberOfNodeWithCurrentDegree + 1);
 });

 final Stream.Builder<NodeDegree> streamBuilder = Stream.builder();
 for (Map.Entry<Long, Long> entry : nodeDegrees.entrySet()) {
 streamBuilder.add(new NodeDegree(entry.getKey(), entry.getValue()));
 }

 return streamBuilder.build();
 }

 public class NodeDegree {
 public Long degree;
 public Long numberOfNodes;

 public NodeDegree(Long key, Long value) {
 degree = key;
 numberOfNodes = value;
 }
 }
}

80 | Chapter 5: Integrating Knowledge Graphs with Information Systems

Most of the code in Example 5-13 is logic that counts relationships incident on
nodes. The more interesting parts are where the procedure binds to the underlying
knowledge graph. For instance, you get access to the underlying database that hosts
the knowledge graph by using the @Context annotation and public GraphDatabase
Service graphDatabaseService field, which ensures that a reference to the database
management system API is injected into your procedure before your code runs.
You declare the entry point to your procedure with the @Procedure annotation
with its friendly name getNodeDegrees and provide a friendly description with
@Description. Finally, remember that you must return a Stream of a record type, like
NodeDegree in this case.

The procedure in Example 5-13 is global, as it touches all nodes
(and relationships) in the knowledge graph. If you want to write
a procedure that starts at a specific node, then you don’t need
to inject GraphDatabaseService but can instead have parameters
for specific nodes or relationships on the procedure method,
such as public Stream<RelationshipTypes> getRelationship

Types(@Name("currentNode") Node node) {...}.

Back in Example 5-7 you read in data file from a web- or filesystem-hosted JSON
file and enriched the knowledge graph. That works fine for simple JSON retrieval
services, but most APIs are more complicated. However, using the same pattern from
Example 5-13, you can write a custom procedure that accesses service APIs too.
Remember that a custom procedure can be any code you like, provided it conforms
to the Neo4j procedure interface.

Data Fabric with Specialized Data Virtualization Platforms

Specialized platforms like Dremio, Denodo, Data Virtuality, and
others provide the capabilities to deploy broader data fabrics built
on data virtualization. Such solutions support connectors for mul‐
tiple data sources, advanced query delegation, caching, and a GUI
for designing logical views. When deployed alongside such special‐
ized data fabric technology, the knowledge graph will act as one
master source of data being integrated in the fabric for golden
record, deduplicaton, and so forth.

Complementary Tools and Techniques
While the Neo4j drivers, functions, and procedures are popular ways of connecting
to a knowledge graph, other integration tools might be used, depending on the sur‐
rounding systems. For example, you might have to provide an API to the knowledge
graph so that it can be consumed from a wide range of user-facing applications. Or

Complementary Tools and Techniques | 81

you might need to run ETL tasks to take data from upstream systems and use it to
enrich the knowledge graph. You may want to move data between the knowledge
graph and your analytics systems or have real-time data streamed into or out of
the knowledge graph. Fortunately, there is a rich set of tools available for each of
these requirements. The following sections provide an overview of them, so you can
implement the right ones for your system with confidence.

GraphQL
GraphQL is an API toolkit that originated from Facebook. Its original purpose was to
provide an API to the underlying social graph stored in TAO (Facebook’s social graph
service). Today, GraphQL is a framework for API construction (that defines types,
schemas, messages, and so forth) and a runtime environment (GraphQL servers)
for executing API calls. While it has “graph” in its name and is certainly useful for
exposing knowledge graphs to consumers, it is a general-purpose toolkit that can be
happily used for nongraph systems too. The basic system architecture is a simple
client-server setup, as shown in Figure 5-7.

Figure 5-7. The high-level architecture of a GraphQL-based knowledge graph system

Using GraphQL to access a knowledge graph stored in a native graph database offers
several advantages. These include a consistent graph data model and increased devel‐
oper productivity, particularly when GraphQL is widely used across the enterprise.

Despite its name, GraphQL doesn’t come with any built-in affordances for using the
topologies in knowledge graphs. However, in Neo4j’s GraphQL implementation, you
can use the @relationship directive to describe relationships between nodes. For
instance, based on the people and places examples in Chapter 4, you can create a
GraphQL type system for an API that will allow users to query for who lives where.
You can see this in Example 5-14.

Example 5-14. Using @relationship to create a GraphQL type system that includes
links between records

type Place {
 city: String!

82 | Chapter 5: Integrating Knowledge Graphs with Information Systems

 country: String
 people: [Person!]! @relationship(type: "LIVES_IN", direction: IN)
 }

 type Person {
 name: String!
 home: Place! @relationship(type: "LIVES_IN", direction: OUT)
 }

Using @relationship in Example 5-14 has enriched an otherwise simple schema of
documents with the ability to store data as knowledge graphs. Along with other data
like city and country, a Place can have a non-nullable array of non-nullable Person
records connected via LIVES_IN relationship records. Conversely, a Person has a name
and a non-nullable LIVES_IN relationship to a Place.

Intuitively, you can see how Example 5-14 cleanly maps onto an underlying knowl‐
edge graph. But importantly, it provides strict guidance to the caller on the nature of
the data that can be retrieved through the API.

To query or update the underlying graph, you can now send GraphQL from your
GraphQL client to the server. In Example 5-15 you can see the GraphQL payload
(query) sent from client to server.

Example 5-15. Updating a knowledge graph via GraphQL

mutation {
 createPlaces(
 input: {
 city: "Sydney"
 country: "Australia"
 people: {
 create: [
 { node: { name: "Skippy" } }
 { node: { name: "Cate Blanchet" } }
]
 }
 }
) {
 places {
 city
 country
 people {
 name
 }
 }
 }
}

Complementary Tools and Techniques | 83

GraphQL returns the response shown in Example 5-16.

Example 5-16. Response from a knowledge graph update via GraphQL

{
 "data": {
 "createPlaces": {
 "places": [
 {
 "city": "Sydney",
 "country": "Australia",
 "people": [
 {
 "name": "Skippy"
 },
 {
 "name": "Cate Blanchet"
 }
]
 }
]
 }
 }
}

As an API description/construction framework, GraphQL works very well with
knowledge graphs, particularly where the knowledge graphs sit near the user in a
system architecture. For an in-depth book on integrating knowledge graphs with
GraphQL, see Full Stack GraphQL Applications With React, Node.js, and Neo4j by
William Lyon (Manning).

Kafka Connect Plug-In
Apache Kafka is a popular enterprise middleware platform, acting as the glue between
systems. At its simplest, it is a reliable publish/subscribe system for moving messages
between systems at high volume. At its most sophisticated, it is itself a database and
query engine for processing records as they flow through the business.

Integrating knowledge graphs with Kafka is straightforward. Using Kafka Connect
Neo4j Connector, your knowledge graph can serve as a source of data, such as change
data (or change data capture), or as a sink to ingest data from Kafka events into your
knowledge graph.

At a systems level, the architecture is straightforward. Figure 5-8 shows how a query
is executed periodically over the knowledge graph to publish data from your knowl‐
edge graph into Kafka for consumption by downstream systems.

84 | Chapter 5: Integrating Knowledge Graphs with Information Systems

https://oreil.ly/-7Wo9
https://oreil.ly/qz76o
https://oreil.ly/qz76o

Figure 5-8. Periodically executing a Cypher query over a knowledge graph to publish
data to Kafka

Configuring the Neo4j Streams plug-in to publish updates from a knowledge graph
is also straightforward. In Example 5-17 a knowledge graph is set up to publish
the details of any new arrivals to Berlin once every 5 seconds (5,000 ms as it
is written in the configuration). Correspondingly, in the model you must change
the original since property on LIVES_IN relationships from Chapter 3 to a more
granular timestamp that meets both the needs of the model and the publishing
mechanism. Then the Cypher query will be run periodically to find the patterns
like (Person)-[:LIVES_IN {since:'2015-06-24T12:50:35.556+0100'}]->(:Place
{city:'Berlin'}) from which you can easily return the person’s name and the
timestamp when they moved. The full query is shown along with the other necessary
configuration in Example 5-17.

Example 5-17. Configuration for a query to periodically execute over a knowledge
graph, publishing results to Kafka

{
 "name": "Neo4jSourceConnectorAVRO",
 "config": {
 "topic": "new-arrivals-in-Berlin",

 ...

 "neo4j.streaming.poll.interval.msecs": 5000,
 "neo4j.streaming.property": "timestamp",
 "neo4j.streaming.from": "NOW",
 "neo4j.enforce.schema": true,
 "neo4j.source.query": "MATCH (p:Person)-[li:LIVES_IN]->
 (:Place {city:'Berlin', country:'DE'})
 WHERE li.timestamp > $lastCheck
 RETURN p.name AS name,
 li.timestamp AS since"
 }
}

Complementary Tools and Techniques | 85

Both architecturally and practically, it’s just as straightforward to ingest data into your
knowledge graph from Kafka. Figure 5-9 shows the general approach.

Figure 5-9. Receiving messages from Kafka and using Cypher MERGE to insert data into
the knowledge graph

At a more detailed level, you use Cypher to unpack Kafka messages into the knowl‐
edge graph. In Example 5-18 you can see an example of the kind of patterns into
which data from Kafka messages can be decomposed. You subscribe to a particular
topic (e.g., new-arrivals-in-Berlin), which gives you access to data in messages
published to it. You access data in the messages through the event variable and use
that data to enrich your knowledge graph using Cypher features like MERGE.

Example 5-18. Configuration to ingest data from a Kafka topic into your knowledge
graph

{
 "name": "Neo4jSinkConnector",
 "config": {
 "topics": "new-arrivals-in-Berlin",

 ...

 "neo4j.topic.cypher.new-arrivals-in-Berlin":
 "MERGE (person:Person {name: event.name})
 MERGE (place:Place {city: event.city, country: event.country})
 MERGE (person)-[LIVES_IN {since:'2021-06-12T10:31:11.553+0100'}]->(place)"
 }
}

There are of course other operational details, such as how to set up Kafka and install
the Streams plug-in into Neo4j, which you will need to solve to use this technique.
The Neo4j Kafka documentation can help.

86 | Chapter 5: Integrating Knowledge Graphs with Information Systems

https://oreil.ly/u8GvG

Neo4j Spark Connector
Apache Spark is a (distributed) data processing framework for working with large
data sets. It’s a common enterprise tool that integrates well with databases and filesys‐
tems as data sources and sinks for (parallel) processing. Its developer-friendly API
allows for complex data-processing operations to express succinctly as a sequence of
stages whose execution can be farmed out to a compute cluster without requiring
specialist distributed processing skills.

Unsurprisingly, there are connectors that allow Spark to treat your knowledge graph
as both a source and a sink for data. Using the connectors, Spark developers are able
to read in data from a knowledge graph for use in their processing pipelines as well as
write back to the knowledge graph any results from those computations.

Installing the Neo4j Connector for Apache Spark connector is simply a matter of
copying the appropriate .jar file into your Spark environment. Once the connector
is installed, you can perform operations on the underlying graph. The simplest
operations are reading and writing to the graph by label and predicate, as shown in
Example 5-19. Leaving out the predicate where statement is fine too, but more data
will be exchanged between Spark and Neo4j.

Example 5-19. Reading into Spark from Neo4j by label and predicate

import org.apache.spark.sql.{SaveMode, SparkSession}

val spark = SparkSession.builder().getOrCreate()

val df = spark.read.format("org.neo4j.spark.DataSource")
 .option("url", "bolt://localhost:7687")
 .option("authentication.basic.username", "neo4j")
 .option("authentication.basic.password", "neo4j")
 .option("labels", ":Person")
 .load()

df.where("name = 'John Doe'").where("age = 32").show()

It’s also possible for Spark to perform a Cypher read query over your knowledge
graph. You can see this in Example 5-20 where one option is a query whose value
is the Cypher query to be executed. Note that it is good practice to return just data
values from the query rather than full nodes and relationships to minimize the work
involved in data transfer.

Example 5-20. Reading into Spark from Neo4j by Cypher query

import org.apache.spark.sql.{SaveMode, SparkSession}

Complementary Tools and Techniques | 87

https://oreil.ly/ggESU
https://oreil.ly/oh_7J

val spark = SparkSession.builder().getOrCreate()

spark.read.format("org.neo4j.spark.DataSource")
 .option("url", "bolt://localhost:7687")
 .option("query", "MATCH (n:Person)-[FOLLOWS]->
 (:Person name:'emileifrem')
 WITH n LIMIT 20
 RETURN id(n) AS id, n.name AS name")
 .load()
 .show()

For writes there is a similar idiom. You can insert nodes by label into the knowledge
graph, as shown in Example 5-21.

Example 5-21. Writing from Spark into Neo4j by node label

import org.apache.spark.sql.{SaveMode, SparkSession}
import scala.util.Random

val spark = SparkSession.builder().getOrCreate()
import spark.implicits._

case class Person(name: String, surname: String, age: Int)

val ds = (
 // Populate the data source here
).toDS()

ds.write
 .format("org.neo4j.spark.DataSource")
 .mode(SaveMode.ErrorIfExists)
 .option("url", "bolt://localhost:7687")
 .option("labels", ":Person")
 .save()

You can insert into Neo4j using Cypher’s patterns too, of course, which is shown in
Example 5-22.

Example 5-22. Writing from Spark into Neo4j by Cypher query

import org.apache.spark.sql.{SaveMode, SparkSession}

val spark = SparkSession.builder().getOrCreate()

// Populate data frame in Spark
val df = ...

// Save contents to knowledge graph
df.write
 .format("org.neo4j.spark.DataSource")

88 | Chapter 5: Integrating Knowledge Graphs with Information Systems

 .option("url", "bolt://second.host.com:7687")
 .option("relationship", "FOLLOWS")
 .option("relationship.source.labels", ":Person")
 .option("relationship.source.save.mode", "Overwrite")
 .option("relationship.source.node.keys", "source.name:name")
 .option("relationship.target.labels", ":Person")
 .option("relationship.target.save.mode", "Overwrite")
 .option("relationship.target.node.keys", "target.name:name")
 .save()

In turn, Example 5-22 maps to Cypher, as shown in Example 5-23.

Example 5-23. Cypher code produced and executed on Neo4j as a result of a write from
Spark

UNWIND $events AS event
MERGE (source:Person {name: event.source.name})
SET source = event.source
MERGE (target:Product {name: event.target.name})
SET target = event.target
CREATE (source)-[rel:FOLLOWS]->(target)
SET rel += event.rel

When writing into your knowledge graph from Spark, you must
also provide some guidance on whether writes should use Cypher’s
CREATE, which allows duplicate patterns, or MERGE, which does not.
In your code, setting SaveMode.ErrorIfExists will build a CREATE
query, whereas SaveMode.Overwrite builds a MERGE query.

While Spark is powerful, its data model is quite different from that of a knowledge
graph. When you choose to use Spark to analyze or enrich your knowledge graph,
you’ll have to manage the mapping between its tablular model and your knowledge
graph. Think of the Spark connector as plumbing that enables the user to specify
transformations between the two worlds, much like a traditional ETL tool, albeit at a
lower, textual level of abstraction.

Apache Hop for ETL
If the Spark connector in “Neo4j Spark Connector” on page 87 can be thought of as
a special-purpose ETL tool, then you should also be aware of general-purpose ETL
tools in the context of knowledge graphs. Modern ETL tools come in a variety of
configurations, from utilities you install on your computer to cloud-hosted services.
In any case, the value of an ETL tool is that it enables connectivity with a wide variety
of systems (not limited to knowledge graphs or even databases) and functionality to
allow you to map data elements between systems conveniently.

Complementary Tools and Techniques | 89

As authors, we are agnostic about which ETL tool you choose.
In this section, Apache Hop has been chosen because it’s open
source and has good connectivity for knowledge graphs hosted in
Neo4j. Our recommendation would be to use the ETL tool that has
been chosen for your enterprise. In the absence of an enterprise
standard, then open source or cloud tools (e.g., AWS Glue, Cloud
ETL, etc.) are reasonable choices.

Most ETL tools provide low-code/no-code environments to help you to orchestrate
data flows to and from your knowledge graphs (and other systems). For example, in
Figure 5-10 you can see how the ETL tool has been configured to:

• Check for system availability•
• Set up the knowledge graph indexes and constraints•
• Cleanse import data from Wikipedia•
• Run an import job into the knowledge graph•

Figure 5-10. An Apache Hop ETL workflow for loading Belgian beer data into a
knowledge graph (image based on Apache Hop documentation)

Within the workflow, you configure mappings from source data systems onto your
knowledge graph (or vice versa). Again, this is typically low-code/no-code, as shown
in Figure 5-11.

90 | Chapter 5: Integrating Knowledge Graphs with Information Systems

Figure 5-11. An Apache Hop mapping from Wikipedia data into a Neo4j knowledge
graph (image based on Apache Hop documentation)

The mappings in Figure 5-11 are quite intuitive, if you understand brewing! Brands,
breweries, and so on become nodes in the knowledge graph while the percentage
label becomes a relationship between strength and evaluation nodes. While you do
require some domain knowledge for this task (and we authors feel sampling Belgian
beers would be a fun project to learn), you don’t require much technical knowledge.
It’s a matter of point and click.

For more sophisticated mappings, you can also specify Cypher queries to run for
knowledge graph ingress and egress. In this case, you provide parameterized Cypher
to Hop and then use the UI tool to map data onto those parameters. At runtime, Hop
binds values to those parameters and runs the Cypher queries to load data into or
retrieve data from the knowledge graph. Finally, once the workflow has finished, the
result is a knowledge graph about Belgian beers—both useful and delicious!

Complementary Tools and Techniques | 91

Summary
At this point on your journey into knowledge graphs, you’ve tackled some significant
technical topics on graph database fundamentals, data loading, and data fabric. It
takes real effort to understand these tools and how they overlap, so congratulations
on getting this far!

From here on, you are going to continue your journey out of the tools and up the
stack towards the user. In Chapter 6, you’ll take your first steps into graph algorithms
to process knowledge graphs to gain actionable insight.

92 | Chapter 5: Integrating Knowledge Graphs with Information Systems

CHAPTER 6

Enriching Knowledge Graphs
with Data Science

This chapter will introduce you to graph data science. The aim of graph data science
is to gain insight into your knowledge graph using graph algorithms. Towards that
goal, you’ll learn about the common types of graph algorithms and the insights they
unearth as well as how Neo4j Graph Data Science provides a simple platform for
experimentating with, sharing, and productizing graph algorithms. You’ll also learn
how to execute graph algorithms on real knowledge graphs and experience how the
system does much of the heavy lifting for you.

Like Chapter 3, this chapter is not intended to be comprehensive but rather to give
you the foundation to be able to work through the remainder of the book. For
those looking for more depth, there are many good books dedicated to specific deep
technical topics, like Graph Data Science for Dummies by Dr. Alicia Frame and Zach
Blumenfeld (Wiley).

Why Graph Algorithms?
Graph algorithms yield some insight about a knowledge graph’s structure. That
insight could be influential people in a social graph, critical junctions in a rail
network, cells of fraudsters, or a common pathogen in a disease pathway. While
the design and implementation of graph algorithms is a specialist subject, using them
is not. You simply need to understand the purpose of the algorithms and the syntax to
execute them over your knowledge graph.

93

https://oreil.ly/X8UQc

As in Chapter 3 Neo4j has been chosen for graph algorithm exam‐
ples. It has the most popular and extensive graph algorithms toolkit
and is easily accessible to nonspecialists through the Cypher query
language.
Neo4j Graph Data Science is easily installed via the Neo4j desk‐
top app. Neo4j Sandbox is a learning environment for Neo4j that
provides access to Neo4j Graph Data Science. Neo4j AuraDS is
graph data science as a service, a companion to the AuraDB graph
database service.
You can use any of these to follow the examples in this chapter and
undertake your own graph data science work.

Some readers might remember graph algorithms from college, perhaps even with
fondness. For others, the notion of graph algorithms may be new. This chapter will
start you off gently, with an overview of the different kinds of data processing that
you can do on graphs, followed by a deeper dive into how to use some common
graph algorithms. You’ll learn how to experiment with those algorithms in a graph
data science motion, and how to incorporate them into production systems. By the
end of this chapter you’ll feel as comfortable running graph algorithms over large
knowledge graphs as you already are running Cypher queries.

Different Classes of Graph Algorithms
There are many graph algorithms from which to choose, each of which performs
some computation over a given graph to generate insight from the underlying topol‐
ogy and data. Learning which algorithm to choose for a given situation takes modest
effort. The first step is to sort the algorithms into categories to provide a high-level
view of what kinds of insights can be computed. From there, you can move to the
more detailed step of choosing a specific algorithm.

For the purposes of computing over knowledge graphs, there are three broad cate‐
gories of algorithms:

Statistical
Provides metrics about the graph, such as the number of nodes and relationships,
degree distribution of relationships, types of node labels, and so on. These will
provide context for interpretation of your results.

Analytical
Surfaces significant patterns or latent knowledge over the whole knowledge
graph or significant subcomponents.

94 | Chapter 6: Enriching Knowledge Graphs with Data Science

https://oreil.ly/uICA_
https://oreil.ly/wOYz8
https://oreil.ly/wOYz8
https://oreil.ly/ypp9M
https://oreil.ly/zQj-8

Machine learning (ML)
Uses the results from graph algorithms as features to train machine learning
models or uses machine learning to evolve the knowledge graph itself.

This chapter is concerned with using statistical and analytical methods to uncover
insight from your knowledge graph, leaving machine learning to its own full chapter
in Chapter 7. Within statistical and analytic algorithms, there are five categories that
are common to knowledge graph use cases:

Network propagation
Understanding how signals propagate through a knowledge graph requires deep
path computations. The resulting pathways can identify the spread of disease in
a community or supply-chain weaknesses. Correspondingly, the results can be
used to optimize for containment or adding redundancy to critical paths.

Influence
In current times of near-ubiquitous social media, you are accustomed to the
idea of “influencers,” or people whose opinions spread rapidly through the social
graph. In graph data science, the goal is more general. Influential nodes act
as bridges (and bottlenecks) between subgraphs and are ideally positioned to
spread information (or disruption) around the network quickly since they are, on
average, close to all the other nodes. A measure of a node’s influence is known as
its centrality.

Community detection
In the human world, communities are the ties that bind us together. That’s true
in the world of graph algorithms too, but to find tightly knit communities, graph
algorithms tend to partition groups by looking for weak links to remove. Being
able to detect communities in a knowledge graph tells you about related works
that you might want to read, fraudsters cooperating to commit financial crimes,
or communities where pathogens (including disinformation) will spread quickly.

Similarity
When you visualize a knowledge graph, you can often easily spot similar patterns
being repeated in the graph. For example, you can see customers with a particular
purchase history who would be well served with a particular product recommen‐
dation or road intersections associated with abnormal levels of vehicle collisions.
But when the graph is large, manual inspection falls short. Similarity algorithms
search for known relationships/hierarchies between nodes or common properties
on them.

Link prediction
Using the existing topology of the knowledge graph with some heuristics (for
example, creating triangles), link prediction algorithms can enrich the knowledge

Different Classes of Graph Algorithms | 95

graph by computing missing relationships. This is a common use case in social
networks where possible friends/followers/contacts can be computed.

Within each of these broad categories, there are usually several different algorithms
from which to choose. Each algorithm behaves differently and will typically give dif‐
ferent results for the same input. For example, the community detection algorithms
Weakly Connected Components (WCC) and Louvain give different results for the
same input graph.

The question naturally arises: which should you choose? Often the answer lies in
reading the documentation and choosing the algorithm that makes the most sense for
your context. Sometimes the answer is to experiment with algorithms and use the one
that provides the best answers for your context. But first you need to understand how
graph data science functions so that you can experiment with graph algorithms.

Graph Data Science Operations
Neo4j Graph Data Science is a graph computation framework that is conveniently
integrated with the Neo4j graph database. This means you can project data from
your knowledge graph stored in Neo4j, then compute an analysis using a graph
algorithm (using multiple CPUs). You can subsequently inspect the results from your
computation, share it with your coworkers, or even write the result back to the
underlying knowledge graph to enrich it. The tight integration between Neo4j Graph
Data Science and the graph database removes many operational burdens, allows you
to focus on running algorithms, and minimizes data wrangling.

It’s common in industry for some classes of algorithms to run
on graphics processing units (GPUs) to take advantage of the ben‐
efits of GPU architecture: high parallelism and high bandwidth
between processing elements. However, GPUs are best suited when
an algorithm can be expressed as a linear algebra problem, which
is by no means universal (or trivial). Currently, Neo4j Graph Data
Science is highly optimized for CPU and RAM. It provides best-
in-class performance for the widest range of algorithms without
the inconvenience of specialized hardware, and it typically outper‐
forms GPU-based solutions (since not all graph algorithms can
be expressed as linear algebra problems, which are efficiently exe‐
cutable on GPUs).

Neo4j Graph Data Science offers a broad range of high-performance, parallelized
algorithms. You choose an algorithm based on the kind of insight you need and
run algorithms with Cypher procedure calls, just like in “Calling Functions and
Procedures” on page 44. The way Neo4j Graph Data Science works in combination
with your knowledge graph is shown in Figure 6-1.

96 | Chapter 6: Enriching Knowledge Graphs with Data Science

Figure 6-1. The components involved in running a graph algorithm over a knowledge
graph in Neo4j

Figure 6-1 shows the four distinct phases of executing a graph algorithm over your
knowledge graph:

Read projected graph
Choose the parts of the graph that you are interested in processing and create a
projection. This can be a subgraph, specific labels and relationship types, patterns
from a Cypher query, or even the whole knowledge graph.

Load projected graph
Export the graph projection into a compact, in-memory format ready for parallel
processing.

Execute algorithm
Run the algorithm with parameters you choose.

Store results
Write the results back into the knowledge graph (e.g., enriching nodes) or com‐
pute results that can be sent to downstream systems or the calling user.

Graph Data Science Operations | 97

Scaling Graph Algorithms
The graph projection phase loads (part of) your knowledge graph into main memory,
in a compressed format. Being in memory ensures high performance because of
locality benefits whereby the neighbors of any given node are also in memory and are
therefore fast to access during processing. This means that for very large graphs, you
may have to scale up your RAM. For parallel algorithms, you can scale up CPU cores
too.

The opposite approach, scale-out, is initially appealing. Adding more CPU cores and
RAM by adding servers is a classic approach pioneered by Apache Hadoop. But now
you have nonuniform architecture where any node’s neighbors are likely to be on
remote servers, accessible at a far greater time cost than local memory. In practice,
distributed graph processing is inefficient since the locality benefits of being in a
single large memory space are absent. Instead of a simple pointer dereferencing, you
now have network operations.

While there is active research work on distributed graph processing and the underlay
required to make it efficient (e.g., software-defined high-performance networks),
at time of this writing, the scale-up approach used by Neo4j Graph Data Science
remains the fastest and most practical method. Furthermore, its simplicity means it’s
often cheaper than running large clusters of compute servers. In the longer term,
as research matures into technology, it’s possible this situation might change, and
when it does, as a Graph Data Science user you should be insulated from those
implementation details while reaping any accrued performance benefits.

Example 6-1 shows an example of enriching a knowledge graph by computing over
it. In this case, it shows how to project a social network of Person nodes and FRIEND
relationships from a graph of people and places, then executes a betweenness central‐
ity algorithm over the resulting graph projection to calculate the most influential
person.

Example 6-1. Running Graph Data Science from Cypher

CALL gds.graph.project.cypher(
 'gds-example-graph',
 'MATCH (p:Person)
 RETURN id(p) AS id',
 'MATCH (p1:Person)-[:FRIEND]->(p2:Person)
 RETURN id(p1) AS source, id(p2) AS target, "FRIEND" AS type');

 CALL gds.betweenness.write('gds-example-graph',{
 writeProperty:'betweennessCentrality'});

98 | Chapter 6: Enriching Knowledge Graphs with Data Science

The query consists of four key elements:

Name the graph projection
Here it is gds-example-graph, and that projection will be stored under that name
in the graph catalog for access by subsequent computations.

Node query
Select the nodes that will be included in the projection. Neo4j Graph Data
Science has multiple ways of doing this, including simply by node label. The most
flexible choice is a Cypher projection that allows you to specify Cypher code to
select nodes of interest. The node IDs have to be returned as a column called
id as part of the contract for projections. In Example 6-1, all Person nodes are
selected.

Relationship query
Select the relationships that will be included in the projection. Since this is a
Cypher projection, you must supply a Cypher query that identifies the relation‐
ships of interest. Importantly, these relationships must connect to nodes from
the node projection (or it will fail). The start, end, and type of each relationship
must be returned as source, target, and type columns as per the contract for
relationship projections.

Execute the algorithm
The line gds.betweenness.write means that the betweenness centrality algo‐
rithm will be called and that it will write back its results into the graph, as
opposed to streaming them back to the caller (gds.betweenness.stream) or
enriching only the projection (gds.betweenness.mutate). Its parameters are the
projection on which to operate (gds-example-graph) and the name of the node
property into which results will be written (betweennessCentrality). Note that
once a projection is created, you can run the algorithm as many times as you
need against that projection without having to re-create it.

Betweenness centrality computes the number of paths that pass through a given node
to establish the node’s importance in the graph. If you run the algorithm on the small
social network from Figure 3-8, then the knowledge graph will be enriched. This is
shown in Figure 6-2.

Graph Data Science Operations | 99

Figure 6-2. Small social network with computed betweenness centrality scores written to
the Person nodes

In Figure 6-2, it’s clear that Karl has the highest betweenness centrality. Since Karl
is the connecting node between Rosa and Fred, without him the whole of the social
network would collapse. This is very apparent in Figure 6-3.

Figure 6-3. Visualizing the impact of centrality scores with Neo4j Bloom

100 | Chapter 6: Enriching Knowledge Graphs with Data Science

In Neo4j’s Bloom visualization tool shown in Figure 6-3, you can configure the size
(or color) of a node to be based on a property. This means, for example, that you
could make nodes bigger based on their betweenness centrality score so that the
higher the centrality, the bigger the node is represented. It makes visualizations much
more information rich and valuable for the end user.

Betweenness centrality isn’t the only thing you can use to enrich your knowledge
graphs. You can choose from 65+ algorithms, including pathfinding, PageRank, Lou‐
vain, and so forth. Each of them is executed just like Example 6-1, so experimenting
to find the right insight for your domain is operationally straightforward at least.

On a small knowledge graph, the betweenness centrality compu‐
tation finishes instantaneously. For modest graphs of tens to hun‐
dreds of thousands, you probably won’t notice the execution time
either. But for very large knowledge graphs on a scale of millions
or billions, the computation might take several seconds or even
minutes (depending on the algorithm, projection, and hardware).
In practice, this isn’t a problem since you tend to enrich knowl‐
edge graphs periodically. In those situations where you want fast
feedback, such as during experimentation, then choose smaller
projections or select servers with more RAM and CPU.

Experimenting with Graph Data Science
Part of any data scientist’s job is to experiment. If you’re going to learn graph data
science, you’ll also need to learn good experimental habits, and that requires the
ability to iterate quickly over hypotheses. Neo4j Graph Data Science contains the
tools you need to competently experiment with algorithms over knowledge graphs.

However, the architecture presented in Figure 6-1 shows a very database-centric view
of knowledge graph processing. With all those components, it’s possible to become
lost in complexity when all you’re really trying to do is experiment by running
algorithms over your knowledge graph. Fortunately, there is Python tooling that can
abstract some of the details of databases and allow you to work at a much higher level
of abstraction. After all, viewing the world as Python objects is much more idiomatic
for data scientists.

Your graph data science toolkit comprises Neo4j and Graph Data Science (of course),
the Neo4j Graph Data Science Python driver, and Jupyter Notebook or something
similar. Since you’ve gotten this far in the book, it’s likely you have already installed
Neo4j and Graph Data Science.

The next steps are to install the Pythonic API for Graph Data Science and, if neces‐
sary, Jupyter Notebook or something similar. Assuming you have Python 3 installed,
then use pip to install the other dependencies. pip install graphdatascience

Experimenting with Graph Data Science | 101

installs the Pythonic API for Graph Data Science, and pip install notebook installs
Jupyter Notebook support.

Now that you have your tooling, you can start experimenting. The following exam‐
ples are all based on the rail network in Great Britain. It’s large, but not too large,
highly interconnected, and very much a real-world use case, making it ideal for the
budding graph data scientist to explore.

You can download the source data for this experiment from https://
github.com/jbarrasa/gc-2022.

To begin, load the data that represents the railway stations and the tracks between
them. That data is stored in CSV files, one for stations (nr-stations-all.csv) and one
for tracks linking them (nr-station-links.csv). The code for how to load that data using
Python is shown in Example 6-2.

Example 6-2. Loading CSV data into Neo4j in Python

from graphdatascience import GraphDataScience

Connect to the database
host = "bolt://127.0.0.1:7687"
user = "neo4j"
password= "yolo"

gds = GraphDataScience(host, auth=(user, password), database="neo4j")

Load stations as nodes
gds.run_cypher(
 """
 LOAD CSV WITH HEADERS FROM "nr-stations-all.csv" AS station
 CREATE (:Station {name: station.name, crs: station.crs})
 """
)

Load tracks bewteen stations as relationships
gds.run_cypher(
 """
 LOAD CSV WITH HEADERS FROM "nr-station-links.csv" AS track
 MATCH (from:Station {crs: track.from})
 MATCH (to:Station {crs: track.to})
 MERGE (from)-[:TRACK {distance: round(toFloat(track.distance), 2)}]->(to)
 """
)

gds.close()

102 | Chapter 6: Enriching Knowledge Graphs with Data Science

https://github.com/jbarrasa/gc-2022
https://github.com/jbarrasa/gc-2022

The Python code in Example 6-2 does three things:

Creates a connection to the database
Creating an instance of the GraphDataScience class provides authenticated
access to the database management system that will host the underlying knowl‐
edge graph. Pay attention to the network endpoint and username/password
combinations.

Loads nodes into the graph to represent stations
Use gds.run_cypher, which allows the data scientist to run arbitrary Cypher
queries. In this case, it uses a LOAD CSV command just like in Chapter 4. The
command takes data from a CSV file (ignoring the headers) and uses Cypher
CREATE to populate the knowledge graph with Station nodes with their common
name (name) and their official unique code (crs).

Links nodes with relationships to represent tracks
Again, gds.run_cypher is used to execute a LOAD CSV job. Here the database
looks up the from and to nodes for a piece of track using the crs unique codes
for the stations. It then uses MERGE to create a single relationship of type TRACK
between those stations while adding a distance property to those relationships.
The distance property is stored as a floating point value rounded to two decimal
places.

Nowhere in Example 6-2 did you have to deal with drivers, sessions, or other techni‐
cal database things. You just used a Python object in your code.

Once the data is loaded into the graph, you could simply poke around the data using
Cypher queries using the Python API and run_cypher. That’s handy if you’re a keen
Python programmer, but it’s nothing radically different from Chapter 3. However, the
Python API also allows you to create projections and execute algorithms over them.
It’s time to run those algorithms.

One of the most common queries for travel networks is to find the shortest (or
cheapest) path between two stations. It’s straightforward to do this from Python with
Graph Data Science. First, you need to create a projection from the railways knowl‐
edge graph, creating a domain-specific in-memory graph suitable for algorithmic
computation. In this case, the projected graph is topologically similar to the original
knowledge graph, but the nodes contain less data, just common station names, and
distances between them are stored as a relationship property. If you later find you
need more data in a projection, simply create that new richer projection where it
will be added to the graph catalog alongside your existing projections. Example 6-3
shows how to use the Python API to create a Cypher projection (the other projection
methods are also supported from Python).

Experimenting with Graph Data Science | 103

Example 6-3. Using the Python API for Graph Data Science to create a graph projection
from the railway knowledge graph

from graphdatascience import GraphDataScience

host = "bolt://127.0.0.1:7687"
user = "neo4j"
password= "yolo"

gds = GraphDataScience(host, auth=(user, password), database="neo4j")

gds.graph.project.cypher(
 graph_name='trains',
 node_spec='MATCH (s:Station) RETURN id(s) AS id',
 relationship_spec=
 """
 MATCH (s1:Station)-[t:TRACK]->(s2:Station)
 RETURN id(s1) AS source, id(s2) AS target, t.distance AS distance
 """
)

gds.close()

In Example 6-3 a GraphDataScience object is instantiated to obtain an
authenticated connection to the database hosting the knowledge graph. Then,
gds.graph.project.cypher is used to create a projection called trains that will
be stored in the graph catalog for later use. The content of the trains projection is
defined by node_spec and relationship_spec properties. The node_spec parameter
is a MATCH clause that returns the node IDs of all stations. The relationship_spec
parameter is a MATCH clause that returns the node IDs of source and target stations,
along with a distance property for the TRACK relationships that will connect stations
in the projection. Once executed, the projection is stored in the graph catalog ready
for experimentation.

The Python code for running a shortest-path algorithm is shown in Example 6-4. It
follows the same pattern as the other examples in terms of setting up a connection
to the database. It then sets up parameters for the experiment by using find_node_id
and a Cypher expression to find the IDs of the nodes representing Birmingham New
Street and Edinburgh stations, which are stored in the variables bham and eboro,
respectively.

The code then runs one of the shortest-path algorithms, Dijkstra’s algorithm in this
case. The algorithm is set up to work on the projection called trains and takes
bham and eboro as its sourceNode and destinationNode node parameters. It also
takes a value for the relationshipWeightProperty parameter, which is the distance
property that the algorithm will use to compute path costs.

104 | Chapter 6: Enriching Knowledge Graphs with Data Science

Example 6-4. Using the Python API for Graph Data Science to compute the shortest path
between Birmingham New Street and Edinburgh

from graphdatascience import GraphDataScience

host = "bolt://127.0.0.1:7687"
user = "neo4j"
password= "yolo"

gds = GraphDataScience(host, auth=(user, password), database="neo4j")

bham = gds.find_node_id(["Station"], {"name": "Birmingham New Street"})
eboro = gds.find_node_id(["Station"], {"name": "Edinburgh"})

shortest_path = gds.shortestPath.dijkstra.stream(
 gds.graph.get("trains"),
 sourceNode=bham,
 targetNode=eboro,
 relationshipWeightProperty="distance"
)

print("Shortest distance: %s" % shortest_path.get('costs').get(0)[-1])

gds.close()

Once the algorithm is executed, you’ll see that the shortest path between Birmingham
New Street and Edinburgh is printed out: Shortest distance: 298.0. You can also
visualize this path in the Neo4j Browser, as shown in Figure 6-4.

Figure 6-4. Shortest path between Birmingham New Street and Edinburgh

Curious readers might be wondering about the choice of railway stations in this
example. As it happens, one of the authors (Jim Webber) grew up in Birmingham,
England, which was one reason that Birmingham New Street was an obvious choice.
Edinburgh just happens to be a beautiful city.

Experimenting with Graph Data Science | 105

1 But also has an undeserved reputation among the British for being boring. As the heart of the industrial
revolution, it was the Silicon Valley of its day, and much of that heritage remains.

But Birmingham is geographically interesting.1 It’s in the center of England, and
Birmingham New Street is a busy hub station that serves routes across Great Britain,
including routes that intersect Edinburgh in the Scottish lowlands. As such, you
might suppose that Birmingham New Street is the most critical station on the rail
network in Great Britain. Based on that supposition, you might also advocate for
significant investment in the station and its surrounding track to ensure that failures
are few and gracefully handled.

But what if the supposition is wrong? Fortunately, you have the tools at your disposal
to quickly verify that hunch.

The trains projection contains all the data you need to analyze the situation. To
verify (or debunk) Birmingham New Street’s importance in the rail network, you’re
going to have to compute its centrality. Happily, that is very straightforward, as you
can see in Example 6-5.

Example 6-5. Using the Python API for Graph Data Science to compute centrality scores
for all railway stations in Great Britain

from graphdatascience import GraphDataScience

host = "bolt://127.0.0.1:7687"
user = "neo4j"
password = "yolo"

gds = GraphDataScience(host, auth=(user, password), database="neo4j")
graph = gds.graph.get("trains")
result = gds.betweenness.stream(graph)
highest_score = result.sort_values(by="score", ascending=False)
 .iloc[0:1].get('nodeId')

n = gds.run_cypher(f"MATCH (s:Station) WHERE ID(s) = {int(highest_score)}
 RETURN s.name")
print("Station with highest centrality: %s" % n["s.name"][0])

gds.close()

Running the code in Example 6-5 reveals Station with highest centrality:

Tamworth, which isn’t what was expected from an informal understanding of the
system. In fact, Tamworth’s centrality score is 1,967,643 while Birmingham New
Streets, is almost eight times lower at 254,706.

106 | Chapter 6: Enriching Knowledge Graphs with Data Science

Now you know that it is Tamworth, just a few miles away from Birmingham, that has
the highest centrality score and so the greatest impact on the rail network in the case
of failures. If you are in charge of rail transport policy, that’s where you might start.

Graph Data Science Reveals Counterintuitive Results
A puzzling fact about the result in Example 6-5 is that high-centrality Tamworth has
far lower passenger numbers at 1.2 million per year versus Birmingham New Street’s
47 million (plus 7 million passenger interchanges). In fact, Birmingham New Street
is the eighth busiest station in Great Britain and the busiest station outside London.
This would seem to be opposed to the finding that Tamworth is the most important.

In reality, two things might be occurring. The first is that the centrality computation
didn’t weight passengers or train routes, only connected track. From the point of view
of the physical network, Tamworth really is important. Second, network effects are
real. It’s quite likely that if infrastructure at Tamworth fails, it will impact the large
volume of passengers at Birmingham New Street and stations further afield, as faults
ripple through the network.

Real life isn’t always as as simple as a single algorithmic score. Graph data scientists
should always look to refine their problems with richer data or more accurate projec‐
tions, or they should be prepared to reformulate their hypotheses and bring more
data and algorithms to bear. Fortunately, the experimental motion of Python and
Graph Data Science allows for rapid reevaluation of test cases, giving you more
opportunity to iterate toward a good answer.

Production Considerations
The setup in “Experimenting with Graph Data Science” on page 101 is great for
experimentation, but there comes a time when you’re happy with your projections
and algorithm choices, and you want to move into production. At this point, you’re
no longer in the world of Python objects and Jupyter Notebooks but squarely in the
domain of production data engineering.

A common setup to support knowledge graphs and graph algorithms is to separate
your physical servers by role, providing physical isolation for different workloads.
Neo4j supports the concept of primary and secondary servers for this purpose. Pri‐
mary servers are responsible for transaction processing, keeping your knowledge
graph clustered for scale and fault tolerance. They also typically serve Cypher queries.

In principle, primaries can also run graph algorithms, but doing so would cause
contention between the computational workload of the algorithms and the ongo‐
ing database workload. Instead, consider deploying secondary instances for data
science. Secondary instances have looser time guarantees about updates compared to

Production Considerations | 107

primaries since they receive their updates asynchronously rather than transactionally.
They don’t slow down transaction processing.

It is also normal to size secondaries differently from primaries and perhaps even to
each other depending on the intended workload. For example, you could decide that
your primary instances are equipped with large RAM and high I/O but modest CPU
since you intend to run database queries and transactions that are rarely CPU bound.
Your secondaries would then be configured with multiple fast CPUs and high RAM
to enable fast parallel computation using graph algorithms or to support graph global
queries, as shown in Figure 6-5.

Figure 6-5. Primaries host your knowledge graph, and secondaries are used for compute-
intensive graph data science

The infrastructure of Neo4j clusters allows you to tag servers with their intended
roles so that users of the system send their jobs to the most appropriate physical
server for their needs. All this is simple and mostly transparent.

To be clear, Neo4j makes operating hybrid transactional and analytics processing
(HTAP) for knowledge graphs very straightforward. It’s a single cluster with the same
data throughout. There’s no need for ETL or online analytical processing (OLAP)
cubes or other complex data engineering.

But there will be times when you want guarantees about a secondary’s freshness
before you run a graph algorithm on it. In Chapter 3 you read that Neo4j provides
an optional causal barrier, which means that users of the database always see at least
their own writes, even with servers spread out over a wide area network. This casual
barrier applies across both primaries and secondaries and for data science just as
much as transactional workloads. Using the causal barrier is easy, as you can see in
Example 6-6.

108 | Chapter 6: Enriching Knowledge Graphs with Data Science

Example 6-6. Bookmarks work on secondaries, which are good workhorses for Graph
Data Science

try (Session session = driver.session(AccessMode.WRITE))
{
 try (Transaction tx = session.beginTransaction())
 {
 tx.run("CREATE (user:User {userId: {userId}, passwordHash: {passwordHash})",
 parameters("userId", userId, "passwordHash", passwordHash));

 tx.success();
 }

 // Bookmark is the ID of the transaction you just committed.
 String bookmark = session.lastBookmark();
}

The first part of the causal barrier in Example 6-6 is where session.lastBookmark()
is called. This gives you the ID of the transaction you just committed. You can subse‐
quently present that ID to the database to ensure no operations will proceed unless
that transaction has been processed by the receiving server (including secondaries),
as shown in Example 6-7.

Example 6-7. Using a Bookmark to enforce a causal barrier

{
 try (Transaction tx = session.beginTransaction(bookmark))
 {
 tx.run("MATCH (user:User {userId: {userId}}) RETURN *",
 parameters("userId", userId));

 tx.success();
 }
}

In Example 6-7, when opening the next transaction with session.beginTransac
tion(bookmark), you provide the bookmark object from Example 6-6. Now the
operation will not proceed until that transaction is processed at the current server.
You will always see at least your own writes, even on secondaries.

Enriching the Knowledge Graph
The other place where production data science tends to differ from the experimental
phase is what you choose to do with the results. For experiments, capturing results in
a notebook (physical or digital) is often preferred. For production use, you need to
utilize the results to improve the system.

Enriching the Knowledge Graph | 109

Recall from Example 6-5 that results of the centrality computation were streamed
back to the Python client using result = gds.betweenness.stream(graph) and
then printed to the console. If those results were useful, then you’d like to capture
them in a way that can be operationalized. Fortunately, this is straightforward; you
simply swap out the stream method for mutate, which updates the projection with
the results, or write, which enriches the underlying knowledge graph (irrespective of
where the computation executed).

Example 6-8 shows how this is achieved.

Example 6-8. Using the Python API for Graph Data Science to compute centrality scores
for all railway stations in Great Britain

from graphdatascience import GraphDataScience

host = "bolt://127.0.0.1:7687"
user = "neo4j"
password = "yolo"

gds = GraphDataScience(host, auth=(user, password), database="neo4j")
graph = gds.graph.get("trains")
result = gds.betweenness.write(gds.graph.get("trains"), writeProperty="betweenness")

total_stations = gds.run_cypher("MATCH (s:Station) RETURN count(s) AS total_stations")
print(f'Total number of stations: {total_stations.iloc[0][0]}')

processed_stations = gds.run_cypher(
 """
 MATCH (s:Station)
 WHERE s.betweenness IS NOT NULL
 RETURN count(s) AS stations_processed
 """)

print(f'Number of stations with betweenness score: {processed_stations.iloc[0][0]}')

gds.close()

If you run the code in Example 6-8, it performs the centrality calculation, but
instead of just sending results to the console, it writes them back to the underlying
knowledge graph, enriching it for future use cases, such as graph feature engineering
for ML. A message is also written to the console so that you can verify that the
knowledge graph has been enriched:

Total number of stations: 2593
Number of stations with betweenness score: 2593

As you can see, moving from exploratory graph analysis to data science to refining
experiments to production readiness is straightforward. Even readers who are not
data scientists by training should be able to make good progress following this

110 | Chapter 6: Enriching Knowledge Graphs with Data Science

pattern. As the underlying knowledge graph gets richer (and of course is kept up to
date by frequent application of algorithms), the possibilities for deep understanding
of data emerge.

Summary
In this chapter, you’ve learned (or perhaps even relearned) about graph algorithms.
Far from being dull and computerish, experimentation with graph algorithms surfa‐
ces quantifiable insight. You’ve also seen that very little coding or data engineering is
needed.

In the next chapter, you’re going to mix graph algorithms with ML. You’ll build better
predictive models with graph features created by algorithms and use graph-native ML
so that algorithms directly enrich the knowledge graph.

Summary | 111

CHAPTER 7

Graph-Native Machine Learning

In this chapter, you’ll learn about the intersection of graphs and ML. You’ll see how
ML techniques can automatically enrich an existing knowledge graph as well as how
to mine features from a knowledge graph to create accurate predictive models.

This chapter builds on the skills you learned in Chapter 6, where you exploited
the topology of a knowledge graph by using graph algorithms. In doing so, you
discovered useful insights like the shortest paths between nodes and revealed the
communities within the knowledge graph. The same skills, using Neo4j Graph Data
Science, Cypher, and Python, will again be called to action in this chapter. You will
build on those skills and learn how to add graph-native machine learning to your
toolbox to create models that can enrich your knowledge graph.

Like Chapters 3, 5, and 6, this chapter is not intended to be a comprehensive guide
to graph-based ML. But it gives you enough information to begin to use knowledge
graphs as the basis for ML, with sufficient detail to enable you to explore further
should you choose.

Machine Learning in a Nutshell
ML is a huge area of research and practice. But at its most abstract level, it is about
deriving programs from data, and of course knowledge graphs are excellent data.

Traditionally, most software has been written to take some input and apply a function
to produce some output data. The function is written by an expert human, often with
a deep understanding of the domain. The function is usually a sophisticated program,
which may require a team of professionals to build and maintain. Those people must
handle all the potential edge cases and intricacies of the model so that its outputs
remain high quality.

113

ML inverts these responsibilities. In training an ML model, the inputs are data and
prior outputs while the output is essentially a program. The ML system learns what
the program should do by cleverly correlating input and output data to create a
new function or rule. Periodically, the model may be retrained as new data becomes
available to ensure its output remains high quality.

The kind of program produced through ML depends on both the problem being
solved and the preferences of the team that owns the problem domain. The program
could be a statistical regression where historical data is mapped to a curve whose
function has been determined by analyzing historical data so that future data points
can be calculated. It could be a neural network (which underpins most deep learning
approaches) where a program is trained over time to recognize or classify inputs
(such as images) by creating a layered, linked network akin to a biological brain. It
might also be a geometric learning system that can understand, which extends deep
learning into the multidimensional topology of graphs.

The choice of model is an expert decision, but fueling that ML with knowledge
graphs typically makes good sense. There are two ways you might choose to integrate
graphs and ML:

• To predict how a knowledge graph will evolve over time, known as in-graph•
machine learning

• To extract features from the knowledge graph to build a high-quality external•
predictive model, known as graph feature engineering

Irrespective of which methods are used, the systems surrounding the ML model and
knowledge graph are often arranged in a feedback loop. This means use of the model
ultimately enriches the knowledge graph, which is then used to improve the model.

Topological Machine Learning
In-graph machine learning is a collection of techniques where the knowledge graph
can be enriched by computing over itself. The process searches for opportunities to
add missing relationships, node labels, and even properties.

In-graph machine learning capabilities are contained within the
Neo4j Graph Data Science library, which is easily installed via the
Neo4j desktop app for learning purposes.

With graph-native ML, you can execute algorithms using your knowledge graph’s
topology and data to gain insight. For example, using the built-in Neo4j movie
knowledge graph as your basis, you can immediately run topological link predic‐

114 | Chapter 7: Graph-Native Machine Learning

https://oreil.ly/wOYz8
https://oreil.ly/DQ34o
https://oreil.ly/DQ34o

tion algorithms. Start by running the Neo4j Browser on an empty database, then
enter :play movie graph to start the built-in tutorial to build a small knowledge
graph of movies, actors, and directors. Browsing around the graph centered on Keanu
Reeves, you can see that he’s had a busy career, including acting in all of the Matrix
movies, as shown in Figure 7-1.

Figure 7-1. Keanu Reeves’s acting career

In a real-world knowledge graph, you know that things are imperfect. Some data
is missing, some has been mishandled, and some you don’t even know about yet.
While even imperfect knowledge graphs are useful, it is valuable to be able to use
tools to increase the quality of the data. This is quite possible with graph data science,
of course. To demonstrate topological link prediction, just delete a relationship you
know exists and watch the algorithm recommend its re-creation. Remove the rela‐
tionship between Keanu Reeves and the movie The Matrix, as shown in Example 7-1.

Example 7-1. Perturbing a knowledge graph to set up an algorithmic experiment

MATCH (:Person {name:'Keanu Reeves'})-[r:ACTED_IN]->(:Movie {title:'The Matrix'})
DELETE r

You know that the ACTED_IN relationship between Keanu Reeves and The Matrix
should have a high probability of existing—after all, you just deleted it! This is easily
tested by running a topological link prediction algorithm like preferential attachment
by Barabási and Albert. Executing the algorithm can be done directly on the knowl‐
edge graph, as shown in Example 7-2.

Topological Machine Learning | 115

https://oreil.ly/JKXTd

Example 7-2. Invoking the Preferential Attachment algorithm on an actor and a movie
to see if they should be linked

MATCH (Keanu:Person {name:'Keanu Reeves'})
MATCH (TheMatrix:Movie {title:'The Matrix'})
RETURN gds.alpha.linkprediction.preferentialAttachment
 (Keanu, TheMatrix, {relationshipQuery: "ACTED_IN"}) AS score

Running the code in Example 7-2 gives 28.0 as the score for the likelihood of Keanu
Reeves having acted in The Matrix. This is a good indication that the relationship
should exist, but it’s not emphatic. Using another topological link prediction algo‐
rithms might help to improve the score, depending on the nature of the graph, as can
using a larger graph (at the expense of longer compute times). But another avenue of
exploration is to train and use ML pipelines to solve the link-prediction problem.

Graph-Native Machine Learning Pipelines
You can potentially improve link prediction (and prediction of labels and properties
too) by moving to an ML pipeline. For this, you will need a reasonably large set of
relevant training data from which features can be extracted by the ML pipeline to
train a predictive model.

Graph Feature Engineering
Feature engineering is the activity of identifying useful data that can be used to train
an ML model. Traditionally, those features came from columns in relational databases
and might be labeled age, gender, or postal code.

Graph feature engineering involves identifying and extracting data from a knowledge
graph to be integrated into an ML model. Since knowledge graphs have a topology
as well as data, this enables you to extract more and typically higher-quality features
than would otherwise be possible.

Features are often generated by running a graph algorithm over the knowledge graph.
For example, you might compute the PageRank or community of each node in a
graph and use those as features. Equally, you might simply encode the topology of
the graph directly as a (non-human-readable) feature using node embeddings. Either
way, you increase the number and quality of features available for ML that can lead to
better performing predictive models.

With traditional ML, a significant amount of data engineering can be needed to set
things up. However, if we use Neo4j to host our knowledge graph, then we can simply
declare ML pipelines into existence, with only a little data wrangling needed.

The construction of a pipeline for link prediction is as follows:

116 | Chapter 7: Graph-Native Machine Learning

1. Create a graph projection from the underlying knowledge graph.1.
2. Declare the pipeline into existence.2.
3. Add properties to the nodes in the graph projection containing values based only3.

on the result of some computation on the relationships in the graph (e.g., by
running one or more graph algorithms).

4. Add one or more link features to create a feature vector for each node pair in the4.
graph using the properties computed in the previous step using a combiner.

5. Split the graph into disjoint test, train, and feature sets.5.
6. Add model candidates (for example, logistical regression).6.
7. Optionally estimate the computational requirements of the training phase to7.

ensure your machines have enough memory.
8. Train the model, including evaluation metrics to judge the quality of the trained8.

model.
9. If the model is deemed good enough via its metrics, then push it into production.9.

Instinctively, that seems like a lot of effort. But since the required functionality is
already built into Neo4j, you only have to declare the configuration of the pipeline,
rather than directly implement it. Working through an example illustrates this very
well.

Recommending Complementary Actors
You’ve already seen the movies knowledge graph in “Topological Machine Learning”
on page 114. It’s a small knowledge graph intended for educational purposes, but it’s
realistic enough for you to build a predictive model which can recommend actors
that might work well together based on whom they have previously worked with.

The first step is a small amount of data wrangling. Take the existing movie graph
and match where actors have acted in the same movie. Then connect each pair of
actors who’ve been in the same movie with an ACTED_WITH relationship (direction is
unimportant). This is the only pretraining data wrangling you’ll need, and it’s simple,
as you can see in Example 7-3.

Example 7-3. Adding ACTED_WITH relationships to the movie knowledge graph

MATCH (a:Person)-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-(b:Person)
MERGE (a)-[:ACTED_WITH]->(b)

Once your knowledge graph is enriched with ACTED_WITH relationships, you can
easily visualize the network of actors who’ve worked together in the Neo4j Browser
tool, as shown in Figure 7-2.

Recommending Complementary Actors | 117

Figure 7-2. Subgraph of actors who have worked together

Now you can create a projection of that knowledge graph. The projection, just as
you saw in Chapter 6, forms the basis for subsequent ML. This is a single procedure
call, as shown in Example 7-4. You have to provide the name of the projected graph
(actors-graph). You also need to supply the labels of any nodes to be included
(Person in this case) and any properties on those nodes (empty {} in this case).
Finally, you need to supply the names of any relationships (ACTED_WITH) and their
orientation (UNDIRECTED).

Example 7-4. Creating a projection of actors who have worked with other actors

CALL gds.graph.project('actors-graph',
 {
 Person: {}
 },
 {
 ACTED_WITH: {
 orientation: 'UNDIRECTED'
 }
 }
)

The next step is to create your pipeline. This takes a single Cypher procedure call,
CALL gds.beta.pipeline.linkPrediction.create('actors-pipeline').

118 | Chapter 7: Graph-Native Machine Learning

Now you have to think about the node properties that will be used to train the
ML model. You can choose existing node properties from the underlying knowledge
graph, or you can create new properties by running graph algorithms over the data.
In this case, the topology shown in Figure 7-2 is important, so you need to encode
that topology as a node property that can be read by the ML stages of the pipeline.

Using a node embedding algorithm, which encodes a node’s local topology as a
number, is a good choice here. Neo4j Graph Data Science has a handful of such
algorithms, including Node2Vec and FastRP, which are potentially suitable. In Exam‐
ple 7-5 you can see how to configure the FastRP algorithm to calculate a node
property called embedding on each of the nodes in the projection. Each property will
be enriched with a numerical encoding of the node’s position in the topology when
the pipeline executes.

Example 7-5. Configuring the pipeline to inject a node embedding property into all
nodes using the FastRP algorithm

CALL gds.beta.pipeline.linkPrediction.addNodeProperty('actors-pipeline', 'fastRP', {
 mutateProperty: 'embedding',
 embeddingDimension: 256,
 randomSeed: 42
})

The next step is to configure the part of the pipeline that deals with link features.
Recall that a link feature is a single feature that joins a node pair together and is a
necessity for topological ML. The link feature steps will be executed both at training
time when the pipeline runs and in production when the model makes predictions.

Example 7-6 shows how this can be done. The feature step is added with the addFea
ture procedure, which takes the name of the pipeline and an algorithm for determin‐
ing whether a node pair should be joined. In this case, cosine has been chosen,
which generates the cosine similarity of the embedding node properties defined in
Example 7-5. If the vectors are close enough, they are considered to be linked. Other
options for link feature algorithms include Hadamard product and L2. In this small
use case, after some experimentation cosine appears to give the best results.

Example 7-6. Adding cosine (closeness) as the link feature that determines if two nodes
are linked

CALL gds.beta.pipeline.linkPrediction.addFeature('actors-pipeline', 'cosine', {
 nodeProperties: ['embedding']
}) YIELD featureSteps

In order to train and test the predictive model, positive and negative examples need
to be fed into the pipeline. This is automated by the tooling, with the user only

Recommending Complementary Actors | 119

https://oreil.ly/EQGHb
https://oreil.ly/I-Kmv
https://oreil.ly/s52qj

having to specify the fraction of the graph used for testing and the fraction of the
test complement set (data not used for testing) that will be used for training. This is
shown in Example 7-7. If you don’t want to tune the relationship splitting yourself,
you can omit this configuration and use the defaults.

Example 7-7. Splitting the test and train data for the pipeline

CALL gds.beta.pipeline.linkPrediction.configureSplit('actors-pipeline', {
 testFraction: 0.25,
 trainFraction: 0.6,
 validationFolds: 3
 })

The next step in configuring the pipeline is to add one or more model candidates. At
the time of writing, the choices are:

• Logistic regression•
• Random forest•
• Multilayer perceptron•

These models can be added to the pipeline with a procedure call like CALL
gds.beta.pipeline.linkPrediction.addLogisticRegression(actors-pipeline).
The model (or models) registered are then readied for auto tuning with a single proce‐
dure call CALL gds.alpha.pipeline.linkPrediction.configureAutoTuning(actors-
pipeline, {maxTrials: 100}). In that call, actors-pipeline is the name of the
pipeline to be tuned, and maxTrials declares the maximum number of tuning itera‐
tions each model will undergo before choosing the best parameters. Note that on small
models like this, the computational time is negligible on modern computers, but on a
large ML pipeline, the processing time of each iteration could be many minutes.

The pipeline is now ready for training. But before you do that on a production-sized
data set, it’s worth taking a moment to check the training memory requirements and,
if necessary, running training on a machine with sufficient memory. The memory
check is just a simple procedure call again, as shown in Example 7-8.

Example 7-8. Checking for sufficient memory to run the training task

CALL gds.beta.pipeline.linkPrediction.train.estimate('actors-graph', {
 pipeline: 'actors',
 modelName: 'actors-model',
 targetRelationshipType: 'ACTED_WITH'
})
YIELD requiredMemory

120 | Chapter 7: Graph-Native Machine Learning

Once you’re comfortable with the memory requirements for training, you can pro‐
ceed to train the model as shown in Example 7-9. The code in Example 7-9 instanti‐
ates a pipeline using the configuration that you provided earlier and executes the
training phase, producing a model called actors-model as its output. It also yields
some metrics about the training phase, which a data scientist can use to reason about
the quality of the model.

Example 7-9. Running the training task

CALL gds.beta.pipeline.linkPrediction.train('actors-graph', {
 pipeline: 'actors-pipeline',
 modelName: 'actors-model',
 metrics: ['AUCPR'],
 targetRelationshipType: 'ACTED_WITH',
 randomSeed: 73
}) YIELD modelInfo, modelSelectionStats

RETURN
 modelInfo.bestParameters AS winningModel,
 modelInfo.metrics.AUCPR.train.avg AS avgTrainScore,
 modelInfo.metrics.AUCPR.outerTrain AS outerTrainScore,
 modelInfo.metrics.AUCPR.test AS testScore,
 [cand IN modelSelectionStats.modelCandidates |
 cand.metrics.AUCPR.validation.avg] AS validationScores

Once you have a trained model, you can use it to make predictions. The starting
point for that is to feed in a graph projection on which the model can be executed.
The input graph actors-input-graph-for-prediction shown in Example 7-10 is
based on the original movie graph but with some perturbations that make it slightly
different. Those perturbations are simple Cypher statements to add in a few more
synthetic actors and delete a few ACTED_IN relationships. In a production scenario,
you would use your real knowledge graph instead.

Example 7-10. Creating an input graph on which the model will make predictions

CALL gds.graph.project(
 'actors-input-graph-for-prediction',
 {
 Person: {}
 },
 {
 ACTED_WITH: {
 orientation: 'UNDIRECTED'
 }
 }
)

Recommending Complementary Actors | 121

https://oreil.ly/-4fz-

The model can now execute on the input graph, as shown in Example 7-11. The
parameters are somewhat self-explanatory:

• actors-input-graph-for-prediction is the projection used as the input graph.•
• actors-model is the trained model produced by Example 7-9.•
• relationshipTypes specifies that the execution should only concern itself with•

processing ACTED_WITH relationships.
• mutateRelationshipType specifies that the execution should write back•
SHOULD_ACT_WITH relationships into the projection when a certain confidence
level is met.

• topN sets the number of recommendations required.•
• threshold sets the confidence level below which a recommendation is discarded.•

In this case, it’s a low threshold, since it’s a small-scale problem with an immedi‐
ate human end user (the person who casts roles for actors). A real production
system is likely to have a higher threshold to prevent too many low-quality
predictions being produced.

Example 7-11. Writing results back to the graph projection

CALL gds.beta.pipeline.linkPrediction.predict.mutate(
 'actors-input-graph-for-prediction', {
 modelName: 'actors-model',
 relationshipTypes: ['ACTED_WITH'],
 mutateRelationshipType: 'SHOULD_ACT_WITH',
 topN: 20,
 threshold: 0.4
})
YIELD relationshipsWritten, samplingStats

Once the code in Example 7-11 has executed, you are left with an enriched projec‐
tion, but the recommendations have not yet been written back into the knowledge
graph.

If you don’t want to persist the recommendations from your
model, you don’t have to. Simply switch out the procedure
call gds.beta.pipeline.linkPrediction.predict.mutate for
gds.beta.pipeline.linkPrediction.predict.stream and drop
the mutateRelationshipType parameter. Your results will now be
streamed directly back to the user without enriching the projec‐
tion.

122 | Chapter 7: Graph-Native Machine Learning

You can see how this is achieved in Example 7-12. You stream SHOULD_ACT_WITH
relationships from the actors-input-graph-for-prediction projection and then
use some Cypher to take the source and target IDs from the streamed relationships
and MERGE them back into the underlying knowledge graph.

Example 7-12. Persisting results in the knowledge graph

CALL gds.beta.graph.relationships.stream(
 'actors-input-graph-for-prediction',
 ['SHOULD_ACT_WITH']
)
YIELD
 sourceNodeId, targetNodeId

WITH gds.util.asNode(sourceNodeId) AS source, gds.util.asNode(targetNodeId) AS target

MERGE(source)-[:SHOULD_ACT_WITH]->(target)

An optional final step is one more piece of wrangling to tidy up the knowledge
graph. Since SHOULD_ACT_WITH relationships are symmetric, there’s no need to have
two of them between actors. That is, (a)-[:SHOULD_ACT_WITH]->(b) is sufficient,
and you don’t necessarily need the reciprocal (b)-[:SHOULD_ACT_WITH]->(a). If you
want to normalize the knowledge graph in this way, the Cypher code is presented in
Example 7-13.

Example 7-13. Normalizing the knowledge graph

MATCH (a:Person)-[:SHOULD_ACT_WITH]->(b:Person)-[d:SHOULD_ACT_WITH]->(a)
// Prevents a node matching as a first then b later, so deleting all rels
WHERE id(a) > id(b)
DELETE d

Once any wrangling is complete, the knowledge graph is enriched and ready for
querying. A simple Cypher query like that shown in Example 7-14 is all that is
needed to retrieve a set of recommendations. It just finds people connected by the
SHOULD_ACT_WITH relationship that came from executing the predictive model over
the graph and returns those people’s names.

Example 7-14. Querying the knowledge graph for complementary actors

MATCH (a:Person)-[:SHOULD_ACT_WITH]->(b:Person)
RETURN a.name, b.name

Recommending Complementary Actors | 123

After running Example 7-14, you’ll obtain results like those in Table 7-1.

Table 7-1. Recommendations for actors to work with other actors

a.name b.name
0 Naomie Harris Emile Hirsch

1 Naomie Harris John Goodman

2 Naomie Harris Susan Sarandon

3 Naomie Harris Matthew Fox

4 Naomie Harris Christina Ricci

5 Danny DeVito Demi Moore

6 Danny DeVito Noah Wyle

7 Danny DeVito Kevin Pollak

8 Danny DeVito James Marshall

9 Danny DeVito Christopher Guest

10 Danny DeVito Aaron Sorkin

11 John C. Reilly Demi Moore

12 John C. Reilly Noah Wyle

13 John C. Reilly Kevin Pollak

14 John C. Reilly James Marshall

15 John C. Reilly Christopher Guest

16 John C. Reilly Aaron Sorkin

17 Ed Harris Sam Rockwell

18 Lori Petty Julia Roberts

As these recommendations are persisted in your knowledge graph, you can reuse
them and combine them into other queries, despite them being created by ML. Bear
in mind that you’ll need to repeat this process periodically (hourly, daily, monthly)
to keep the data fresh depending on your use case needs. Finally, remember this
is just a starting point, and the real time is spent optimizing parameters for the
model, especially around properties, features, and metrics for the trained model.
While the auto ML can help, human intelligence is still needed to bootstrap artificial
intelligence!

124 | Chapter 7: Graph-Native Machine Learning

If the scope of the in-graph ML pipelines isn’t sufficient for your
needs, you can always fall back on external tools like TensorFlow,
PyTorch, and scikit-learn or cloud-hosted systems like Google’s
Vertex AI, Amazon SageMaker, and Microsoft’s Azure Machine
Learning. The bridge between the two domains is the set of feature
vectors extracted from the knowledge graph which is used as input
to train and test the externally hosted model. Through experimen‐
tation and iteration (either automatically or manually), it may be
possible to use the greater depth of these tools and platforms to
create better ML models, at the expense of implementation com‐
plexity, especially enriching the knowledge graph with the results
from those external systems.

Summary
At this point in the book, you’ve covered enough of the technical details of building
knowledge graphs to be competent. From creating and querying knowledge graphs,
through applying graph algorithms, and finally using graph ML to enrich your data,
you have covered a great deal of fundamental technologies. It’s no mean feat to have
come this far, so well done! From here on, you’ll be applying your technical skills to
specific knowledge graph use cases, starting with mapping the data in your enterprise.

Summary | 125

CHAPTER 8

Mapping Data with Metadata
Knowledge Graphs

Modern enterprises are extremely rich in data. But that data is distributed across silos,
heterogeneous, and often of variable quality.

Being able to understand where your data resides, how it’s processed, and who
consumes it is an important part of running an enterprise. It’s a key component of
data governance and increasingly important for self-serve data consumers.

A metadata knowledge graph is an enterprise-wide map which records the shape and
location of data, the systems which process that data, and its consumers. Importantly,
a metadata knowledge graph links data, processes, and consumers so that the prove‐
nance of data is explicit and easy to reason about (e.g., for compliance and regulatory
demands).

In this chapter, you’ll learn about the challenges of stewarding data in the modern
enterprise and how a metadata knowledge graph can help. You’ll see how the modern
distributed data landscape can be (logically) reunified by a metadata knowledge graph
and how complex systems architectures can be tamed with the same technique. This
is reinforced by an end-to-end example designed to resemble a typical enterprise. But
first, the challenge of data stewardship must be addressed.

The Challenge of Distributed Data Stewardship
As organizations evolve, different departments implement applications and processes
to solve their needs. Individual departments may store some of the same information,
so it is not uncommon for duplicate or (worse still) nearly duplicate data to reside in
silos.

127

Often these systems are implemented without consideration of the overall
knowledge-organization needs of the business since that isn’t owned by any individ‐
ual department (and may not have an explicit owner at all). With data in a patchwork
state, it’s hard to understand a customer’s journey or the success factors for a space
mission.

Metadata (data that describes data) is a critical element in modern information
systems management. A metadata map provides a lens over an organization’s entire
data ecosystem, allowing you to manage data across the enterprise. As such, meta‐
data knowledge graphs are a very useful foundational layer in your information
architecture.

High-quality metadata ensures that users can navigate vast, heterogeneous data assets
whose quality and freshness are variable. It helps data analysts, data scientists, and
ML engineers access the right data quickly. And it can explain the state of data assets
for auditing and regulatory purposes.

But managing metadata has been and is a significant challenge. To address this
challenge, some of the largest organizations are converging their data into metadata
hubs backed by a knowledge graph.

Metadata Hubs
The trend for metadata hubs backed by knowledge graphs started in 2017 when
Airbnb announced its Dataportal platform at their “Democratizing Data at Airbnb”
talk at GraphConnect Europe 2017. This was followed by Lyft with Amundsen, the
data discovery metadata engine, and LinkedIn with Datahub. Commercial solutions
combining knowledge graphs for metadata management have since followed.

It is not only large organizations that benefit from knowledge graphs for metadata.
With the support of frameworks like those in “Metadata Hubs”, metadata knowledge
graphs can be very helpful for building higher-order knowledge graph systems, for
data science, and for compliance and regulatory purposes. The kind of entities cap‐
tured in metadata knowledge graphs are the common data assets found in a modern
data stack and typically include datasets, tasks and pipelines, and data sinks. The
following sections serve as guidelines for building your own metadata knowledge
graph.

Datasets Connected to Data Platforms
Tables, documents, streams—any data collection is a dataset. Datasets are connected
to a system that processes or stores them. They can be broken down into a collection
of data field descriptions that describe the public schema of the dataset.

128 | Chapter 8: Mapping Data with Metadata Knowledge Graphs

https://oreil.ly/LecTk
https://oreil.ly/qSNta
https://oreil.ly/88YWU

Figure 8-1 shows the subgraph representing a table with customer information stored
in Google BigQuery. The Dataset node is connected to the DataPlatform node
through the source relationship. It has three Field nodes.

Figure 8-1. Metadata model datasets and data platforms

As you incorporate metadata like that in Figure 8-1, you begin to create a map of your
data as it exists in systems. From there, it is possible to link logically common records
across systems as well as to show how inputs from one system become outputs to
another via tasks and pipelines.

Tasks and Data Pipelines
A task is any data job that processes a data asset. A simple example is an ETL task
that, for example, standardizes the values of the country field in a CSV file. Tasks can
be grouped in chains that form data pipelines or data flows. The chain determines
the order in which tasks are executed and therefore makes the dependencies between
tasks explicit, as in Figure 8-2.

Tasks and Data Pipelines | 129

Figure 8-2. Tasks and data pipelines

Figure 8-2 shows how output data from a system becomes input to another. It can
be used to understand which systems and users touch the data (e.g., for compliance
and regulatory reasons) as well as to aid understanding of the provenance of the data.
Once the start and end points for the pipeline are understood, they can be fed back as
shortcut links into the data set part of the metadata graph from Figure 8-1.

Data Sinks
A data sink is any kind of terminal data consumer task, from a data visualization
in a business intelligence tool to an ML training dataset. Data sinks are connected
to datasets, but unlike the tasks described earlier, they don’t produce new datasets.
All elements in the metadata graph can be linked to data domains, have owners,
and be connected to catalog terms representing related business terms from an
enterprise ontology, glossary, or standard terminology in use, with descriptions or
documentation attached to them.

Mapping data sinks to data allows you to understand which users and systems
consume the data. It helps with planning for systems migrations and shows which
data and pipelines are valued (and which aren’t).

Metadata Graph Example
An example describing a data pipeline for standardizing and aggregating sales data by
month is shown in Figure 8-3. Three datasets represent sales data in CSV format: the
raw dataset (sales_details_raw) extracted from an operational system, the dataset
after the standardization of some reference fields (sales_details_std), and the
dataset aggregated by month (sales_monthly_agg).

130 | Chapter 8: Mapping Data with Metadata Knowledge Graphs

Figure 8-3. A complete view of a data pipeline

The aggregated dataset has nodes for three fields (customerId, address, and
renewal_date). The address field is associated with a catalog term location_info,
indicating that the field contains geolocation information. The catalog is owned by
the Catalog Team.

The dataset itself is also connected to a user acting as the owner, although this kind
of relationship can and should be qualified with an attribute indicating the role of the
user, such as a data steward. Finally, the aggregated dataset is consumed by two data
sinks: a Dashboard representing some kind of data visualization and an MLFeatureSet
indicating that the dataset is used for an ML pipeline.

Querying the Metadata Graph Model
A model like Figure 8-3 can support data discovery queries like “What’s the most
popular corporate sales dataset containing customer location information?” One way
to measure a dataset’s popularity is to count the ways in which the data is consumed,
by the number of data sinks consuming the dataset. That metric can be retrieved
from the metadata graph using the Cypher query in Example 8-1.

Example 8-1. A Cypher query that measures dataset popularity by the number of
consumers using that data

MATCH (d:Dataset)
WHERE (d)-[:associated_with]->(:Domain { name: 'Corporate Sales'}) AND
 (d)-[:has_field]->(:Field)-[:associated_with]->

Querying the Metadata Graph Model | 131

1 Chapter 11 gives more detail on impact analysis.

 (:CatalogTerm {name:'location_info'})
RETURN d.id AS dataset_id,
 d.desc AS dataset_desc,
 d.type AS dataset_type,
 count{ (d)<-[:consumes]-(d:DataSink) } AS dataset_usage_count

Similarly, you can explore the metadata graph to assess the impact of a failing task. In
Example 8-2 you can see a query that returns the list of data consumers (data sinks)
and their owners who would be affected by a given task failing.1

Example 8-2. Query that returns a list of data sinks and their owners

MATCH (t:Task)-[:produces|consumes*2..]-(:Dataset)
 <-[:consumes]-(s:DataSink)-[:owned_by]->(o)
WHERE t.name = 'standardise_reference_fields'
RETURN s.id AS affectedDataConsumerID,
 s.type AS affectedDataConsumerType,
 s.desc AS affectedDataConsumerDesc,
 o.id AS ownerID,
 o.name AS ownerName

Another common type of analysis that uses a metadata knowledge graph is data
lineage. This use case is the inverse of the previous one from a graph point of
view. The simplest data lineage question could be “Which data platforms are the
sources of the data for Dashboard X?” The answer comes from the Cypher query in
Example 8-3.

Example 8-3. A simple data lineage query

MATCH (s:DataSink)-[:consumes]->(:Dataset)-[:produces|consumes*2..]->(raw:Dataset)
 -[:source]->(dp:DataPlatform)
WHERE s.type = 'Dashboard' AND s.id = 'X'
RETURN raw.id AS sourceDatasetID,
 raw.type AS sourceDatasetType,
 dp.id AS sourcePlatformID,
 dp.type AS sourcePlatformType

There are many more questions related to metadata management that you could ask
such a rich dataset. You can even analyze the graph using graph algorithms, like in
Chapter 6, to surface strong connections (or disconnections) between teams and data
domains because a map of how data flows in an organization (and that is exactly what
this knowledge graph is) is a proxy for the operations of a company.

132 | Chapter 8: Mapping Data with Metadata Knowledge Graphs

Using Relationships to Connect Data and Metadata
In a graph, you define relationships to describe how entities interrelate. For example,
it is possible for a graph to state that a customer subscribes to a service by linking
the customer node and the service node through a SUBSCRIBES_TO relationship. But
relationships can also be used to connect data and metadata in the same graph.

Figure 8-4 shows a graph with two layers. The bottom layer shows the data pertaining
to customers and the services to which they subscribe. The top layer has some
metadata that describes the provenance of the customer and subscription data. This
metadata shows how customer information is part of a dataset sourced from an
external system, which is curated by a particular data steward.

Figure 8-4. Relationships connect the data and metadata layers

Using a knowledge graph like the one in Figure 8-4, you can answer domain ques‐
tions like “Which customers subscribe to service X?” You can also provide confidence
in the answer by supplying provenance and governance metadata. Importantly, data
architects can implement this technique in a noninvasive manner with respect to
the source systems containing customer data, by building it as a layer above those
systems.

A globally linked view of data unlocks many significant use cases. Figure 8-4 shows
the powerful combination of the data and metadata planes in the graph, but it’s easy
to see how to construct a complete view of a customer by linking disparate partial
views of customers across different systems. You could enrich the original customer
view with the customer’s behavior over their lifetime, detect patterns for good and
bad customers, and adapt processes to suit their behavior.

At the metadata level, you can start with a catalog of well-described datasets connec‐
ted to the data sources where they are hosted. But you can also use the techniques in

Using Relationships to Connect Data and Metadata | 133

the rest of this chapter to enrich them by linking them to vocabularies, taxonomies,
and ontologies to enable interoperability. Or you can add ownership or stewardship
information to enhance data governance and map where data came from as well as
which systems and individuals have handled it. A unified, deduplicated view of data
enabled by a metadata graph is a solid foundation for several use cases, including
semantic search.

Summary
This chapter has discussed the notion of metadata graphs as a foundational layer to
track enterprise data assets, processes, and consumers. By integrating relevant data
and metadata in a knowledge graph and defining the relationships within the data
itself, you have seen how to push intelligence into the data. With metadata knowledge
graphs, you’ve seen how to create knowledge graphs that allow consumers to search
enterprise data for terms that don’t even explicitly exist in text!

Given a metadata knowledge graph, you can discover, reason about, and steward
data assets across the enterprise. While this is useful on its own, it can also serve
as the basis for higher-level use cases. In the next chapter, you’ll encounter some
of those use cases as you look for fraudsters, anomalies, and skills and create
recommendations.

134 | Chapter 8: Mapping Data with Metadata Knowledge Graphs

CHAPTER 9

Identity Knowledge Graphs

Being able to confidently identify a person or thing is a bedrock of business infor‐
mation systems. Given two records, can you determine if they represent the same
real-world thing (a person, an organization, a place, and so on)?

This problem commonly arises when integrating data from different systems, when
you need to reason that a record in one system has a counterpart (or not) in the other.
In that context, it is often referred to as entity resolution or master data management.

In this chapter, you will learn how knowledge graphs help you address the problem
of identity. You will see how the topology of a knowledge graph can give you the
confidence to link multiple entities and allow you to reason about them as if they
were a single golden record.

Knowing Your Customer
Identity and its myriad of difficulties is part of our everyday experience. For example,
Jane Coleman has been a happy and profitable customer of the Bank’s credit card for
several years.

Some months ago, Jane married her husband Peter and decided to take his name.
Jane Downe and Peter Downe are the owners of a joint checking account with the
Bank. But how can the Bank know that Jane Coleman and Jane Downe are the same
person? There’s no obligation on Jane to tell the Bank; indeed, she is free to continue
to use her maiden name (a not unusual practice among certain professionals like
doctors).

As a consequence, Jane regularly gets letters in her mailbox inviting her to open a
credit card account, which she already has. This is clearly a waste of time and money,
and probably a modest annoyance to Jane. But were Jane to be a fraudster, then

135

tracking down all her activities would be hampered by not being able to discern a
single identity.

When records have a consistent strong identifier, then it’s easy to connect them.
It’s one of the reasons why database practitioners are so concerned with things like
unique identifiers to help solve that problem. At a human level, think of things like
a Social Security number or a passport number for an individual, a product’s unique
SKU, or a unique company identifier issued by a government agency.

But not everything is as simple as a unique identifier. There are cases like the one
in the banking example described earlier where strong identifiers may exist but are
not consistent across all data. Maybe Jane opened her credit card account using her
driver’s license and the current account using her passport.

The data in Example 9-1 paints a typical picture of the problem. Rows 1 and 2 are
easy to link. You can see they have the same Passport entry, so you can safely reason
that Pete Downe and Peter J. Downe are the same person.

Example 9-1. Two records representing the same product

rowid, Source, AccountNo, Name, Passport, DriversLic, DOB
1, "Credit", 9918475, "Pete Downe", "VX83041",, 1987-03-12
2, "Current", 2436930, "Peter J. Downe", "VX83041",, 1987-03-12
3, "Credit", , "Jane Coleman", ,"49587640", 1989-10-28
4, "Current", 2436930, "Jane Downe", "RA14958", , 1989-10-28

Rows 3 and 4 in Example 9-1 are much harder to discern. There are different names
(Jane’s maiden and married names) and no common alphanumeric identifiers. Given
just this data, you’d have to conclude there’s a strong possibility of two people being
represented in those rows.

Things become even more problematic in the absence of strong identifiers. In those
cases, you will need to use whichever features are available, and often a combination,
to try to determine if two similar references refer to the same thing.

When Does the Problem Appear?
There are several scenarios where you may face duplicated data. Some of the most
common are:

Data integration
This is probably the most frequent case. Different applications store variants
of the same data for different functions, but often the data from multiple sys‐
tems needs to be combined for analytics purposes. Sales applications, customer
relationship management (CRM), marketing, and so on all hold customer data
(or product data, or event data…), but that data is collected and managed

136 | Chapter 9: Identity Knowledge Graphs

independently. This results in records being identified and described in different
ways by each, without consistent strong identifiers across systems.

Any analytic workload (analysis, reporting, predictive model building) of the
integrated data is unreliable without first having solved the duplication problem.
Duplicate records must be identified in order to merge them into master data
entities (golden records) to establish a single trusted view.

Anonymous activity
Many publicly accessible systems allow users to interact with them without
authenticating (e.g., to browse products). By definition, there is no authentica‐
tion of the user that can be used to identify them, but users do leave traces
(clickstream) of their activity and the devices they use to access those systems.
These traces will include features like time, cookie IDs, and even the navigational
choices they made, which can help identify patterns and eventually unique users
and sessions.

Intentional/fraudulent duplicates
Sometimes duplicates are created intentionally when bad actors are trying to beat
a system. Examples include:

• Individuals trying to get better insurance quotes by slightly adjusting some•
parameters like their address, their age, or others

• In more sophisticated cases, users trying to abuse service trials by authenti‐•
cating with different credentials (fake emails or names, etc.)

• Online sellers posting multiple small variants of the same product listing in•
an attempt to maximize its chances of being seen and ultimately sold

All these scenarios share the same fundamental question: given two records, do they
refer to the same or to different entities?

Graph-Based Entity Resolution Step by Step
The process of entity resolution includes three fundamental activities:

• Data preparation•
• Entity matching•
• Curation of a persisted record of master entities•

You can see examples of each in Example 9-2. You have three overlapping data sets
with personal information that need deduplication and integration into a single view.

Graph-Based Entity Resolution Step by Step | 137

Example 9-2. Three sample files

file: ds1.csv
╒═════════╤═══════════════════╤═══════════════════╤═════════════╤═══════════╤══════╕
│system_id│full_name │email │ssn │passport_no│yob │
╞═════════╪═══════════════════╪═══════════════════╪═════════════╪═══════════╪══════╡
│"1_1" │"Sidney Bernardy" │"sbernardy0@va.gov"│"252-13-7091"│"A465901" │"1979"│
├─────────┼───────────────────┼───────────────────┼─────────────┼───────────┼──────┤
│"1_2" │"Ernestine Ouchterl│"eouchterlony1@sun.│"557-21-3938"│"CF3586" │"1999"│
│ │ony" │com" │ │ │ │
├─────────┼───────────────────┼───────────────────┼─────────────┼───────────┼──────┤
│"1_3" │"Cherish Gosnall" │"cgosnall2@google.c│"422-45-7305"│"BS945813" │"1983"│
│ │ │om.br" │ │ │ │
├─────────┼───────────────────┼───────────────────┼─────────────┼───────────┼──────┤
│"1_4" │"Husein Sprull" │"hsprull3@va.gov" │"123-03-8992"│"FG45867" │"1980"│
├─────────┼───────────────────┼───────────────────┼─────────────┼───────────┼──────┤
│"1_5" │"Jonathan Pedracci"│"jpedraccig@gateway│"581-96-2576"│null │"1991"│
│ │ │.com" │ │ │ │
└─────────┴───────────────────┴───────────────────┴─────────────┴───────────┴──────┘

file: ds2.csv
╒═════════╤════════════════════╤════════════════════╤═════════════╤═══════════╤════╕
│system_id│name │email │ssn │passport_no│age │
╞═════════╪════════════════════╪════════════════════╪═════════════╪═══════════╪════╡
│"2_1" │"Bernardy, Sydney Jo│null │null │"A465901" │"44"│
│ │anne" │ │ │ │ │
├─────────┼────────────────────┼────────────────────┼─────────────┼───────────┼────┤
│"2_3" │"Gosnall, Cherise" │"cgosnall@outlook.co│"422-45-7305"│null │"40"│
│ │ │m" │ │ │ │
└─────────┴────────────────────┴────────────────────┴─────────────┴───────────┴────┘
file: ds3.csv
╒═════════╤══════════╤══════════╤════════════╤════════════╤═══════════╤════════════╕
│system_id│first_name│last_name │email │ssn │passport_no│dob │
╞═════════╪══════════╪══════════╪════════════╪════════════╪═══════════╪════════════╡
│"3_1" │"Syd J" │"Bernardy"│"sjb@gmail.c│"252-13-7091│null │"1979-05-13"│
│ │ │ │om" │" │ │ │
├─────────┼──────────┼──────────┼────────────┼────────────┼───────────┼────────────┤
│"3_2" │"C" │"Gosnall" │null │"422-45-7305│null │"1983-04-23"│
│ │ │ │ │" │ │ │
├─────────┼──────────┼──────────┼────────────┼────────────┼───────────┼────────────┤
│"3_3" │"Jon" │"Pedracci"│"pedracci@ou│null │"TH834501" │"1991-12-05"│
│ │ │ │tlook.com" │ │ │ │
├─────────┼──────────┼──────────┼────────────┼────────────┼───────────┼────────────┤
│"3_4" │"Hana" │"Sprull" │"hsprull3@va│"465-63-9210│null │"1984-10-13"│
│ │ │ │.gov" │" │ │ │
└─────────┴──────────┴──────────┴────────────┴────────────┴───────────┴────────────┘

Data Preparation
The purpose of the data preparation phase is to make sure that the data meets
the required quality characteristics. When there are multiple data sets from

138 | Chapter 9: Identity Knowledge Graphs

independently governed systems, the different parts will also need to be harmonized
to make them comparable. This will include activities like aligning data types and
units (all distances in km, all prices in dollars, all scores between 0 and 1, etc.).

Even when all data comes from a single source and does not require those adjust‐
ments, all the features that you intend to use in the matching phase of the process still
need to be cleansed, standardized, and so forth to maximize the quality of the results.
This means making sure nulls are actually nulls (and not the string “null”), unifying
string format (all uppercase or all lowercase and encoding), trimming, removing
multiple spaces or special characters, and so on.

The first step is to model the data as a knowledge graph, storing it in a graph
database. Since each record represents a person, the model will be the simplest
possible. The obvious graph is with a Person node for each row and each column
providing a property on that node. Though the files are quite similar, there are some
file-specific columns (yob, age, or dob) which will introduce some variability in the
node structure. This is fine for now and will be dealt with before the entity matching
phase.

The Cypher script that loads each record into Person nodes is shown in Example 9-3.
This generic script takes the structure (columns) in the source file and adds a prop‐
erty called source for data provenance.

There is never a single way of doing things in data management.
Part of what was done in this phase could legitimately be carried
out before the data is loaded into the graph. The data preparation
work can be executed on the files directly using Python (and
pandas is a great tool for this) or as SQL transformations on a
cloud data warehouse after loading the files into tables. The scripts
in Example 9-3 would just be loading into the graph database
management system (DBMS) data in a format that is ready for
entity matching (with the exception of the graph features that can
only be extracted once the data is modeled as a graph). Simplicity,
robustness, and performance should guide you when choosing
your approach.

Example 9-3. Loading personal data files

LOAD CSV WITH HEADERS FROM "file:///ds1.csv" AS row
CREATE (p:Person) set p.source = "ds1", p += properties(row) ;

LOAD CSV WITH HEADERS FROM "file:///ds2.csv" AS row
CREATE (p:Person) set p.source = "ds2", p += properties(row) ;

LOAD CSV WITH HEADERS FROM "file:///ds3.csv" AS row
CREATE (p:Person) set p.source = "ds3", p += properties(row) ;

Graph-Based Entity Resolution Step by Step | 139

1 LOAD CSV reads all fields until coerced to other types.

The most obvious difference between the nodes generated from the different files is
the level of detail in the customer’s date of birth information. While nodes from data
set 1 include a year of birth (yob) property with a four-digit string representation
of the year,1 nodes from data set 2 will have a string property called age with a
representation of the current age of the customer, and nodes from data set 3 will
have a dob property with a string containing the customer’s complete date of birth.
To make these pieces of information comparable for the entity matching phase, the
lowest common denominator in terms of information is the year of birth.

The Cypher script in Example 9-4 shows how to create a new property called m_yob
(for matching year of birth) of type integer in all nodes. Notice how the source
property is used to determine the type of transformation logic to be applied in each
case, and number-casting functions, date functions, and arithmetic operators are used
on the original data.

Example 9-4. Normalizing dates in personal data files

MATCH (p:Person) WHERE p.source = "ds1" SET p.m_yob = toInteger(p.yob) ;

MATCH (p:Person)
 WHERE p.source = "ds2" SET p.m_yob = date().year - toInteger(p.age) ;

MATCH (p:Person) WHERE p.source = "ds3" SET p.m_yob = date(p.dob).year ;

The name element also needs alignment, as each data set uses a different way to store
names. You can see separate fields for first and last name, CSVs, and a single string
containing the full name. The Cypher script in Example 9-5 creates a new property
called m_fullname (for matching full name) in all nodes with type string and a
“canonical” representation of a customer name: firstname lastname. The script uses
the source property to apply the relevant logic implemented by using string functions
(trim,toLower and tokenizer split).

Example 9-5. Normalizing names in personal data files

MATCH (p:Person)
 WHERE p.source = "ds1" SET p.m_fullname = toLower(trim(p.full_name)) ;

MATCH (p:Person) WHERE p.source = "ds2"
WITH p, split(p.name,",") AS parts
 SET p.m_fullname = toLower(trim(parts[1]) + ' ' + trim(parts[0]));

MATCH (p:Person) WHERE p.source = "ds3"
 SET p.m_fullname = toLower(trim(p.first_name) + ' ' + trim(p.last_name)) ;

140 | Chapter 9: Identity Knowledge Graphs

Once the graph data has been harmonized and normalized, it is ready for the applica‐
tion of the matching rules.

Blocking Keys
Optionally, the data preparation phase may include the generation of blocking keys.
Blocking is a technique to reduce the search space and so improve performance.
When looking for duplicates, you will need to compare every record to every other
record requiring n2 operations for n elements.

To reduce this to a more manageable computational workload, you need to avoid
comparing pairs that are not likely to produce matches. This is the job of the blocking
keys.

Only candidates with the same blocking key are compared with each other. Some‐
times features in the data can be used as blocking keys. For instance, you could use
postal codes and then only compare records representing entities within a reasonable
proximity.

Where “natural” blocking keys don’t exist, you can still generate them synthetically,
including using algorithms or ML models to suggest them.

Entity Matching
Matching is the central activity in the entity resolution process, where the identity
logic is applied. You will define when two entities are considered to be the same,
based on your business heuristics. This is done through the application of a set of
rules based on the features identified and prepared in the preparation phase. These
rules can vary in complexity but generally will be based on exact matches (useful
for strong identifiers), will approximate matches based on a definition of distance
(numeric, dates, embeddings), and may also introduce elements of fuzziness (string
similarity, value approximation, etc.). Some rules will give unambiguous matches
(e.g., a strong identifier) while others will provide weightings for probabilistic
scoring.

The following algorithm provides a systematic approach to applying the matching
rules:

1. Create a SAME_AS relationship between nodes for which there is a match on a1.
strong identifier feature.

2. Create a weighted SIMILAR relationship between nodes for which there is a match2.
above threshold on a weak identifier feature and a SAME_AS relationship does not
exist between the two nodes.

Graph-Based Entity Resolution Step by Step | 141

3. Discard the SIMILAR relationships for which there is a mismatch in one of the3.
strong identifier features. The weight in the relationship will be the similarity
score.

4. Apply a correcting factor to the weight in a SIMILAR relationship when there is a4.
match above threshold on a nonidentifying feature.

5. Discard the SIMILAR relationships with a similarity score below a minimum5.
threshold.

The application of these rules generates a graph of related nodes connected through
SAME_AS and SIMILAR relationships in which connected nodes will identify unique
entities. These four steps implicitly define three types of features: strong identifiers,
weak identifiers, and nonidentifying features.

In Example 9-6, the two strong identifiers in the data set are the passport number
(passport_no) and the Social Security number (ssn). The application of step 1 will
instantiate a relationship of type SAME_AS between any pair of Person nodes that share
the same value for either of the two strong identifiers.

Note the introduction of the filter on id(p1) > id(p2), avoiding the comparison
of p1 versus p2 and then the superfluous p2 versus p1. This is because the SAME_AS
relationship is symmetrical (if p1 is the same as p2, then p2 is the same as p1), so there
is no need to compare them in both directions and create two SAME_AS relationships
between the nodes.

Example 9-6. Creating SAME_AS relationships between nodes matching on strong IDs

MATCH (p1:Person), (p2:Person)
WHERE p1.source <> p2.source
 AND (p1.ssn = p2.ssn OR p1.passport_no = p2.passport_no)
 AND id(p1) > id(p2)
CREATE (p1)-[:SAME_AS { ssn_match : p1.ssn = p2.ssn,
 passport_match : p1.passport_no =
 p2.passport_no}]->(p2)

The script in Example 9-7 shows an implementation of step 2, taking care of the
weak identifiers. The m_fullname property is a weak identifier that was created by
amalgamating data across sources and by standardizing all name information avail‐
able. Normally, a match on the name is not sufficient to derive that two persons are
the same. That’s why it is treated as a secondary identifier, and a SIMILAR relationship
is created only when a match above threshold is found. In Example 9-7, one standard
string similarity metric called Jaro–Winkler distance is used, and when that metric is
below 0.2 (depending on the use case), the relationship is created and annotated with
a similarity metric.

142 | Chapter 9: Identity Knowledge Graphs

https://oreil.ly/uQLqE

Example 9-7. Creating similar relationships between nodes matching on weak IDs

MATCH (p1:Person), (p2:Person)
WHERE NOT (p1)-[:SAME_AS]-(p2)
 AND p1.source <> p2.source
 AND id(p1) > id(p2)
 AND apoc.text.jaroWinklerDistance(p1.m_fullname, p2.m_fullname) < 0.2
CREATE (p1)-[:SIMILAR { sim_score : 1 -
 apoc.text.jaroWinklerDistance(p1.m_fullname, p2.m_fullname)}]->(p2)

In Example 9-7 the metric is inverted because it measures distance instead of similar‐
ity, so to trigger the creation of the relationship, the actual value needs to be under a
given distance value instead of over threshold as stated earlier.

The similarity score (sim_score) used to qualify the SIMILAR relationship is created
by subtracting the Jaro–Winkler distance from 1. It is important to keep consistent
semantics in the score used in this metric to make them comparable and composable
later on. The script in Example 9-7 sets a score between 0 and 1.0. The higher the
score, the stronger the similarity.

Step 3 is about filtering detected similarities based on weak identifiers (those materi‐
alized by SIMILAR relationships) by discarding the ones that exist between entities
with discrepancies in the strong identifier features. This is what the Cypher script in
Example 9-8 implements.

Example 9-8. Removing similar relationships between nodes matching on weak IDs
when they differ on strong ones

MATCH (p1:Person)-[sim:SIMILAR]->(p2:Person)
WHERE p1.ssn <> p2.ssn OR p1.passport_no <> p2.passport_no
DELETE sim

Step 4 applies a correcting factor to the weights in the SIMILAR relationships. The
code in Example 9-9 provides an example of this. For every pair of nodes at both
ends of a SIMILAR relationship, if there is a reasonable similarity on the year of
birth (m_yob, a nonidentifying feature in this case), then the similarity score will be
adjusted up or down.

The logic in steps 3 and 4 can also be implemented together with
step 2 and, in some cases, achieve an improvement in performance
by running a single pass on the data. The disadvantage would be
the lack of detailed traceability of the effect of each step. In this
chapter, the steps are separated for clarity.

The logic in Example 9-9 is based on an absolute threshold (abs(p1.m_yob -

p2.m_yob) > $yob_threshold). If the years of birth are not too dissimilar, the

Graph-Based Entity Resolution Step by Step | 143

similarity score is increased by 10%, but if the difference is too significant, then the
score is decreased by 10%. The adjustment function can be as sophisticated as you
need for your use case.

Example 9-9. Boosting or damping similar relationships between nodes matching on
weak IDs when they differ on other features

MATCH (p1:Person)-[sim:SIMILAR]->(p2:Person)
WITH sim, abs(p1.m_yob - p2.m_yob) AS yob_diff
SET sim.sim_score = sim.sim_score * CASE WHEN yob_diff > $yob_threshold
 THEN .9 ELSE 1.1 END

Step 5 removes the SIMILAR relationships that, after applying the correcting factor in
the previous step, would result in a similarity score below acceptable. The code in
Example 9-10 shows how this can be implemented straightforwardly using Cypher.

Example 9-10. Removing similar relationships between nodes matching on weak IDs
when below minimum score

MATCH (p1:Person)-[sim:SIMILAR]->(p2:Person)
WHERE sim.sim_score < $sim_score_threshold
DELETE sim

The result of processing all five steps produces the graph in Figure 9-1.

Figure 9-1. Graph result of applying the matching rules

It’s worth mentioning that after the application of step 2, additional SIMILAR relation‐
ships were created, which were subsequently removed when executing step 3—for
example, the nodes representing the individuals named Husein Sprull and Hana
Sprull. On execution of step 2, a relationship would be created based on the similarity
in their names, which would later be removed in step 3 due to the mismatch in their
Social Security numbers. This process is shown in Figure 9-2.

144 | Chapter 9: Identity Knowledge Graphs

Figure 9-2. Relationship of type SIMILAR added and subsequently removed

In the next section, the graph in Figure 9-1 will be analyzed topologically to identify
related entities.

Build/Update a Persisted Record of Master Entities
Once the set of related entities has been determined and the relationships made
explicit in the graph, the final step is to create a persisted representation of what’s
typically called master entities. Essentially, this means detecting sets of connected
nodes in the graph either through SAME_AS or SIMILAR relationships resulting from
applying the matching rules.

All nodes in a set form a connected component and are equivalent to a unique entity.
Detecting such sets is what the Weakly Connected Components (WCC) algorithm
does. The adjective weakly comes from the fact that the algorithm works on undirec‐
ted graphs. This nicely fits the objective of this exercise because the direction of both
SAME_AS and SIMILAR relationships is irrelevant, as both are symmetric.

You can see how this can be implemented using the concepts from Chapter 6. A
prerequisite to the application of any algorithm is the creation of an in-memory
projection of the subgraph to be used. This is what the code in Example 9-11 does.

Example 9-11. Creating a projection on person nodes and SIMILAR and SAME_AS
relationships

CALL gds.graph.project(
 'identity-wcc',
 'Person',
 ['SAME_AS','SIMILAR']
)

Graph-Based Entity Resolution Step by Step | 145

The projected graph is added to the catalog under the name identity-wcc and will
include all nodes of type Person and all relationships of type SAME_AS and SIMILAR.
A first execution of the WCC algorithm in stream mode (streaming results but
not persisting anything in the graph) can be executed with the Cypher fragment in
Example 9-12. Note that the invocation of an algorithm refers to the projected graph
by its name in the catalog.

Example 9-12. Running the WCC algorithm to identify nodes in the same identity group

CALL gds.wcc.stream('identity-wcc')
YIELD nodeId, componentId
WITH gds.util.asNode(nodeId) AS person, componentId AS golden_id
RETURN golden_id, person.m_fullname, person.passport_no, person.ssn
ORDER BY golden_id

The results produce an identifier per connected component. For readability, some
details about each node in the component are added. You can see that in Exam‐
ple 9-13.

Example 9-13. Results of running the WCC algorithm

╒═══════════╤════════════════════════╤════════════════════╤═════════════╕
│"golden_id"│"person.m_fullname" │"person.passport_no"│"person.ssn" │
╞═══════════╪════════════════════════╪════════════════════╪═════════════╡
│0 │"sidney joanne bernardy"│"A465901" │null │
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│0 │"sj bernardy" │null │"252-13-7091"│
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│0 │"sidney bernardy" │"A465901" │"252-13-7091"│
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│1 │"cherise gosnall" │null │"422-45-7305"│
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│1 │"c gosnall" │null │"422-45-7305"│
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│1 │"cherish gosnall" │"BS945813" │"422-45-7305"│
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│4 │"jon pedracci" │"TH834501" │null │
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│4 │"jonathan pedracci" │null │"581-96-2576"│
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│5 │"hana sprull" │null │"465-63-9210"│
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│7 │"ernestine ouchterlony" │"CF3586" │"557-21-3938"│
├───────────┼────────────────────────┼────────────────────┼─────────────┤
│9 │"husein sprull" │"FG45867" │"123-03-8992"│
└───────────┴────────────────────────┴────────────────────┴─────────────┘

146 | Chapter 9: Identity Knowledge Graphs

Once you’re happy with the results, you can persist them in the knowledge graph.
You could simply use the write version of the algorithm (gds.wcc.write), which
annotates each node with the connected component identifier, and then use that to
create master entities.

Instead, the Cypher script in Example 9-14 uses the output of the stream version
of the algorithm to create a customized persisted representation of the connected
components. The subgraph created is itself a representation of the master entity (the
golden record). The same script connects all matched records to the master entity,
enabling traceability.

Example 9-14. Creating entity nodes (golden records) from the result of the WCC
algorithm and linking to original ones

CALL gds.wcc.stream('identity-wcc')
YIELD nodeId, componentId
WITH gds.util.asNode(nodeId) AS person, componentId AS golden_id
MERGE (pg:PersonMaster { uid: golden_id })
 ON CREATE SET pg.fullname = person.m_fullname,
 pg.ssn = person.ssn, pg.passport_no = person.passport_no
 ON MATCH SET pg.ssn = coalesce(pg.ssn,person.ssn),
 pg.passport_no = coalesce(pg.passport_no,person.passport_no)
MERGE (pg)-[:HAS_REFERENCE]->(person)

Once the entity nodes have been created and linked to the original references, the
identity graph will resemble Figure 9-3.

Figure 9-3. Each connected component defines a master entity

Graphs like Figure 9-3 can be queried to produce an aggregated view of a master
entity, including all details by source. This is shown in Example 9-15.

Graph-Based Entity Resolution Step by Step | 147

Example 9-15. Querying the master entities and producing a detailed summary of all the
related references

MATCH (p:PersonMaster)-[:HAS_REFERENCE]->(ref)
WHERE p.passport_no = 'A465901'
WITH p, collect({ source: ref.source , details : properties(ref)}) AS refs
RETURN { master_entity_id : p.uid, references: refs }

For interoperability, you can also produce the JSON serialization of the results
directly from the Cypher query, as in Example 9-16.

Example 9-16. JSON serialization of an aggregated view of a master entity

{
 "master_entity_id": 1,
 "references": [
 {
 "details": {
 "m_fullname": "sydney joanne bernardy",
 "system_id": "2_1",
 "m_yob": 1979,
 "name": "Bernardy, Sydney Joanne",
 "passport_no": "A465901",
 "source": "ds2",
 "age": "44"
 },
 "source": "ds2"
 },
 {
 "details": {
 "m_fullname": "sidney bernardy",
 "full_name": "Sidney Bernardy",
 "system_id": "1_1",
 "m_yob": 1979,
 "passport_no": "A465901",
 "source": "ds1",
 "yob": "1979",
 "email": "sbernardy0@va.gov",
 "ssn": "252-13-7091"
 },
 "source": "ds1"
 },
 {
 "details": {
 "m_fullname": "syd j bernardy",
 "dob": "1979-05-13",
 "system_id": "3_1",
 "m_yob": 1979,
 "last_name": "Bernardy",
 "source": "ds3",
 "first_name": "Syd J",

148 | Chapter 9: Identity Knowledge Graphs

 "email": "sjb@gmail.com",
 "ssn": "252-13-7091"
 },
 "source": "ds3"
 }
]
}

There are two final important things to note.

The data sources to which the entity resolution is applied tend to be living and change
over time. The process is rarely a one-off exercise and will usually require future
iterations. In cases where the data sets being deduplicated are large, it is common
to get the deltas (new elements and removed ones) at regular intervals instead of
full new versions of the data sets. This complicates things because it means that the
addition (or removal) of new data points from a data set may affect previous matches.
It may also create new or alter existing connected components. To accommodate this, a
preliminary step is needed where any removed elements in the delta are removed from
the graph.

It is often helpful to use information from the graph to improve entity resolution
results. The approach can be extended to include properties in relationships or in
neighboring nodes. You can also include structural metrics like the degree, centrality,
or other graph measure. In fact, one of the most powerful things about graphs is that
all these features are automatically available for entity resolution.

Working with Unstructured Data
The absence of strong identifiers in the data will force you to do more sophisticated
work on the weak identifiers and the nonidentifying features. These will often be text
descriptions for which only the string similarity metrics have been proposed so far.
What other options do graph offer?

The Amazon-Google product catalog data set provides a good setup for showing
how to solve this problem. The data set contains 1,363 product descriptions from
Amazon.com and 3,226 from Google products. The common attributes between the
two data sources are product name, product description, manufacturer, and price. The
data is loaded in the usual way from CSV files in Example 9-17.

Example 9-17. Loading product data

LOAD CSV WITH HEADERS FROM "file:///amz.csv" AS row
CREATE (p:Product { sid: row.id }) SET p.source = "AMZ", p += properties(row) ;

LOAD CSV WITH HEADERS FROM "file:///ggl.csv" AS row
CREATE (p:Product { sid: row.id }) SET p.source = "GGL", p += properties(row) ;

Working with Unstructured Data | 149

https://oreil.ly/XPcn1

The preparation phase tokenizes the product name by breaking it into words
after lowercasing and removing all nonalphanumeric characters from the text
(replace(tolower(p.name),"[^a-zA-Z0-9]", " ")). In this example, the split
function is used, which means that a word is anything separated from other words
by a whitespace. Other methods could equally be used, like tokenizer functions
in natural language software packages (such as NLTK, spaCy, Hugging Face, and
others). The complete Cypher script is in Example 9-18.

Example 9-18. Normalizing and extracting words from all products

CREATE INDEX FOR (w:Word) ON w.txt ;

MATCH (p:Product { source : "GGL" })
UNWIND [x in split(apoc.text.replace(tolower(p.name),"[^a-zA-Z0-9]", " ")," ")
 WHERE x <> ""] AS txt
MERGE (w:Word { txt: txt }) merge (p)-[:includes]->(w) ;

MATCH (p:Product { source : "AMZ" })
UNWIND [x in split(apoc.text.replace(tolower(p.title),"[^a-zA-Z0-9]", " ")," ")
 WHERE x <> ""] AS txt
MERGE (w:Word { txt: txt }) merge (p)-[:includes]->(w) ;

The resulting graph contains the nodes representing the products that need to be
deduplicated as well as the ones representing the tokens (the words). This forms a
network like the one seen in the excerpt in Figure 9-4. You can see how some tokens
are shared across products.

Figure 9-4. Products get connected to nodes representing the words in their description

150 | Chapter 9: Identity Knowledge Graphs

You can now execute a structural similarity algorithm on the graph in Figure 9-4.
The Node Similarity algorithm compares a set of nodes based on the nodes they
are connected to. Two nodes are considered similar if they share many of the
same neighbors. In this case, that means sharing words in the product name. The
algorithm computes pair-wise similarities based on either the Jaccard metric (also
known as the Jaccard Similarity Score) or the overlap coefficient (also known as the
Szymkiewicz–Simpson coefficient).

The implementation requires the creation of the in-memory projected graph (Exam‐
ple 9-19). This is a bipartite graph including products and words. Its implementation
is highly memory optimized so that billions of graph elements can be performantly
processed on commodity hardware.

Example 9-19. Creating projection by matching on product title

CALL gds.graph.project(
 'identity-sim',
 ['Product', 'Word'],
 ['includes']
);

The projection is followed by the execution of the algorithm where it is possible to
set a similarity cutoff threshold (similarityCutoff: 0.8), discarding all cases where
similarity is not high enough to be acceptable. By default, the gds.nodeSimilarity
algorithm uses the Jaccard metric, but it is possible to override that and use the
overlap metric instead (just add the parameter similarityMetric: 'OVERLAP'). The
code in Example 9-20 uses the stream version of the algorithm, producing the results
in the Example 9-21 table.

Example 9-20. Running similarity algorithm on projection

CALL gds.nodeSimilarity.stream('identity-sim', { similarityCutoff: 0.8 })
YIELD node1, node2, similarity
WITH similarity, gds.util.asNode(node1) AS node1, gds.util.asNode(node2) AS node2
WHERE node1.source = "GGL" AND node2.source = "AMZ"
RETURN similarity AS tk_sim,
 apoc.text.jaroWinklerDistance(node1.name, node2.title) AS str_sim,
 node1.name AS Prod1,
 node2.title AS Prod2

The results are shown in Example 9-21. An additional column with string similarity
score calculated using the Jaro–Winkler distance has been added to show that the
token-based approach is more robust than a string-similarity one. Something as
benign as a formatting change in a product name (see last record: apple apple mac
os x server 10 4 7 10 client versus mac os x server v10.4.7 10-client)

Working with Unstructured Data | 151

could have a significant impact on the string similarity and would be missed by
setting a high threshold, depending on use case.

Example 9-21. Entity-matching results from running similarity algorithm

╒══════╤═══════╤═════════════════════════════════╤═════════════════════════════════╕
│tk_sim│str_sim│Prod1 │Prod2 │
╞══════╪═══════╪═════════════════════════════════╪═════════════════════════════════╡
│0.8 │0.7969 │"allume internet cleanup 3.0" │"internet cleanup 3.0" │
├──────┼───────┼─────────────────────────────────┼─────────────────────────────────┤
│0.8 │0.7831 │"marware project x project manage│"project x project management sof│
│ │ │ment software" │tware" │
├──────┼───────┼─────────────────────────────────┼─────────────────────────────────┤
│0.8 │0.7703 │"allume morpheus photo animation │"morpheus photo animation suite" │
│ │ │suite" │ │
├──────┼───────┼─────────────────────────────────┼─────────────────────────────────┤
│0.8 │0.7627 │"mobile media converter (pc) pinn│"pinnacle mobile media converter"│
│ │ │acle" │ │
├──────┼───────┼─────────────────────────────────┼─────────────────────────────────┤
│0.8 │0.7593 │"extensis suitcase fusion 1u box"│"suitcase fusion 1u box" │
├──────┼───────┼─────────────────────────────────┼─────────────────────────────────┤
│0.8 │0.7423 │"sp linux we 50 lic/cd 3.0c" │"hp sp linux we 50 lic/cd 3.0c (│
│ │ │ │t3586a)" │
├──────┼───────┼─────────────────────────────────┼─────────────────────────────────┤
│0.8 │0.7423 │"sp linux we 50 lic/cd 3.0c" │"hp sp linux we 50 lic/cd 3.0c (│
│ │ │ │t3586a)" │
├──────┼───────┼─────────────────────────────────┼─────────────────────────────────┤
│0.8 │0.7406 │"serverlock manager - 100 servers│"watchguard serverlock manager (1│
│ │ │" │00 servers)" │
├──────┼───────┼─────────────────────────────────┼─────────────────────────────────┤
│0.8 │0.7234 │"print shop deluxe 21" │"broderbund print shop 21 deluxe"│
├──────┼───────┼─────────────────────────────────┼─────────────────────────────────┤
│0.8 │0.6965 │"apple apple mac os x server 10 4│"mac os x server v10.4.7 10-clien│
│ │ │ 7 10 client" │t" │
└──────┴───────┴─────────────────────────────────┴─────────────────────────────────┘

The next step would be the creation of the SIMILAR relationships (because the prod‐
uct name is a weak identifier). The Cypher script in Example 9-22 takes care of this
by setting the similarity score as the value returned by the algorithm.

Example 9-22. Matching using product title

CALL gds.nodeSimilarity.stream('identity-sim', { similarityCutoff: 0.8 })
YIELD node1, node2, similarity
WITH similarity, gds.util.asNode(node1) AS node1, gds.util.asNode(node2) AS node2
WHERE node1.source = "GGL" AND node2.source = "AMZ"
MERGE (node1)-[:SIMILAR { sim_score : similarity }]->(node2)

152 | Chapter 9: Identity Knowledge Graphs

From here on, the algorithm will continue to build the graph where the connected
components yield matching entities.

Case Study: The Meredith Corporation Identity Graph
Meredith Corporation was a media conglomerate with $3.2 billion in annual revenue.
With over 30 top consumer brands including Parents, People, Real Simple, and Coastal
Living, Meredith’s digital presence reached more than 180 million users a month
across dot-coms, apps, websites, podcasts, and video.

Meredith sought to give users just the right content throughout the day, personalized
just for them. But that meant really knowing your user—a challenge when most
people don’t log in.

Meredith identified anonymous users through unique cookies that drop on the user’s
device. But cookie loss, diverse devices, and browsers that block cookies by default
increased the difficulty of getting a 360-degree view. Even when they work, cookies
have a short lifespan.

Graph queries offer rapid answers no matter how large your graph is. But if you are
running the same query over and over to build up user profiles, there is a better way:
run a graph algorithm over the entire graph.

The Meredith data science team chose the WCC algorithm to identify unique sub‐
graphs (connected components) within the larger graph. In production, the Meredith
Identity Graph incorporated more than 20 months of user data from both first- and
third-party sources. The database had more than 4.4 terabytes of data for 30 billion
nodes, 67 billion properties, and 35 billion relationships.

The average length of touch points exploded from 14 days with a cookie to 241 days
with user profiles. Average visits increased from 4 per cookie to 23.8 per profile.

Nearly 350 million profiles that would have been considered unique individuals with
different interests and patterns were consolidated into 163 million richer and more
accurate profiles. A high-definition view of user interests and preferences fueled
stronger models, which led to more relevant content and more users returning over
time. It created a virtuous cycle.

Meredith commented, “We basically have increased our understanding of a customer
by 20 to 30% by looking at how the data connects over time, rather than just
looking at individual cookies themselves. Instead of advertising in the dark, we now
better understand our customers, which translates into significant revenue gains and
better-served consumers.”

Working with Unstructured Data | 153

Summary
Identity is a key pillar for connecting knowledge graphs to the real world. In this
chapter, you’ve learned about strong and weak identifiers for data. You’ve also discov‐
ered how, by using knowledge graphs and graph algorithms, a set of weak identifiers
can be aggregated in a strong identifier. With these techniques, you can take on even
unruly data sets and truly master that data. Whether that’s by connected components,
node similarity, or custom graph matching, you have the necessary tools at your
disposal. From here, with data quality much improved through mastering, you’ll
move onto large-scale pattern-matching graphs.

154 | Chapter 9: Identity Knowledge Graphs

CHAPTER 10

Pattern Detection Knowledge Graphs

Managing enterprise data as a knowledge graph provides plentiful benefits. Data
is (logically) centralized, curated, and contextualized. A knowledge graph can be
mined for patterns that originate from interesting business events. Those patterns
give historical insight into the business, but they can also be used to look forward.

This chapter focuses on finding patterns in knowledge graphs and using those pat‐
terns to improve future outcomes. Starting with simple pattern-matching approaches,
you’ll see how the patterns in your knowledge graph can be easily exploited to stop
fraud and build better teams. In each of the use cases, you’ll also see how pattern
detection can be augmented by graph data science to enrich the knowledge graph and
surface new, valuable patterns.

Fraud Detection
Online fraud is a widespread and pernicious problem in the era of ubiquitous com‐
puter systems. These systems host some of the most critical aspects of our personal
lives and are the lifeblood of modern businesses. They are tempting targets for
criminals who might want to defraud individuals or organizations.

The level of that temptation is eye-watering. In the United States alone, fraud cost the
productive economy $5.8 billion in 2021 according to the Federal Trade Commission,
with around $1 billion being lost in the banking sector alone. Worse, the amount
of money lost to fraud is increasing at a staggering 70% year on year. The picture
is similar in other advanced economies, with the United Kingdom’s banks losing
around £700 million ($856 million) to fraud.

155

But it gets worse. For each $1 lost to fraud, it is estimated that a further $4.23 (over
four times more) is lost dealing with attacks and liabilities, loss of reputation and
customers, and the general work involved in trying to defend, contain, manage, and
redress fraud. It is an expensive problem that necessitates a continuous arms race.

Even marginal improvements in fraud detection bring huge benefits in absolute
dollar terms. Fortunately, knowledge graphs are an excellent platform upon which to
mount your defense against fraudsters.

First-Party Fraud
Take credit cards as an example. For many of us, they are a necessary and useful part
of modern life, but for fraudsters they’re a tantalizing opportunity. The value being
transacted is huge, and the volume of transactions across cards and providers can
provide enough cover for them to hide while leeching money out of the system.

In Figure 10-1, you can see the recent purchases of a credit card customer. Some
transactions have been queried for possible fraud, and there is even a declined
transaction in the recent history. This happens to all of us from time to time
because the systems that process payments are imperfect and human behavior is
erratic. Sometimes you really do want to spend thousands of dollars on a laptop,
and sometimes you are making payments in a foreign currency because you’re on
vacation. Sometimes your card has been stolen and a criminal is spending on your
card without your permission. With the information available, it’s hard to know if this
is a good customer, a customer in distress, or a fraudster.

Figure 10-1. Data in tables obfuscates structure, making it hard to distinguish between
customers and fraudsters

156 | Chapter 10: Pattern Detection Knowledge Graphs

Traditionally, finance companies have used rule-based strategies, such as assigning
risk scores by searching for certain words, accounts, and locations. Alerts can then
be sent to fraud analysts for manual review. This solution is slow, expensive, and
inflexible. Conversely, using a knowledge graph to understand customers’ broader
connected context provides a great deal more insight at scale.

Uncovering Fraud from Data
Loading the tabular data from Figure 10-1 into a knowledge graph is the first step
in getting value from it. Figure 10-2 shows a better view of the same customer,
which exemplifies the graph data model chosen. The credit card, with its unique card
number, is at the center of each subgraph. It is surrounded by purchases made WITH
the card, and each Purchase has a NEXT relationship to create a a purchase history.
The customer is connected to the card via an ACCOUNT_HOLDER relationship and also
LIVES_AT an address and OWNS a phone number. They exist in their own disconnected
subgraph, with no addresses or phone numbers held in common between customers.

Figure 10-2. Recent snapshot of customer history with time-ordered purchases

Fraud Detection | 157

Zooming in on one customer isn’t enough to validate the knowledge graph, and it is
time consuming to do this for all customers. If the data seems to be as uniform as
Figure 10-2, you should be able to verify that uniformity with some simple tests.

One way of coming to grips with a data set that isn’t entirely known is to verify some
of its general qualities. An obvious starting point is to query for the number of people
in the graph, as shown in Figure 10-3, to see if it matches the number of subgraphs.

Figure 10-3. Count of people in the Customer-Purchases knowledge graph

In Figure 10-3 you can see that there are 2,399,999 Person nodes in the graph. If
the model is regular, like in Figure 10-2, then there should be 2,399,999 communities
in the graph, one for each detached subgraph. You can check that with a commu‐
nity detection algorithm from Neo4j Graph Data Science, which you first saw in
Chapter 6. Start by creating a projection on which to run the community detection
algorithm, as shown in Example 10-1.

Example 10-1. Create a projection of people and their means of contact

CALL gds.graph.project(
 'fraud-wcc',
 ['Person','Phone','Address'],
 ['LIVES_AT','OWNS']
)

The procedure call in Example 10-1 creates an in-memory projection of some ele‐
ments of the knowledge graph. In this case it takes Person, Phone, and Address nodes
along with LIVES_AT and OWNS relationships. It takes no property data or other nodes
or relationships. The projection needs a very short time to prepare, and then you are
ready to run one of the community detection algorithms, as shown in Example 10-2.

Example 10-2. Run the Louvain algorithm to compute communities in the graph

CALL gds.louvain.stream('fraud-wcc')
 YIELD nodeId, communityId
 WITH gds.util.asNode(nodeId) AS person, communityId
 SET person.communityId = communityId

158 | Chapter 10: Pattern Detection Knowledge Graphs

Example 10-2 uses the Louvain algorithm to detect distinct communities in a knowl‐
edge graph. In this case, its job is simple because there should be 2,399,999 people in
disjoint subgraphs, which should become 2,399,999 communities. For each commu‐
nity, the query takes its ID and writes it as a communityId property into each Person
node in the community. But as you can see in Figure 10-4, things don’t quite tally up.
There are only 1,803,467 community identifiers in the knowledge graph, around half
a million too few.

Figure 10-4. Fewer communities than people in the knowledge graph

What Figure 10-4 tells you is that some communities must contain more than one
person. It would be interesting to know more about those communities since they
may or may not be benign.

Fraud Rings
To understand what’s happening, you need to sample the graph. You can easily craft
a query to drill down into communities that have more than one Person node and
inspect them, as shown in Example 10-3.

Example 10-3. Sampling query to check why Person nodes might be linked

MATCH (:Person) WITH count(*) AS count
MATCH (a:Person)-[*2..4]-(b:Person)
WHERE rand() < 10.0/count
RETURN a

Example 10-3 starts by matching all Person nodes in the graph and providing a count
of all items. It then matches paths bewteen Person nodes at depth 2 to 4, so that we
don’t match on small, well-behaved subgraphs. The query then chooses to include, or
not, the current match based on a random number so that you get a sample of the
knowledge graph rather than the full version.

Running the query in Example 10-3 yields the results shown in Figure 10-5 in which
there are two disjoint and dissimilar subgraphs. They’re both quite different from the
the common pattern of a single person owning a phone and a credit card, living alone
at a single address.

Fraud Detection | 159

Figure 10-5. Reviewing a sample of the graph

But are the patterns in Figure 10-5 fraudulent? They are certainly different from
each other and the expected form. Here you need subject matter expertise, at least to
bootstrap that decision. For example, an analyst might observe a strong correlation
between several short, consecutive Uber rides or a burst of expensive similar trans‐
actions, both suggesting a stolen or cloned card (or a phone on which the card is
hosted).

In this case, the small subgraph is a household with a shared phone number and
shared address. It’s reasonably common and is unlikely to be fraudulent. The larger
subgraph is unlikely to represent ordinary customers; it is probably a fraud ring that
has created synthetic identities anchored with real addresses and phone numbers.
Knowing these patterns (and indeed discovering others through human expertise and
machine learning) allows you to check for them as transactions are processed in a
payments system and reject those that match.

But you can go further than that. If you find a fraudulent pattern, then it’s simple
with a knowledge graph to traverse all of it to find all cards or accounts that might be
compromised. To illustrate, take a step back and try to think like a fraudster.

Stealing cards must be stressful (though no sympathy for the fraudsters is necessary).
The rightful owner tends to find out very soon that the card is missing or compro‐
mised and can act to cancel it quickly, perhaps even before any theft has taken
place. As a criminal, it’s far better to own a card (or other lines of credit like bank
accounts with an overdraft) in good faith so that you can take your time planning
your fraud and maximize the haul. Simply operate the account normally, and you
will often be rewarded with higher lending limits. This vertically increases the gain
from the eventual fraud. Better still, you can horizontally scale your crime by creating

160 | Chapter 10: Pattern Detection Knowledge Graphs

compelling fake identities to gain access to many lines of credit. Then operate them
normally until it’s time to commit fraud at scale.

The fraud-ring pattern is hard to spot with conventional data technology, but with a
knowledge graph it becomes much easier. The pattern repeats, from a Person via a
shared PhoneNumber to another Person to a shared Address to another Person to a
shared PhoneNumber and so on, encompassing an entire fraudulent network. You can
see this pattern clearly isolated in Figure 10-6.

Figure 10-6. A probable fraud ring of many shared phone numbers and addresses to
create synthetic identities

It now becomes clear that at least one of the subgraphs found in the sample shown
in Figure 10-5 is likely to be a fraud ring. It’s a pattern you can now use to discover
potential criminality.

To find those chains or rings of potentially fraudulent identities and the cards (or
accounts) that are affected, run the Cypher code in Example 10-4. The MATCH state‐
ment sets out the pattern of interest, being a Person node connected at depth 5
or greater to another Person node via OWNS or LIVES_AT relationships (for shared
phones and addresses, respectively). From the MATCH clause, paths through the knowl‐
edge graphs are returned. To omit cycles in the graph, the WHERE predicate ensures
that the path doesn’t cross over itself. To find any rings (or rings within rings), simply
omit that predicate. Finally, the query returns matched paths of potential fraudsters
to the caller. Note that the CALL ... IN TRANSACTIONS OF 100 ROWS simply breaks
down the query into smaller units for efficient execution and does not alter its
semantics.

Fraud Detection | 161

Example 10-4. Cypher code for finding fraud rings in a knowledge graph

CALL {
 MATCH ring=(p1:Person)-[:OWNS|LIVES_AT*5..]-(p2:Person)
 WHERE p1<>p2
 RETURN ring
} IN TRANSACTIONS OF 100 ROWS
RETURN ring

On a large knowledge graph, the code in Example 10-4 may take many seconds or
minutes to execute. That’s OK since it’s an analytical query run periodically (e.g.,
hourly, daily) to highlight unusual customer patterns.

Allowing synthetic identities to grow permits fraudsters to build a substantial aggre‐
gate credit line. Once the fraudsters have built their criminal empire as big as they
dare, they will cash out by rapidly using all the credit facilities at their disposal.
Without a knowledge graph, the cash-out can appear to be random and unstoppable.
Lines of credit are drawn down and left unpaid. When letters or debt collectors are
sent to the synthetic identities, they are unanswered or, worse, affect genuine people
who happen to live at those addresses. The money is lost.

With a knowledge graph, a cash-out in one part of a ring structure can be used very
rapidly to find all other accounts in that structure and block or scrutinize transactions
for those identities. This is a cheap operation since only a few hundreds or thousands
of linked records need to be considered and can be performed in the transaction flow
if necessary.

Innocent Bystanders
You know now that in the sample in Figure 10-5, the larger subgraph is likely to be a
fraud ring. But the other subgraph seems more benign. Not all linked identities may
be fraudsters, since people legitimately share addresses, and even in modern times,
people may also share phone numbers (especially landlines at their home address or
place of work). Branding a household as fraudulent usually isn’t the right thing to do,
and so in this use case you have to be aware of the pattern shown in Figure 10-7.

162 | Chapter 10: Pattern Detection Knowledge Graphs

Figure 10-7. A household can share both a phone number and an address

Finding these patterns is a straightforward process—it’s actually a simplified version
of the fraud-ring query with a specific path length. In Example 10-5 the MATCH query
pattern matches against two people who live at an address and share a phone. Note
that the variable p is used to ensure that the same person LIVES_AT an address and
OWNS the same phone as the other anonymous Person.

Example 10-5. Cypher code for finding legitimate households in a knowledge graph

MATCH households=(p:Person)-[:LIVES_AT]->(:Address)
 <-[:LIVES_AT]-(:Person)-[:OWNS]->(:Phone)<-[:OWNS]-(p)
RETURN households

The Cypher query in Example 10-5 is simple, though the MATCH clause takes a little
unpacking. It returns paths of all households that fit the pattern of two Person nodes
connected by two LIVE_AT relationships to an Address node and then connected via
an OWNS relationship to the same Phone node. The first person matched is stored
as variable p, which is used to end the pattern to ensure it’s the same person connec‐
ted to the shared address and shared phone. Running this query for the current
transaction in your payments system gives rapid confirmation that the holder is in a
regular household. Another check is passed, and so confidence in the legitimacy of
the transaction is increased.

Fraud Detection | 163

Operationalizing the Fraud Detection Knowledge Graph
At this point, you understand some positive and negative patterns for fraud. In a
production deployment, these patterns would be surfaced by subject matter experts,
who can use their own knowledge and experience, supported by graph algorithms,
graph machine learning, and visualization, to maintain a robust arsenal against fraud.
Matching these patterns against a card’s subgraph is the key to operationalizing this
kind of knowledge graph.

In general, you will prefer subgraph-local operations since they are very low latency.
Because the data is stored in a knowledge graph of cardholders, it’s fast to access
the subgraph centered on each customer during a transaction. It’s therefore possible
to search the customer subgraph for suspicious patterns as customers are making
purchases, since a relatively small number of records need to be considered. Doing
so adds minimal latency during a purchase and, if you have a good understanding of
fraudulent patterns, offers good protection.

In cases of particularly high risk or value, you might decide to run more intensive
pattern matching across a larger area of the graph. Or you might even choose to run
some data science processes over a subgraph. Since these may add many milliseconds
or even seconds to your decision making, they should be used relatively sparingly,
with the low-latency pattern matching handling much of the work. Using both
subgraph-local pattern matching with occasional graph algorithms can be an effective
way to turn your knowledge about your customers into a way to protect yourself, and
them, from fraud.

Case Study: Banking Circle
Banking Circle has a fraud management solution similar to that described in this
chapter. At its core is a knowledge graph of accounts connected to payments. Banking
Circle then uses community detection to generate features for its ML pipeline that
detects high-risk clusters of customers. The knowledge graph topology is a critical
input to the ML pipeline, combining graph features such as risk scores of near neigh‐
bors, distances to tax havens, and known fraudsters. It has had significant positive
impact on Banking Circle’s fraud detection efforts. It has turned a slow and manual
process into a scalable, flexible solution that can evolve to meet the ever-changing
challenges that fraudsters present. Today, Banking Circle continues to experiment
with graph algorithms and plans to add more graph features to further tune its
predictive model.

164 | Chapter 10: Pattern Detection Knowledge Graphs

https://oreil.ly/kG4sJ

Skills Matching
An organization that can recruit and retain skilled workers has an edge in the
marketplace. But skilled workers, in all fields of human endeavor, require active
support so that their skills continue to align with the organization’s ongoing needs.
If an organization has the ability to recruit and retain skilled workers, the challenge
of successfully deploying those workers into appropriate departments or projects
remains. Not only do departments or projects require a specific mix of skills, but they
also need different levels of seniority and experience. The best-run departments or
projects will also have a diverse set of participants who (mostly) get along well.

Building robust teams is no trivial task, but knowledge graphs can help. There are
many dimensions to building high-performing teams:

• Organizational chart, including cost centers and locations•
• Expertise•
• Project history•
• Social engagement•
• Tertiary skills (e.g., language)•

Each of these can be modeled as a separate layer in a knowledge graph and brought
together at query time to answer sophisticated questions. Those questions will help
create and manage effective teams.

Organizational Knowledge Graph
The most obvious place to start to look for skills is the organizational (org) chart. As
well as positional hierarchy, the org chart often identifies communities of practice or
projects towards the bottom of the org chart where it fans out. Org charts also give
some insight about tenure or level of competency based on vertical position.

Org charts are usually trees, from a single CEO through management to many
workers. Since trees are graphs, it’s quite easy to import an org chart as a funda‐
mental layer in a knowledge graph. In Figure 10-8 you see a visualization from
Neo4j Bloom showing part of an organizational hierarchy. The CEO Alice sits at
the top of the tree with her senior vice presidents (SVPs) underneath, connected
via REPORTS_TO relationships. The SVPs are connected to their VPs via incoming
REPORTS_TO relationships, and the same pattern extends to directors and ultimately
individual contributors (ICs).

Skills Matching | 165

Figure 10-8. An organizational chart is a good basis for a skills knowledge graph

While Figure 10-8 doesn’t distinguish the levels of seniority of ICs (for example,
senior analyst or principal consultant), it’s sufficient to enable you to reason about the
intended structure of the organization. For example, you can easily run queries like
that shown in Example 10-6 to understand how many employees are in a department
or project, and from there be able to aggregate their costs.

Example 10-6. Finding people with Java project experience

MATCH (:VP {name:'Harry'})<-[:REPORTS_TO*1..2]-(n)
RETURN count(n) AS numberOfEmployees

When you do, you get a result like that shown in Figure 10-9.

Knowledge graphs are a great fit for HR teams and managers looking to understand
or change an organizational hierarchy. It’s easy to see how the knowledge graph in
Figure 10-8 could be augmented to include a range of organizational and HR data for
the employees.

But org charts are the intended structure of the organization, which is generally an
approximation of its real structure, how it functions day to day. In most organizations
there is an informal org chart which is rarely captured and even more rarely put into
action. This is the org chart of how people actually work together, based on their
skills and experience with delivering solutions.

166 | Chapter 10: Pattern Detection Knowledge Graphs

Figure 10-9. Aggregating the number of employees in a particular department

Skills Knowledge Graph
At a basic level, finding skills in a knowledge graph is simple. For example, the
query MATCH (ic:IC)-[:HAS_SKILL]->(s:Skill {name:'Java'}) RETURN ic.name
will return the names of the ICs who have had Java programming experience, like in
Figure 10-10.

Figure 10-10. Finding employees with Java skills

Skills Matching | 167

But the results of that query are quite superficial. The results in Figure 10-10 say
nothing about the level of proficiency, recency, or exposure of the individuals to real
projects that use Java. Nor does it give any context for how those skills have been used
over time. All you have is a name and a year when that person’s experience began.
That’s probably not rich enough to make good staffing decisions, since you don’t even
know when that skill was last exercised.

A better way to understand skills is to inspect an individual’s project experience,
to aggregate the time spent honing particular skills and the time periods during
which those skills were used. That connected context provides a richer view of an
individual’s competencies than any checklist could.

Of course, with a knowledge graph it’s easy to add in those connections with minimal
fuss. After some refactoring, a more effective knowledge graph emerges, as shown in
Figure 10-11.

Figure 10-11. Programmers’ Java project experience

Figure 10-11 is a much more realistic example of the kind of enterprise knowledge
graph of projects, people, and expertise. In this case, the knowledge graph serves
two purposes: a detailed repository of who worked on what and a way of finding

168 | Chapter 10: Pattern Detection Knowledge Graphs

skills. In this subgraph, there is a program of work called future-hr, which has been
broken down into several projects. The inaugural project is guns-brixton, which
appears to have been a solo effort using Java, Neo4j, and Linux by engineer James.
This is explicit in the graph structure where (James)-[:PARTICIPATED_IN]-(guns-
brixton) and (guns-brixton)-[:REQUIRES]->(Neo4j). The inaugural project in the
program must have been guns-brixton because it has no outgoing project dependen‐
cies, only an incoming DEPENDS relationship from the next project rock-casbah.
The project dependency and staffing structure continues to the last project, career-
opportunities, which has no dependencies and is therefore the last project in the
program.

Now you can use projects and even programs to understand which people have been
involved with various skills. The aggregate time with a particular skill across projects
gives a reasonable approximation for skill level, and the recency of using that skill can
be used to reason about how up to date a particular skill is.

As an example, using Figure 10-11 as a guide, you can create a query to find people
who have been on projects involving Java. This is shown in Example 10-7, where the
query transitively matches from people to skills via projects.

Example 10-7. Finding people with Java project experience

MATCH (java:Skill {name:'Java'})<-[:REQUIRES]-(:Project)<-[:PARTICIPATED_IN]-(ic:IC)
RETURN DISTINCT ic.name

Example 10-7 is fine as a first approximation but lacks detail. A next useful step,
shown in Example 10-8, is simply to count the number of Java projects that a person
has participated in as a proxy for tenure.

Example 10-8. Finding people with Java project experience

MATCH (:Skill {name:'Java'})<-[:REQUIRES]-(:Project)<-[:PARTICIPATED]-(e:Employee)
CALL {

WITH e
MATCH (e)-[:PARTICIPATED]->(p:Project)
RETURN collect(duration.inMonths(p.start, p.end).months) AS duration

}
RETURN DISTINCT e.name,
 reduce(total=0, number in duration | total + number) AS monthsOfExperience

The query in Example 10-8 builds on Example 10-7, adding aggregation so that the
matching programmers are ranked by the number of Java projects in which they
have participated. The CALL idiom is used to compose an aggregating subquery that
computes the duration of individual employees’ Java experience. When run in this

Skills Matching | 169

case, it returns that James and Hugo appear to be experienced Java programmers, with
George having a little less experience, as shown in Figure 10-12.

Figure 10-12. A program history

From here, it’s not hard to see how you could enrich this knowledge graph to fit other
valuable production uses. It already serves to surface latent skills knowledge, but with
the addition of the workers’ personal profiles, project evaluations, and so forth, you
can create a knowledge graph system that can help staff the best people on the most
challenging or critical projects.

Expertise Knowledge Graph
So far, you’ve seen how knowledge graphs can be populated with data from people
and project data to discover skills explicitly associated with patterns of work. This
mirrors a traditional way of organization, where people from various parts of the org
chart work on projects and get increasing seniority through tenure. Such metrics are
a valuable signal, but they are not the only valuable signal.

Particularly in larger organizations, staff don’t only orient themselves around the org
chart or project team. There are often long-lived communities of interest in particular
tools or skills. Finding the experts in these communities can help to provide a
complementary signal to your org chart and project statistics; in fact, it might even be
considered the real organizational chart for your business.

For information workers, at least, the modern enterprise can be remarkably flat.
While they still have to adhere to some protocols and be somewhat mindful of the
org chart hierarchy, peer collaboration is often strongly encouraged and facilitated by
enterprise collaboration systems. Systems like Slack, Microsoft Teams, and so forth
allow employees not only to communicate in a point-to-point fashion but also to

170 | Chapter 10: Pattern Detection Knowledge Graphs

form communities around long-lived topics. Within those communities are people
with deep expertise and experience looking to help others and those who are seeking
to participate to upgrade their skills or find help.

If the communities and their experts can be discovered, they can be amplified to the
benefit of all concerned. However, platforms like Slack and Microsoft Teams don’t
offer structured data beyond users, conversations, and threading. Finding good infor‐
mation or experts is difficult and often relies on word of mouth. As such, experience
is varied, with a distinct bias against new employees who haven’t yet developed their
work network.

Enriching your knowledge graph by adding a layer from the data in your collabo‐
ration platform can help. After all, wouldn’t it be nice if your skills record was
automatically updated with expertise scores based on the quality of your interactions
on Slack or Teams?

The kind of model that enterprise collaboration platforms have is very amenable to
knowledge graphs. Moreover, some of the work that you might do with graph data
science, such as community detection, is implicit in the channels that employees join.
A knowledge graph representation of Slack’s core idioms is shown in Figure 10-13.
It allows for patterns like (:User)-[:WROTE]->(:Message)-[:POSTED_TO]->(:Chan
nel) and (:Message)-[:MENTIONS]->(:Skill), which transitively allow you to
understand those users who are writing or responding to messages about a particular
skill. It also contains the platform structural data around channels and topics to allow
generalization from simply skills to channels containing a community of people who
possess (or at least discuss) those skills.

Figure 10-13. A knowledge graph model for Slack collaboration

Figure 10-13 isn’t difficult to understand; it’s probably very similar to how you’d draw
the domain on a whiteboard. But despite its simplicity, it does not lack capability. For

Skills Matching | 171

any given skill, you can trivially determine who engages most across the organization,
as shown in Example 10-9.

Example 10-9. Finding the most engaged people for Intermediate Language (IL)
techniques

MATCH (m:Message)-[:POSTED]->(c:Channel)-[:TOPIC]->
 (s:Skill {name:'IL'})<-[:MENTIONS]-(m)
MATCH (m)<-[:REPLY*]-(r:Message)<-[:POSTED]-(u:User)
WITH u AS user, count(r) AS replies, s AS skill,
 collect(DISTINCT c.name) AS channel ORDER BY replies DESC
RETURN skill.name, user.name, replies, size(channel) AS numberOfChannels

By now, the Cypher code in Example 10-9 should feel familiar. It first finds original
postings on a particular Skill, which can appear in any channel. From there, it
matches against a path of Message nodes joined by REPLY relationships to get conver‐
sation threads. Then the query aggregates the results. To do so, it uses the number of
replies to order the results in a descending fashion. It collects the channels in which
each thread appears into a list using DISTINCT to ensure no duplicates. Finally, it
returns the skill, the users who have participated in threads about that skill along with
how many times they have replied, and the number of channels across which they
have replied. If you run the query, you get a result like that shown in Figure 10-14.

Figure 10-14. Users who have significantly participated in discussions on a specific topic
across one or more channels

It is not difficult to see how this generalizes so that you can identify experts in
your organization. In a way, the expertise graph is the complement to your official
organizational chart. As Andy Grove states in High Output Management, 2nd edition

172 | Chapter 10: Pattern Detection Knowledge Graphs

(Vintage Books), employees have organizational power because of the organizational
chart or knowledge power because of their skills. Sometimes they have both, in the
case of skilled managers. A knowledge graph is an excellent way of merging these two
axes for a significantly richer understanding of your enterprise’s staffing.

Individual Career Growth
A knowledge graph like the one in Figure 10-13 is hugely useful for individuals. For
any given topic, the system can easily recommend a likely expert who can advise to
reduce project risk and time and transfer knowledge to help upskill others.

But there are other benefits of a skills knowledge graph for the individual. The foun‐
dational knowledge contained in such a system is the employee’s project history. As
an individual, it becomes simple to look back at your project and skills history, which
gives you a feel for your general career direction. This is shown in Example 10-10.

Example 10-10. Project history for individuals

MATCH (:Employee {name:'Rosa'})-[part:PARTICIPATED]->
 (p:Project)-[r:REQUIRES]->(s:Skill)
WITH p AS proj, s AS skill, part.end AS lastUsed,
 duration.inDays(part.start, part.end).days AS days,
RETURN skill.name AS skill, sum(days) AS daysOfExperience,
 max(lastUsed) ORDER BY daysOfExperience DESC

The MATCH clause in Example 10-10 finds a specific employee and the projects in
which they have participated. From there, it finds the skills deployed on that project.
It then calculates the duration in days that the employee spent on each project in the
WITH clause. The RETURN clause aggregates that data into a short report. It returns the
skill, how many days’ experience in total the employee has with that skill, and the last
date when it was used (on the basis that recently used skills are fresher). The results
are presented in descending order by days of experience in the skill. An example of
the output from running the query in Example 10-10 is shown in Figure 10-15.

Skills Matching | 173

Figure 10-15. Quantifying an individual’s project history and skills exposure

Clearly, the query in Example 10-10 provides useful results in itself, but it also forms
the bedrock of more sophisticated analyses. One of the most compelling analyses for
employees is to recommend skills for career paths. Career recommendations draw
heavily on being able to reason about the individual’s project history and accumulated
skills, but within the context of others whose skills and career progression can act as
guides. This is a pattern that is readily exploitable, as shown in Example 10-11.

Example 10-11. Project history for individuals

MATCH (me:Employee {name:'Rosa'})-[:PARTICIPATED]->(:Project)
 <-[:PARTICIPATED]-(other:Employee)
MATCH (other)-[:PARTICIPATED]->(:Project)-[:REQUIRES]->(s:Skill)
WHERE NOT (me)-[:PARTICIPATED]->(:Project)-[:REQUIRES]->(s)
WITH s AS skill, count(s) AS popularity
RETURN DISTINCT skill.name, popularity ORDER BY popularity DESC

The key aspect of the Cypher query in Example 10-11 is to find people with whom
you have a shared project history who have gone on to other projects where they have
been exposed to new skills that you have not. Those skills to which you have not been
exposed are probably good things to learn.

174 | Chapter 10: Pattern Detection Knowledge Graphs

The first MATCH clause simply surfaces projects in which Rosa and other employees
have participated. The second MATCH finds projects that others have worked on and
the skills they have encountered during those projects. It is narrowed by the WHERE
clause, which includes only those projects that Rosa hasn’t worked on. This leaves
only the skills possessed by people Rosa has worked with but that Rosa herself does
not have. Finally, the query ends by returning those skills ordered by their popularity
in Rosa’s peer group.

You can see clearly in Figure 10-16 that the primary skill Rosa should consider
learning is Java if she wants to mimic most of her project peers. This is followed by a
list of other technologies her peer group has been exposed to, in descending order of
popularity.

Figure 10-16. Recommendations for upskilling based on project history

The examples you’ve seen provide immediate value for solving
important HR problems. But they also form the basis for more
sophisticated analyses.
For example, it’s straightforward to add a simple taxonomy of
skills so that staffing can be reasoned about at a generalized and
specialized level. This means you can think about the general skill
of databases versus the specific skill of NoSQL, or the general skill
of functional programming versus the specific skill of F#.

Organizational Planning
Recall the individual employee project history query from Example 10-10. As it
happens, with minor tweaks this is precisely the kind of query that managers in
an organization use when looking across the employee base for particular skills
and experience. Whereas Example 10-10 curated the results around an individual
employee by using their name property in the (:Employee) node, the manager’s query

Skills Matching | 175

is more general. Managers are looking for specific expertise, so their equivalent query
simply is centered on skills rather than employees, as shown in Example 10-12.

Example 10-12. Project history for individuals

MATCH (e:Employee)-[part:PARTICIPATED]->(p:Project)-[r:REQUIRES]->
 (s:Skill {name:'Java'})
WITH p AS proj, e AS employee, part.end AS lastUsed,
 duration.inDays(part.start, part.end).days AS days
RETURN employee.name AS skill, sum(days) AS daysOfExperience,
 max(lastUsed) ORDER BY daysOfExperience DESC

If you run the query in Example 10-12, you will get results similar to those in
Figure 10-17.

Figure 10-17. Finding experienced Java developers

You can add other dimensions into the staffing mix, not just skills, to improve the
outcome of projects. For example, it is well understood that team members who
enjoy working with each other tend to produce better results. Adding a social layer
to the people-skills knowledge graph allows the organization not only to assemble the
necessary skills for a project but also to create a cohesive team ready to embrace those
challenges together.

For example, if members of a project were allowed to rate their experience working
with one another, then you have a ready source of information from which to create
high-impact teams. This is a rich social network based not only on “follows” or “likes”
but on a project-by-project (or quarter-by-quarter) score of who gels with whom. A
subgraph that gives an example of the topology is shown in Figure 10-18.

176 | Chapter 10: Pattern Detection Knowledge Graphs

Figure 10-18. Developers ranking each others’ qualities on past projects

For pedagogical reasons, the peer rankings in Figure 10-18 are captured as a list of
scores on the RATED relationships. The average of these scores gives some insight
into the working preferences of team members. Harnessing that data to provide peer
recommendations is straightforward, as shown in Example 10-13.

Example 10-13. Project history for individuals

UNWIND ["Rosa", "Hugo", "Eve", "Petra", "Mark"] AS candidate
MATCH (me:Employee {name:candidate})
MATCH (me)-[r1:RATED]->(other:Employee)
MATCH (me)<-[r2:RATED]-(other:Employee)
WITH me.name AS myself,
 reduce (score = 0, r in r1.ratings | score + r)/size(r1.ratings) AS s1,
 reduce (score = 0, r in r2.ratings | score + r)/size(r2.ratings) AS s2,
 other.name AS them
RETURN myself, them, (s1+s2)/2 AS score ORDER BY myself, score DESC

The Cypher query in Example 10-13 uses the UNIWND clause to turn a list into
individual rows for the query. It is a convenient way of specifying parameters, which
in this case are people who have been involved in peer rating. The MATCH clauses build
a pattern where mutual ratings have been made between the current employee and
another employee. The WITH clause computes the average score for the incoming and
outgoing ratings using reduce. Finally, the RETURN clause takes the scores for incom‐
ing and outgoing ratings and divides them by two for an aggregate compatibility
score. The result of running the query is shown in Figure 10-19.

Skills Matching | 177

Figure 10-19. Analyzing the developers skills ranking network

The query shown in Figure 10-19 provides an exhaustive list of mutual rankings.
Sometimes it’s more useful to see the communities of people that have ranked one
another highly. A slight tweak to Figure 10-19 is shown in Example 10-14, where the
cliques in the overall population are discovered.

Example 10-14. Productive cliques

UNWIND ["Rosa", "Hugo", "Eve", "Petra", "Mark"] AS candidate
MATCH (me:Employee {name:candidate})
MATCH (me)-[r1:RATED]->(other:Employee)
MATCH (me)<-[r2:RATED]-(other:Employee)
WITH me AS myself,
 reduce (score = 0, r in r1.ratings | score + r)/size(r1.ratings) +
 reduce (score = 0, r in r2.ratings | score + r)/size(r2.ratings)/2 AS score,
 other AS them, r1, r2
WHERE score >= 5
RETURN myself, them, score, r1, r2

The main change in Example 10-14 is that only high mutal ratings are returned using
WHERE score >= 5, and the RATING relationships are also returned. This allows the

178 | Chapter 10: Pattern Detection Knowledge Graphs

graph to be rendered visually, as shown in Figure 10-20, which can be a much more
intuitive view of the data.

Figure 10-20. A subgraph of mutually highly ranked employees

The scoring mathematics in this example is on the simple side, but
for your organization, you can make that scoring as sophisticated
as you need. Whatever scoring arithmetic you choose, the notion
of using the social graph to fine-tune team composition is a solid
foundation.

Predicting Organizational Performance
The benefits of a skills knowledge graph rooted in the organization’s people and
projects is clearly very useful. But knowledge graphs can go far beyond workforce
development. They can also be used to evaluate and reason about the likely outcomes
of future projects based on past outcomes. For example, Figure 10-21 shows the
subgraph containing workers and their managers around two incomplete projects.

Skills Matching | 179

Figure 10-21. Incomplete projects in the organization

In Figure 10-21, the staffing on the projects is interesting. In fact, you can use
it as the basis for reasoning—in broad terms—about the likely outcomes for the
projects underway. For instance, poor managers or low-skilled workers could have a
negative impact on the project, whereas a strong management structure and skilled
workers might tend to have a positive effect. To get a sense of the history of failed
projects and their chains of management, you can run a query like the one shown in
Example 10-15.

Example 10-15. Looking for the leadership of failed projects

MATCH (p:Project)<-[:PARTICIPATED_IN]-(:IC)-[:REPORTS_TO*3..3]->(svp:SVP)
WHERE p.rating < 30.0
RETURN svp, count(p) AS failedProjects ORDER BY failedProjects DESC

The Cypher query in Example 10-15 binds to nodes with Project labels that satisfy
the WHERE predicate that there is a property key rating (for completed projects only)
and a value less than 30.0, which is considered a failed score. From there, it matches
individual contributors who PARTICIPATED in the project and the leader three levels
of management above them at SVP level via REPORTS_TO*3..3. It suggests that the
project teams under SVP Lynn Smyth are much more often troubled than their
contemporaries, as shown in Figure 10-22.

180 | Chapter 10: Pattern Detection Knowledge Graphs

Figure 10-22. Failed projects that roll up to Lynn Smyth

Of course, at such a small scale the data can be made to tell almost any story. If you
go deeper into Lynn’s history, there might be compelling reasons why project failure
is more prominent. For example, she might run a research organization where even
failed projects have value. Lynn is not the only SVP with some part of their portfolio
having gone awry, but hers is somewhat more significant compared to the others.

Exhaustively pattern matching like this at a global scale is impractical and limiting.
It would be much nicer if the knowledge graph could simply make good recommen‐
dations about project leaders that might be successful or give early warning about
projects that might go astray. Graph data science gives you the tools to tackle this
problem.

As you recall from Chapter 6, the first step is to create a projection from the knowl‐
edge graph that contains the nodes, relationships, and properties that you want to
analyze. In this case, you want the entire knowledge graph structure of Employee,
Project, and Incomplete nodes and PARTICIPATED_IN and REPORTS_TO relationships
but only the rating property of Project nodes, as shown in Example 10-16. Ulti‐
mately, you want to be able to predict a rating property for projects that haven’t yet
completed to predict likely outcomes.

Example 10-16. Creating a graph projection for historical and current projects

CALL gds.graph.project(
 'projects',

Skills Matching | 181

 {
 Incomplete: {},
 Project: { properties: ['rating'] },
 Employee: {}
 },
 {
 PARTICIPATED_IN: {orientation: 'UNDIRECTED'},
 REPORTS_TO: {orientation: 'UNDIRECTED'}
 }
)

The next step is to create an ML pipeline with CALL gds.alpha.pipeline.nodeRe
gression.create('projects-pipeline'). Now you can add a node regression pro‐
cedure to the projects-pipeline, as shown in Example 10-17. In this case, the
fastRP algorithm is chosen because it encodes knowledge graph topologies and data
as numeric values suitable for ML. Here it encodes the topology of Project nodes as
a numerical property on each of those nodes in the projection.

Example 10-17. Adding a node regression procedure into the ML pipeline

CALL gds.alpha.pipeline.nodeRegression.addNodeProperty(
 'projects-pipeline',
 'fastRP', {
 embeddingDimension: 256,
 iterationWeights: [0, 1],
 mutateProperty:'fastrp-embedding',
 contextNodeLabels: ['Project']
 }
)

Next, you choose the features on which you’ll train the model. Since organizational
topology is important in this case, the fastrp-embedding from Example 10-17 prop‐
erty is chosen, since FastRP encodes nodes’ topologies into a number suitable for use
as a feature in ML. An example is shown in Example 10-18.

Example 10-18. Choosing features on which to train the model

CALL gds.alpha.pipeline.nodeRegression.selectFeatures(
 'projects-pipeline',
 'fastrp-embedding'
)

The next step is to declare the split between training and testing data. In Exam‐
ple 10-19 testFraction is set to 0.2, meaning that 20% of the graph is reserved for
testing the model (with the remainder being used for other purposes like training).

182 | Chapter 10: Pattern Detection Knowledge Graphs

https://oreil.ly/ljv0N

Example 10-19. Declare the ratio between training and testing data

CALL gds.alpha.pipeline.nodeRegression.configureSplit('projects-pipeline', {
 testFraction: 0.2
})

Next, you need to add a regression model to your pipeline. In this case, random
forest is used. Random forest is a popular supervised ML method for classification
and regression that consists of using several decision trees (to prevent overfitting on a
single tree) and combining the trees’ individual predictions into an overall prediction.
The configuration is shown in Example 10-20.

Example 10-20. Adding a regression model into the pipeline

CALL gds.alpha.pipeline.nodeRegression.addRandomForest('projects-pipeline', {
 numberOfDecisionTrees: 10
})

Now that the regression model and data are in place, the system is ready to tune.
Since Neo4j Graph Data Science supports auto-tuning, it’s as simple as declaring
the number of iterations the auto-ML system should execute before picking the best
parameters. In this case, it’s computationally cheap enough to try 100 iterations, as
shown in Example 10-21.

Example 10-21. Add configuration for regression parameter auto-tuning

CALL gds.alpha.pipeline.nodeRegression.configureAutoTuning('projects-pipeline', {
 maxTrials: 100
})

The penultimate step is to train a predictive model using all of the configuration
specified previously. This is shown in Example 10-22. The model is trained on nodes
with the Project label and the rating property in preparation for predicting the
rating property of incomplete projects.

Example 10-22. Train the predictive model

CALL gds.alpha.pipeline.nodeRegression.train('projects', {
 pipeline: 'projects-pipeline',
 targetNodeLabels: ['Project'],
 modelName: 'projects-pipeline-model',
 targetProperty: 'rating',
 randomSeed: 1,
 concurrency: 4,
 metrics: ['MEAN_SQUARED_ERROR']
})

Skills Matching | 183

Finally, you have a trained model that can be used to make predictions about the
health of incomplete projects. To use it, run the the example code in Example 10-23,
where the projects-pipeline-model is used to make predictions on nodes labeled
Incomplete whose results are then streamed back to the user.

Example 10-23. Make predictions about project outcomes

CALL gds.alpha.pipeline.nodeRegression.predict.stream('projects', {
 modelName: 'projects-pipeline-model',
 targetNodeLabels: ['Incomplete']
}) YIELD nodeId, predictedValue
WITH gds.util.asNode(nodeId) AS projectNode, predictedValue AS predictedRating
RETURN projectNode.name AS name, predictedRating
 ORDER BY predictedRating ASC LIMIT 10

The results from an execution of Example 10-23 are shown in Figure 10-23. In
it, you can see the 10 projects with the poorest predicted scores. From here, you
can continue to perform further data science on the knowledge graph to better
understand why specific projects might fail, or you might take action at a business
level to confirm the findings. Either way, at least you now have guidance on which
projects could benefit from early intervention.

Figure 10-23. Projects that might be prone to failure

184 | Chapter 10: Pattern Detection Knowledge Graphs

This approach has two key benefits. For the organization looking to improve, it
helps to track outcomes by department/leader and skill set and to predict future
outcomes based on a notion of past competence held in the knowledge graph. It
can help leaders in difficulty to improve or help to identify systemic barriers that
lead to prolonged poor performance. This approach can also be a starting point
for organizational redesign if the knowledge graph reveals persistent structural or
individual failings.

For individuals looking to upskill, this approach can help navigate to areas where
project delivery is mature, so teams have the breathing space to help new members
learn. For those individuals looking to show their mettle, it can point to opportunities
across their organization where the skill set matches but where the opportunities to
join a strong team or strengthen a failing team are explicit. Whichever of the paths is
taken, the individual employee is given significantly better visibility into what will be
expected of them.

What is very clear at this point is that the skills knowledge graph takes you from a
narrow world of “five years Java and Agile practices” to a world where individuals
have a rich history of skills in context of delivery. An individual’s past and future
career skills all enrich the knowledge graph, helping those individuals get the best
from their careers as well as helping the organization to plan for the future.

Case Study: DXC Technology
DXC Technology is a global IT services company employing 130,000 people. To thrive
in a competitive marketplace, DXC has to attract, retain, and upskill its team so that it
can provide the utmost level of consultancy service and delivery expertise to clients.

DXC wanted to create a system where employees can easily get recommended career-
development advice, based on the roles and career pathways that would be most
valuable to the organization. The system should make it simple for employees to
upskill and cross-skill based on available roles within the company.

However, like many other large enterprises, DXC has information silos and discon‐
nected systems. While those systems are all valuable in their own right, they weren’t
able to provide a connected view to employees. This led to challenges around hiring
and promotions as well as in creating career pathways to support the growth of
employees and the business. In times of high demand, employees were lost to attri‐
tion, and in times of workforce reductions, suboptimal decisions were made.

To remedy these problems, creating better opportunities for DXC employees and
better outcomes for customers, DXC developed the Career Navigator. The DXC
Career Navigator connects all the siloed data and generates intelligent recommenda‐
tions, underpinned by an employee knowledge graph similar to the examples in this
chapter.

Skills Matching | 185

Now all an employee’s interactions with the knowledge graph are mediated by an
application that starts by making recommendations based on skill progressions of
similar employees. For example, the tool recommends skills for a software engineer
based on the the gaps between their skill sets and those of similar software engineers.

DXC’s Career Navigator uses a combination of Neo4j’s graph database and Graph
Data Science library. The knowledge graph hosted on Neo4j contains all the structural
information about the employees and their skills. The graph algorithms executed
by Graph Data Science enrich the knowledge graph by identifying similarly skilled
employees, which can be used as a prototype for others’ career progression.

DXC’s Career Navigator has been so successful that the company is now offering it as
a solution to its customers.

Summary
Uncovering and understanding patterns in your domain is a key competitive differ‐
entiator. Using pattern detection knowledge graphs is a powerful way of unlocking
that skill.

The examples you have seen in this chapter provide a firm foundation upon which
you can build your own pattern detection knowledge graphs. You can freely mix
human expertise with insight from graph data science practices to enrich your knowl‐
edge graph. In turn, that enriched knowledge graph can be put into production to
serve online and analytical use cases with equal competence.

But the techniques you’ve learned in this chapter have broader applicability. They are
not only for social networks like fraudsters or business networks of colleagues and
projects. In the following chapter, you’ll learn how to process patterns of dependen‐
cies within systems for such varied domains as supply chain and risk management.

186 | Chapter 10: Pattern Detection Knowledge Graphs

CHAPTER 11

Dependency Knowledge Graphs

What do the following three scenarios have in common?

• You are trying to come up with the best plan for your project, and you need•
to understand the dependencies between the different tasks involved. “Task B
cannot start before A is completed” means B depends on A. “Task B and task C
are both carried out by team member X” means that B and C both depend on X.

• A vulnerability has been reported on a popular software library. To determine•
whether your projects are directly affected by the vulnerability, you will have to
verify that your code doesn’t directly use that vulnerable library. You also have to
check that your chosen libraries don’t use the compromised library themselves.

• A company owns 25% of the shares in another company, which itself owns•
part of another and so on. Finding the ultimate beneficial owner (UBO) of a
transaction carried out by an institution requires you to traverse the ownership
chain. Financial institutions and regulators have to do this when implementing
anti-money-laundering or antiterrorism checks or when they try to assess risk in
general.

The common theme for each of these, and many more, is dependency modeling. The
idea is quite intuitive: each individual direct dependency is modeled as a relation‐
ship between nodes that build out into networks of transitive dependencies. These
dependency networks form a graph, and many dependency problems can be resolved
with graph pattern matching and graph algorithms, as you will learn in this chapter.

Dependencies as a Graph
Table 11-1 is a common representation of dependencies. Each entry represents an
element that directly depends on some other element. These elements might be

187

routers in a network, parts in a supply chain, or tasks in a project, but the way you
process those dependencies is identical in all use cases.

Table 11-1. Tabular representation of a set of dependencies

Element Depends On
A B

A C

A D

C H

D J

E F

E G

F J

G L

H I

J N

J M

L M

In this scenario, basic dependency analysis questions like “Is there a hidden depend‐
ency between A and F?” can be answered, albeit not entirely conveniently. If you
follow the individual dependencies by exploring the table and taking some notes
along the way, you will eventually come up with an answer, perhaps even in under a
minute: there is no direct or indirect dependency that exists between A and F.

If such a query were based on Table 11-1, it would look something like Example 11-1.
Note that the query only goes down two levels in the exploration—that’s why it
contains an ellipsis—to indicate that the number of joins would need to be extended
for as many levels of depth required in the exploration. In the pathological case of a
negative answer like the absence of dependencies between A and F, a valid answer can
only be provided when a complete exploration of all possible dependency chains has
been carried out, but not before.

Example 11-1. SQL query template returning all recursive dependencies for a given
element

SELECT count(*) >0 dependency_exists

FROM dependencies d

 INNER JOIN dependencies d1
 ON d.depends_on = d1.elem

188 | Chapter 11: Dependency Knowledge Graphs

 INNER JOIN dependencies d2
 ON d1.depends_on = d2.elem

 [...]

WHERE d.elem = 'A'
 AND d2.elem = 'F'

The approach in Example 11-1 doesn’t work well, even at small scales, because SQL
and relational technology weren’t designed for recursive path analysis. But knowledge
graphs are designed for arbitrary depth path analysis. The same dataset can be
converted into a knowledge graph with the simple script in Example 11-2, where the
input file contains a CSV serialization of the data in Table 11-1.

Example 11-2. Cypher script to import the dependencies

LOAD CSV WITH HEADERS FROM "file:///dependencies.csv" AS row
MERGE (a:Element { id: row.element })
MERGE (b:Element { id: row.depends_on})
MERGE (a)-[:DEPENDS_ON]->(b)

The resulting graph is shown in Figure 11-1. Now each entry in Table 11-1 becomes a
directed relationship between nodes that indicates a dependency.

Figure 11-1. Dependencies as a graph

With a knowledge graph, answering the exact same question (“Is there a hidden
dependency between A and F?”) becomes a trivial task because the dependencies are

Dependencies as a Graph | 189

explicit. A human will need no more than a few seconds to correctly spot that there
is no dependency between A and F. A graph database supporting such a knowledge
graph does the same thing, just much more quickly and at much greater scale.

The Cypher query in Example 11-3 is a complete, runnable query, as opposed to the
abbreviated template used in Example 11-1. It will work for any arbitrary depth in a
dependency chain without changes because it’s natively a variable-length expression.
The DEPENDS_ON* pattern tells the database to traverse DEPENDS_ON relationships to
any depth in a path. In addition to the robustness that this introduces, the pattern-
based query is significantly more intuitive and compact. In a software development
context, this means lower cost of maintenance.

Example 11-3. Cypher query returning all recursive dependencies for a given element

MATCH path = (:Element { id: 'A'})-[:DEPENDS_ON*]->(:Element { id: 'F'})
RETURN path

Of course, Example 11-3 is a simple query. But the same benefits hold for even
complex dependency graphs, as you will learn in the following sections.

Advanced Graph Dependency Modeling
Dependencies are sometimes simple. All you care about is whether a dependency
exists or not, just like in Table 11-1. But more complex problems require more
data, like how critical or expensive a dependency is or how multiple dependencies
combine. From a data modeling point of view, the property graph model offers a nat‐
ural way to represent qualified dependencies by using different types of relationship
combined with properties in them.

Qualified Dependencies
The diagrams in Figure 11-2 show examples of much richer dependencies. In each,
the relationship representing the dependency between two entities is qualified by an
attribute that describes the strength of the dependency.

In the case of the company ownership graph, you need to know not only that one
company owns a part of another company but also the percentage of ownership.
Similarly, in the capacity utilization graph, if a service uses a portion of the capacity
provided by another lower-level service, it will be necessary to know that percentage.
This is what the capacity and part attributes of the CONSUMES and OWNS relationships
encode. The property will typically be an absolute value or a percentage but always
a numeric (or worst case, a value from an enumerated list) in a way that multiple
values are composable. This is important, as you will see in the following sections, to

190 | Chapter 11: Dependency Knowledge Graphs

calculate complex impact propagation or to be able to validate the correctness of a
dependency model.

Figure 11-2. Graph with qualified dependencies

Advanced Graph Dependency Modeling | 191

Another type of qualifier for a dependency is its temporal validity. This will indicate
when the dependency is valid, and therefore, given a date/time, the dependency
must be possible to determine whether or not it is active. This case is captured in
Figure 11-3 and follows the same modeling approach used to capture the strength of
the dependency: properties in the relationships indicating start and end of validity for
each dependency.

Figure 11-3. Dependencies with temporal validity

192 | Chapter 11: Dependency Knowledge Graphs

1 Nothing stops you from capturing how the future will look in the dependency knowledge graph. Think of a
scheduling application where users can book resources in advance.

Queries in a historized dependency graph like Figure 11-3 require a timestamp
parameter t that will contextualize the query by exploring only the dependencies that
were (or will be1) active at time t.

Semantics of Multidependency
In the examples in Figures 11-2 and 11-3, all dependent entities (or services) have
a dependency on a single other entity through a single outgoing relationship. But
in the general case, multiple dependencies are commonplace—for example, when an
investor spreads their investments around so that their exposure to any one type of
asset is limited or when a supply chain creates multiple routes for the transportation
of goods for resiliency. Both are shown in Figure 11-4.

Both examples include elements (nodes) that depend on multiple other nodes, but
this multidependency can have different interpretations. Is the logic additive? Or is
it an at least one type of dependency? These form the two basic interpretations of
multidependencies: additive/aggregate or redundant/protection.

Additive dependencies are interpreted as simultaneously active, which means that the
dependency is spread over the dependent entities. An element A depends on another
element B weighted by B’s contribution to A. In the example on the left side of
Figure 11-4, the portfolio is composed of a number of investments in different types
of assets. The fact that one asset contributes to the total with a given percentage (say
30%) implies that the portfolio depends on it up to that percentage. In other words,
the impact on the portfolio of something happening to that investment (positive or
negative) would be weighted (say by 0.3).

In the case of a negative impact (often the main focus in dependency analysis
problems), the damage propagated would be limited to that amount. There are
other scenarios where this same logic would apply, such as the capacity of a logical
communications link that is the result of bonding the capacity of multiple underlying
physical links or a virtualized data storage drive backed by multiple underlying
physical drives. Again, if any of the dependent elements (links or drives) were to fail,
the result would be a degradation to the capacity of the parent element limited to
the failing element’s contribution to the total capacity provided by the parent. There
may even be a tipping point where the parent element’s provision fails entirely when
enough of the capacity of the dependent elements fail.

Advanced Graph Dependency Modeling | 193

Figure 11-4. Two examples of use of multidependencies: portfolio asset management and
supply chain routing

Impact propagation in the dependency graph under this model is computed recur‐
sively following a simple expression at each step along the dependency path:

parent_impact = child1_impact * child1_weight + child2_impact * child2_weight …

This is visualized in Figure 11-5. The impacts that are measured or detected are
introduced in the graph as statements. You will recognize them in the diagram by
the magnifying glass icons: a hard drive is down, the value of asset X has dropped
by 50%, there is a loss of signal in link X. The derived impacts are shown with their

194 | Chapter 11: Dependency Knowledge Graphs

arithmetic underpinnings and a calculator icon. Finally, the impact propagation paths
are highlighted with the background shading.

Figure 11-5. Impact propagation in aggregate multidependencies

Redundant dependencies provide fault tolerance. Of all dependent entities in a redun‐
dant set, only one is active at any point in time, and the rest are held in reserve
until needed. The dependent entity will not be affected as long as at least one of the
dependees is available. The consequence is that certain failures will be absorbed by
“protection nodes” (those with multiple redundant dependees) and will not be propa‐
gated further. These types of situations are common in highly available architectures
for software systems where critical servers required to operate 24-7 are protected by
other servers that will provide continuity of service if the first one fails.

Something similar happens in broadcast television and communication networks. To
guarantee connectivity between two points, multiple alternative routes are created so
that in case of failure, one of the remaining alternative pathways is used.

Supply chains work in a similar way with alternative routes used in case of disruption.
In Figure 11-4, this is depicted in the diagram on the right-hand side. The preferred
route between Singapore and Felixstowe goes through the Suez Canal, but there are
alternatives, like the one over the Trans-Siberian Railway.

Energy networks and project plans are yet further examples of scenarios where
redundant dependencies are used. These kinds of knowledge graphs have genuinely
vast utility.

Advanced Graph Dependency Modeling | 195

In all of these scenarios, impact propagation is the key characteristic. It is computed
recursively using this expression along the dependency path:

parent_impact = min(child1_impact, child2_impact, …)

This is visualized in Figure 11-6. Like in Figure 11-5, the stated impacts are highligh‐
ted with a magnifying glass icon, derived impacts with their underlying arithmetic
and a calculator icon, and the impact propagation paths with background shading.

Figure 11-6. Impact propagation in redundant multidependencies

In more complicated systems, there may be a minimum number of dependent entities
for a parent entity to operate. Beyond that threshold, guarantees fail. The underlying
principle does not change, but the expression to compute the impact is generalized to
reflect the presence of an arbitrary threshold:

parent_impact = 0 if sum((1 - child1_impact), (1 - child2_impact), …)
>= parent_threshold else 1

A good example of this could be a database cluster which, in order to be fully
functional, requires a majority of the servers to be available provide a quorum for
fault-tolerant udpates. The dependency model looks something like the diagram in
Figure 11-7.

196 | Chapter 11: Dependency Knowledge Graphs

Figure 11-7. Multidependencies are required to model a highly available cluster of
servers

In the dependency graph, you can see the database management system has a triple
dependency on servers 1, 2, and 3, which themselves depend on underlying virtual
machines. The threshold is stored in a property in the GraphDB node, which indicates
that two out of the three primary servers need to be operational for it to remain
available. In the graph, you also see two recommender APIs that depend directly on
the GraphDB that provides functionality to the end user, if its underlying dependencies
are transitively satisfied (that is, the database and therefore its infrastructure are
available). The two interpretations of multidependencies described in this section
are the two foundational cases, but you can often find them coexisting in the same
dependency graph in real-life systems.

Advanced Graph Dependency Modeling | 197

Impact Propagation with Cypher
The next step is to be able to analyze a complete dependency graph that includes
multidependencies with the two possible interpretations previously described. The
dataset (of which an excerpt is shown in Example 11-4) consists of a single file in
which every record describes a direct dependency between two elements, its type
('AGG' for aggregate and 'RED' for redundant), and an absolute qualifier.

Example 11-4. CSV file containing the individual direct dependencies forming the graph

╒═════════╤════════════╤══════╤═════╕
│"element"│"depends_on"│"mode"│"abs"│
╞═════════╪════════════╪══════╪═════╡
│"A" │"B" │"AGG" │"80" │
├─────────┼────────────┼──────┼─────┤
│"A" │"C" │"AGG" │"10" │
├─────────┼────────────┼──────┼─────┤
│"A" │"D" │"AGG" │"10" │
├─────────┼────────────┼──────┼─────┤
│"A" │"E" │"AGG" │"10" │
├─────────┼────────────┼──────┼─────┤
 ...
├─────────┼────────────┼──────┼─────┤
│"Q" │"H" │"AGG" │"30" │
└─────────┴────────────┴──────┴─────┘

All dependencies are modeled with ()-[:DEPENDS_ON]->() relationships, and the
properties mode and abs in them indicat, respectively, the type of relationship and the
weight. The complete Cypher script to ingest the dataset from the the CSV file in
Example 11-4 is presented in Example 11-5.

Example 11-5. Cypher script to load the qualified dependency knowledge graph

WITH "file:///qualified-dependencies.csv" AS data
LOAD CSV WITH HEADERS FROM data AS row
MERGE (a:Element { id: row.element })
MERGE (b:Element { id: row.depends_on})
MERGE (a)-[do:DEPENDS_ON]->(b)
 ON CREATE SET do.abs = toInteger(row.abs), do.mode=row.mode

Running Example 11-5 creates a knowledge graph like the one shown in Figure 11-8.

198 | Chapter 11: Dependency Knowledge Graphs

Figure 11-8. Graph combining additive and redundant multidependencies

A generic impact analysis query will take input parameters from the collection of
known affected nodes and produce an extended list with the derived impacts (based
on the dependency graph) as its result. The most basic type of impact propagation
would be the computation of the potential collection of impacted nodes. This analysis
is purely topological and returns the list of nodes in the graph for which there exists a
direct or indirect dependency (a directed path), given the initial known list of affected
nodes. This impact scope analysis is often a first step to detect the subset of nodes to
which a more detailed analysis is to be applied. In other words, not all of them will
ultimately be impacted, or they will be impacted only partially, given the redundant
and aggregate dependencies in the graph. The Cypher for this analysis is shown in
Example 11-6.

Example 11-6. Cypher query calculating impact propagation ignoring the semantics and
qualifiers of individual dependencies

:params declared: ["I", "K", "J"]

MATCH (e:Element)-[:DEPENDS_ON*]->(impacted)
WHERE impacted.id IN $declared
RETURN collect(distinct e.id) AS max_impact_list

The query in Example 11-6 returns the results in Example 11-7, which are depicted
visually in Figure 11-9.

Impact Propagation with Cypher | 199

Example 11-7. Results returned by the Cypher query calculating the maximum potential
impact of a list of failing nodes

╒═════════════════════════════════════╕
│"max_impact_list" │
╞═════════════════════════════════════╡
│["H","Q","P","O","N","G","B","A","F"]│
└─────────────────────────────────────┘

Figure 11-9. Potential worst-case impact

Once the analysis space has been restricted with the previous query, the semantics
of the dependencies (qualifiers, multidependencies, and so on) can be taken into
account to provide a detailed impact assessment. The query in Example 11-8 shows
the Cypher syntax for impact propagation on dependencies in redundant mode. For
practical reasons, the assumption is that the threshold for nodes with redundant
multidependencies is 1 and that impact is binary—that is, a node is affected 1 or not
affected 0. The parameter $declared contains the input list of impacted nodes.

Example 11-8. Cypher query calculating impact propagation in cases of multiple
redundant dependencies

:params declared: ["I", "K", "J"] , current: "F"

MATCH (e:Element { id: $current})-[d:DEPENDS_ON {mode:"RED"}]->(dependee)
WITH e.id AS element, dependee.id AS dependee,
 CASE WHEN dependee.id IN $declared THEN 1 ELSE 0 END AS partial_impact
RETURN element, min(partial_impact) AS derived_impact

The query in Example 11-8 returns the result shown in Example 11-9.

200 | Chapter 11: Dependency Knowledge Graphs

Example 11-9. Results of Cypher query calculating impact propagation in cases of
multiple redundant dependencies

╒═════════╤════════════════╕
│"element"│"derived_impact"│
╞═════════╪════════════════╡
│"F" │1 │
└─────────┴────────────────┘

The query in Example 11-10 shows the Cypher syntax for impact propagation on
dependencies in aggregate mode. In this case, the impact is augmented with numeric
values representing the severity in the input parameters. The data structure used is a
map with the ID of the element as key and the numeric representation of the impact
to the element between 0 (no impact) and 1 (total impact).

Example 11-10. Cypher query calculating impact propagation in cases of multiple
aggregate dependencies

:params declared: { "I": 0.5, "K": 1, "J": 0.33 } , current: "G"

MATCH (e:Element { id: $current })-[d:DEPENDS_ON {mode:"AGG"}]->()
WITH e.id AS element, coalesce($declared[endNode(d).id],0) * d.abs AS partial_impact
RETURN element, sum(partial_impact) AS derived_impact

The query returns data like that shown in Example 11-11 as its result.

Example 11-11. Results of Cypher query calculating impact propagation in cases of
multiple aggregate dependencies

╒═════════╤══════════════════╕
│"element"│"derived_impact" │
╞═════════╪══════════════════╡
│"G" │6.6000000000000005│
└─────────┴──────────────────┘

These implementations in Cypher of the generic dependency propagation rules can
give you a solid foundation for any kind of dependency analyis. They are extensible to
the particulars of virtually any dependency modeling scenario.

Validating a Dependency Knowledge Graph
An important characteristic of a dependency graph model is that it can be easily
validated for correctness. A well-formed dependency graph will have to verify a
number of conditions that are scenario specific. However, there are three conditions
that are generic enough to be commonly used as the foundation atop which specific
conditions can be built.

Validating a Dependency Knowledge Graph | 201

Validation 1: No Cycles
Technically, a dependency graph is a directed acyclic graph (DAG). The presence of a
cycle means some component ultimately depends on itself. That is obviously undesir‐
able from a computation point of view but also reflects a bug in the knowledge graph
or in the domain itself. The good news is that graphs make structures explicit, and
the detection of cycles/loops (and any other shape in your data) is generally as easy
as drawing that shape in a query pattern. Example 11-12 is the Cypher query that will
detect cycles in a dependency graph. Since a cycle is a path that starts and ends in the
same node, the pattern captures any directed path that starts and ends at the same
node.

Example 11-12. Cypher query checking correctness of aggregate multidependencies
(relative weights)

MATCH cycle = (e:Element)-[d:DEPENDS_ON*]->(e)
RETURN cycle

It’s worth noting that in a large graph this can be an expensive query. That is why you
will normally want to:

• Reduce its scope by restricting it to a portion of the graph, maybe providing a set•
of nodes as input to run the cycle detection around them (just need to add a filter
to the path where e.id in $node_subset).

• Control the depth of the exploration. The asterisk indicates “path of any arbitrary•
length” but it is possible to specify a minimum and a maximum with the follow‐
ing notation: ()-[d:DEPENDS_ON*3..45]->.

Validation 2: Aggregate Multidependencies Add Up to the Expected
Total
This type of validation is important to make sure that the model does not describe
anomalous situations. It should ensure, for example, that combined, shareholders
comprise exactly 100% of an organization, or a link in an optical transmission
network with five 20 Gbps bonded lines is reported as 100 Gbps.

The logic is simple: if the weight of each of the component dependencies in an
aggregate set is described in relative terms, then the sum of the weights should be 1
(or 100%). This is what the Cypher query in Example 11-13 captures. If the weight
is expressed in absolute terms, then probably the model will include each node’s total
aggregate as an attribute, and in that case, the query shown in Example 11-14 applies.

202 | Chapter 11: Dependency Knowledge Graphs

Example 11-13. Cypher query checking correctness of aggregate multidependencies
(aggregate weights)

MATCH (e:Element)-[d:DEPENDS_ON { mode:'AGG'}]->()
WITH e, sum(d.rel) AS agg_sum
RETURN e.id AS element_id, agg_sum = 1 AS valid

The query in Example 11-13 simply matches on every generic Element node and
returns true if the sum of the rel property in all outgoing DEPENDS_ON relationships
is 1.

Example 11-14. Cypher query checking correctness of aggregate multidependencies
(absolute weights)

MATCH (e:Element)-[d:DEPENDS_ON { mode:'AGG'}]->()
WITH e, sum(d.abs) AS agg_sum
RETURN e.id AS element_id, agg_sum = e.total AS valid

The query in Example 11-14 applies an identical pattern to the query in Exam‐
ple 11-13, but the sum is calculated on the abs property in all outgoing DEPENDS_ON
relationships, and the total is compared against the total property in the element. If
these two values match, then the dependencies are well-formed for that node.

Validation 3: consumption does not exceed production. Some scenarios are highly
dynamic, and dependencies are added and removed frequently. In these situations,
maintaining a property with the current aggregate can be costly and a potential
source of inconsistencies if the addition or removal of relationships and the update of
the capacity are done in separate transactions. When there is no property to store the
capacity, the only way to check that the dependency graph is well-formed at any point
in time is by checking if incoming and outgoing dependencies are balanced. This is
what the Cypher query in Example 11-15 does.

Example 11-15. Cypher query to check the graph has balanced producers and consumers

MATCH (e:Element)
OPTIONAL MATCH ()<-[dependee:DEPENDS_ON { mode:'AGG'}]-(e)
WITH e, sum(dependee.abs) AS agg_sum
OPTIONAL MATCH ()<-[dependee:DEPENDS_ON { mode:'RED'}]-(e)
WITH e, agg_sum, coalesce(min(dependee.abs),0) AS red_sum
WITH e, agg_sum, red_sum, agg_sum + red_sum AS total_cap WHERE total_cap > 0
MATCH (e)<-[dependent:DEPENDS_ON]-()
WITH e.id AS elem, agg_sum, red_sum, total_cap, sum(dependent.abs) AS used
RETURN elem, agg_sum, red_sum, total_cap, used,
 used *100.0 / total_cap AS percentage_used

When applied to the graph in Figure 11-8, the results shown in Example 11-16
are produced. For each element in the dependency knowledge graph, the incoming

Validating a Dependency Knowledge Graph | 203

and outgoing dependencies will be well-formed if the percentage_used does not
go beyond 100%. In addition to the validation for correctness, the report provides
business-level guidance to optimize resource utilization.

Example 11-16. Summary of balanced producers and consumers in the dependency
graph

╒══════╤═════════╤═════════╤═══════════╤══════╤═════════════════╕
│"elem"│"agg_sum"│"red_sum"│"total_cap"│"used"│"percentage_used"│
╞══════╪═════════╪═════════╪═══════════╪══════╪═════════════════╡
│"B" │0 │80 │80 │80 │100.0 │
├──────┼─────────┼─────────┼───────────┼──────┼─────────────────┤
│"H" │120 │0 │120 │120 │100.0 │
├──────┼─────────┼─────────┼───────────┼──────┼─────────────────┤
│"F" │0 │180 │180 │160 │88.88888888888889│
├──────┼─────────┼─────────┼───────────┼──────┼─────────────────┤
│"G" │80 │0 │80 │80 │100.0 │
└──────┴─────────┴─────────┴───────────┴──────┴─────────────────┘

Validation 4: redundant dependency configuration aligns with threshold definitions. In
multidependency scenarios that use redundant dependencies and where thresholds
are defined, the number of members in a redundant set has to be, at a minimum,
equal to the threshold; otherwise, the dependency would never be satisfied. This is
what the query in Example 11-17 verifies.

A good example of this would be a database cluster like the one described by Fig‐
ure 11-7 where only one PrimaryServer is found. By definition, the threshold of 2
would be impossible to meet, and the GraphDB node would be impacted, and that
impact would propagate over the dependency network.

The problems uncovered by the validations can be the result of an
actual issue in the environment, like the cluster being incorrectly
provisioned, or a problem in the data ingestion and dependency
graph construction pipeline. Identifying whether it’s one or the
other is required in order to determine subsequent actions.

Example 11-17. Cypher query checking correctness of redundant multidependencies and
threshold definitions

MATCH (e:Element)-[d:DEPENDS_ON { mode:'RED'}]->()
WITH e, count(d) AS available_redundant_elements
RETURN e.id AS element_id, available_redundant_elements > e.threshold AS valid

Multiple additional validations can be run on a dependency knowledge graph. As
you have seen, the combination of the graph representation and the expressivity of
Cypher makes it straightforward to write pattern-based expressions to detect them.

204 | Chapter 11: Dependency Knowledge Graphs

Complex Dependency Processing
The impact propagation rules described in “Impact Propagation with Cypher” on
page 198 are combined algorithmically to produce a detailed impact assessment of
one or several failing nodes. This is often computed as events are being streamed to
the graph for real-time event enrichment. It is useful for filtering and prioritization
of large volumes of events over a complex system. But the question arises: which
results should be looked at first, and which can be ignored? For example, something
has happened in your IT infrastructure, and you want to understand if it’s low prior‐
ity because you’re protected against it or if it’s high priority because it’s impacting
critical services. A dependency knowledge graph can help to solve problems like
single-point-of-failure detection for planning purposes and root cause analysis for
postmortem improvements. The next two sections look at these in detail.

Single-Point-of-Failure Analysis
A single point of failure (SPOF) is a single element on which a whole system depends,
and failure of that element results in failure of the system. The principle can be
generalized to parts of a dependency knowledge graph. The diagram in Figure 11-7
shows a simple example. In it you can see how two PrimaryServer nodes (Primary2
and Primary3) depend directly on the same CloudVM node (VM2). The obvious conse‐
quence is that the GraphDB node (recommender DB) actually has a strong dependency
on VM2. This is a common mistake in real life.

If you deploy multiple instances of a fault-tolerant software system on the same
hardware, you will be exposed to a major failure if there is a hardware failure. In real
life this isn’t limited to virtual machines but can affect all infrastructure, including
networks, cooling, power, and even entire data centers. In other words, the level of
fault tolerance is superficial because of an underlying SPOF dependency. While this
kind of scenario may go unnoticed (and it often does) when systems are designed or
when investments are placed, it will not go unnoticed using knowledge graphs.

In topological terms, a SPOF is nothing but another pattern in the graph. As such,
you can describe it with a Cypher pattern and surface any instance of it in the
dependency knowledge graph.

Example 11-18 shows a generic Cypher expression to detect SPOF situations. Given
an element (selected_node_id) in the dependency graph, a SPOF is defined as mul‐
tiple variable-length dependency chains (paths) that converge on any given element
spof.

Complex Dependency Processing | 205

Example 11-18. Cypher query checking for SPOF patterns

MATCH alertPath = (spof)<-[:DEPENDS_ON*]-(e:Element)-[:DEPENDS_ON*]->(spof)
WHERE e.id = $selected_node_id
RETURN alertPath

Not all SPOFs will be fatal. Detailed analysis that takes into account aggregate and
redundant multidependencies will be required to determine the ultimate impact in
case of failure (and partial failures of a system may be deemed acceptable). But it’s
fair to say that SPOFs are generally undesirable patterns that, if not worth solving,
should at least be monitored. Think, for example, of an energy network where the
geography imposes a particular topology that includes a bottleneck (an SPOF). Even
if it’s an unsolvable geographic feature, it’s worth understanding how it impacts the
whole network in order to have the right reactive measures in place, like backup
diesel generation for critical facilities such as hospitals.

Root Cause Analysis
Root cause analysis is the inverse of the impact propagation problem. Given a collec‐
tion of impacts, the objective is to try to find whether or not they all depend on
a single element. If that is proved, the consequence would be that this common
ancestor is the root cause of the observable impacts.

A common scenario where this type of analysis is quite prominent is service assur‐
ance systems. They normally are built to monitor complex systems and receive
continuous alarms/events/metrics from the components in the system. In a complex
system (like communications networks, supply chains, IT infrastructure, and so on),
components will depend on others in some complex way, as you have seen several
times in this chapter. The alarms indicate some kind of malfunctioning in an element.
Sometimes the malfunction is inherent to the element, but it can be caused by some
dependent element failing and that failure impacting the others. The monitoring
system needs to reduce the volume of alarms so that it is high signal/low noise and
can direct interventions accurately. One way to do this is to group all derived alarms
with their root cause and only present the root causes. This is often referred to as
alarm correlation or event correlation, and you can intuit how it involves discovering
an alarm’s direct and indirect dependencies.

To create a pattern for root cause analysis, the first step is to identify the candidates.
This is what the Cypher query in Example 11-19 does. Given a collection of impac‐
ted nodes (the symptoms), the exploration of the dependencies in the graph will
identify the leaf nodes that could potentially explain groups within the collection
of symptoms. This will uncover disjoint groups. It is possible and often the case
that simultaneous although independent faults are detected. This exploration will
immediately group independent symptoms in separate clusters.

206 | Chapter 11: Dependency Knowledge Graphs

Example 11-19. Clustering symptoms around potential root causes using Cypher

:param symptoms: ["N","O","P","H","I","A","E"]

MATCH (e:Element)-[:DEPENDS_ON*0..]->(x)
WHERE e.id in $symptoms
 AND NOT (x)-[:DEPENDS_ON]->()
WITH x, collect(distinct e.id) AS explains_faults
WHERE size(explains_faults) > 1
RETURN x.id AS candidate_root, explains_faults
 ORDER BY size(explains_faults) desc

The query in Example 11-19 looks for leaf nodes—those that don’t depend on others,
NOT (x)-[:DEPENDS_ON]->(), and can therefore be root causes—in the dependency
chain of all symptom nodes. For each of them, the aggregate step collect(distinct
e.id) identifies which of the symptoms would be explained by the candidate root
cause in question. When run on the graph in Figure 11-8, the query produces the
results shown in Example 11-20.

Example 11-20. Result of clustering symptoms around potential root causes using
Cypher

╒════════════════╤═════════════════════╕
│"candidate_root"│"cluster" │
╞════════════════╪═════════════════════╡
│"I" │["H","N","O","P","I"]│
├────────────────┼─────────────────────┤
│"K" │["H","N","O","P","A"]│
├────────────────┼─────────────────────┤
│"J" │["H","N","O","P","A"]│
├────────────────┼─────────────────────┤
│"E" │["E","A"] │
└────────────────┴─────────────────────┘

You can immediately see that there are two independent clusters: the one potentially
explained by E and the one potentially explained by I, K, or J.

In a second step, common information retrieval metrics (precision, recall, and F-
score) are used to rank and determine which are the more likely ones. The idea is
quite intuitive: for each candidate root cause produced in the previous step, three
metrics will be calculated:

Precision
What portion of the elements in the symptom list does this candidate root cause
explain?

Complex Dependency Processing | 207

Recall
Should this be the actual root cause of the problem, what would have been its
maximum impact? How does it compare to the actual observation (the initial list
of failing nodes)?

F-score
Performance metric calculated from the precision and recall.

These metrics are described in Figure 11-10.

Figure 11-10. Standard information retrieval metrics used in root cause analysis
computation

A Cypher implementation using retrieval metrics to refine potential root causes is
shown in Example 11-21.

Example 11-21. Complete root cause analysis using Cypher

MATCH (e:Element)-[:DEPENDS_ON*0..]->(x)
WHERE e.id IN $symptoms
 AND NOT (x)-[:DEPENDS_ON]->()
WITH x, collect(distinct e.id) AS explains_faults
WHERE size(explains_faults) > 1
WITH x AS candidate_root, explains_faults
MATCH (candidate_root)<-[:DEPENDS_ON*0..]-(x)
WITH candidate_root, explains_faults, collect(distinct x.id) AS potential_max_impact
WITH candidate_root, toFloat(size(explains_faults))/size($symptoms) AS precision,
 toFloat(size([x in potential_max_impact WHERE x in $symptoms]))
 / size(potential_max_impact) AS recall

208 | Chapter 11: Dependency Knowledge Graphs

https://oreil.ly/c0y6N

RETURN candidate_root.id, precision, recall,
 (2 * precision * recall) / (precision + recall) AS fscore
 ORDER BY fscore DESC

The Example 11-21 query extends the code in Example 11-19 by computing the three
metrics and produces the results shown in Example 11-22.

Example 11-22. Complete root cause analysis results using Cypher

╒═══════════════════╤══════════════════╤══════════════════╤══════════════════╕
│"candidate_root.id"│"precision" │"recall" │"fscore" │
╞═══════════════════╪══════════════════╪══════════════════╪══════════════════╡
│"I" │0.7142857142857143│0.8333333333333334│0.7692307692307692│
├───────────────────┼──────────────────┼──────────────────┼──────────────────┤
│"K" │0.7142857142857143│0.5555555555555556│0.6250000000000001│
├───────────────────┼──────────────────┼──────────────────┼──────────────────┤
│"J" │0.7142857142857143│0.5 │0.588235294117647 │
├───────────────────┼──────────────────┼──────────────────┼──────────────────┤
│"E" │0.2857142857142857│1.0 │0.4444444444444445│
└───────────────────┴──────────────────┴──────────────────┴──────────────────┘

From Example 11-22, you can infer that the most likely root cause is I based on the
collected symptoms. Candidates like I, J, and K have very similar precision, or in
other words, they could be the cause of a good portion of the symptoms detected.

However, if J was the root cause, then a significantly higher number of failing
nodes should be in the symptom list because they indirectly depend on J and would
therefore be affected. The fact that they are not in the input list reduces the likelihood
of J being the actual root cause. The same applies to K. Only I has a more balanced
combination of precision and recall, which is reflected in its F-score.

You can see that the approach depends on the quality of the observed symptoms.
The more complete the list, the more accurate the results. In real-life scenarios, it
is uncommon to have a complete picture of the current status of the environment,
and the consequence is that the results of these kinds of analysis will always produce
a list of most likely candidates rather than a single answer. But those results can be
combined with other elements like time or any other domain-specific heuristics to
improve your chances of making a correct diagnosis.

Vanguard Group Migrating Monoliths to Microservices
The Vanguard Group is one of the world’s largest investment management compa‐
nies. It is the largest provider of mutual funds and the second largest provider of
exchange-traded funds.

Vanguard was facing the challenge of refactoring its existing monolithic Java-based
systems into a microservices architecture. For that, the company required visibility

Complex Dependency Processing | 209

into all components in the monolith and, most importantly, the interdependencies
between those components. Some of Vanguard’s legacy Java code modules contained
up to four million lines of code, making the task absolutely unmanageable without
software support. Furthermore, as part of the process, Vanguard wanted to prune
dead code to reduce technical debt.

The team understood that they were facing a graph problem, and the scale and
complexity of their analytic requirements lent itself to knowledge graphs. They
automated the construction of the knowledge graph as part of their build process,
adding all their existing code artifacts, along with their dependencies. In addition to
the “discovered graph” from the build process, they added information from their
architecture diagrams to detect misalignments.

Using graph analytics and visual exploration of the graph, the team now evaluates
their code against best practices, and derives key metrics to enforce best practices
such as constraining the number of service-to-service calls to reduce risk and latency.
Also based on metrics derived from the knowledge graph, a code quality scorecard
has been produced, which enables collaboration across the business.

Summary
Capturing and exploiting dependencies is a common and important capability. The
natural way to represent and process dependencies is to use dependency-centric
knowledge graphs because of their expressive power, intuitiveness, and efficiency.

The ideas in this chapter show the basic principles of building dependency-centric
knowledge graphs to solve complex problems like impact analysis and root cause
analysis. The examples provided also give you an idea of broad applicability of these
graphs and will help you extrapolate these principles to your own use cases. From
here, you can readily apply and extend these techniques to meet your own needs.

210 | Chapter 11: Dependency Knowledge Graphs

CHAPTER 12

Semantic Search and Similarity

A good proportion of data available in the world is in the form of documents—
documents created by humans for consumption by humans and therefore expressed
in natural language. But natural language is not easy to exploit programmatically
because it does not have a well-defined structure like a table (database or CSV file)
or a hierarchy (JSON or XML document). Any automated use of a natural language
document will require some preprocessing to extract structured information from it.
If you want to go past the basics of text processing (word count, text-based analysis),
this can only be achieved using technology called natural language processing (NLP).
In this chapter, you will see how the types of structures that result from applying NLP
techniques fit naturally into a graph structure and how building knowledge graphs
from unstructured data enables more sophisticated exploitation.

Search over Unstructured Data
The first obvious way you want to make programmatic use of the content in natural
language documents is to enable search. Search is an area that has had an incredible
recent history. In its earliest days, just two decades ago (and surprisingly still today
for many services), a search engine would have been a simple index over a set of
natural language documents, sometimes even human curated. To use it, you had to
type a keyword and hope it matched an index term. This does not particularly help,
given the many lexical variations in most human languages (a search for the term
country would ignore potentially relevant documents containing its plural countries).
If you add to this inherent complexity of natural languages other elements like the use
of alternative spellings (sometimes due to typos), abbreviations, and acronyms, the
task does not get any easier. The consequence is that search results were (are) often
less than good.

211

The second part of the search problem is ranking the results. In this basic scenario,
the engine cannot do better than sorting by simple relevance metrics like number of
appearances of the search term.

Graphs Supercharge Search
You use search every day: to find documents on your hard drive, a product in an
online shop, a song on your favorite music streaming service, or virtually anything on
the web using a search engine.

Google has revolutionized Web search on both fronts over the years, first with
the PageRank algorithm, used to rank search results (web pages) in the Google
search engine by leveraging existing connections (hyperlinks) between pages. With
PageRank, relevance of web pages to queries is based on whether the pages contain
the search term as well as how many relevant pages link to it.

Years later, Google also introduced the use of knowledge graphs to enhance search.
Google search today is underpinned by a series of sophisticated algorithms and
data, but both PageRank and the Google Knowledge Graph remain fundamental for
making sense of the web today.

Search engines have evolved over the years. Keyword-based search has been
enhanced with features like wildcard searches, fuzzy searches, and the possibility of
combining keywords using logical expressions with different ways of ranking results
(like term frequency–inverse document frequency).

The use of knowledge graphs to complement index-based search makes modern
engines far superior. Knowledge graphs capture the “intelligence” required to resolve
synonyms, adjacent keywords, or domain-related concepts. In fact, they can take
search into the territory of question answering. Not only can they return semanti‐
cally relevant documents for a given search, but they can also be used to provide
sophisticated responses to natural language questions. This chapter will cover the first
problem, and the second will be explored in Chapter 13.

From Strings to Things: Annotating Documents with
Entities
The natural language text in documents is a human way of conveying information
by describing entities and relationships between them. But the same entities and rela‐
tionships can be described in many different ways because human language is very
rich (but also ambiguous and contextual). That’s why basing any kind of automated
processing (search, in this case) of the documents on the text representation is both
inaccurate and inefficient as hinted at in the previous section. You need to move this

212 | Chapter 12: Semantic Search and Similarity

processing to a higher level of abstraction. In fact, the goal is to search for “things
not strings” (as described in the Google blog by Amit Singhal: “Introducing the
Knowledge Graph: Things, Not Strings”).

The first step to achieve this is to apply the most basic type of processing of natural
language: the extraction of the entities “hidden” in the text. This process is often
called text annotation, and the NLP technique is named-entity recognition (NER).

To understand what NER will do for us, take the example of a document that contains
the sentence “The New York Times is a daily newspaper and its headquarters is on
the west side of Midtown Manhattan in New York City.” NER will unambiguously
uncover that both an organization “The New York Times” and a location “New York”
are mentioned in the text even though both are described with the same words.
Making these results explicit in a knowledge-graph-powered search engine would
then make it possible to do both location- and company-based searches, whereas a
text-based search would only be able to find a match on the text “New York” but
would not be able to distinguish whether the text refers to one or the other.

To illustrate the application of NER for building a knowledge graph that enables
entity-based search, see Table 12-1. It contains a list of documents (articles) with their
titles and summaries.

Table 12-1. A list of articles to put in a semantic search knowledge graph

Article list
Title: Twitter chair Patrick Pichette joins graph data platform Neo4j board of directors.
Fragment: Pichette is currently a partner at Inovia Capital and is also currently chair of commerce platform Lightspeed. His
30 years of financial and operating expertise includes roles at Google, Sprint Canada and Bell Canada, with a focus on digital
transformation and hyper-growth. According to Pichette, “Neo4j’s graph technology offers a truly unique solution to solve some
of the world’s most complex challenges, with a clear focus on promoting transparency and positive social change.”
author: Digital Nation Staff
url: https://www.itnews.com.au/digitalnation/news/twitter-chair-patrick-pichette-joins-graph-data-platform-neo4j-board-of-direc
tors-572498

Title: JupiterOne Unveils Starbase for Graph-Based Security
Fragment: JupiterOne has announced Starbase, an open source tool for security analysts to collect information about the
organization’s assets and their relationships and pull them into an intuitive graph view for cyber asset management. The graph
data model, based on open source graph data platform Neo4j, makes it easier to see relationships between different assets and
to perform complex relationship analysis, the company said in a statement.
“As a CSO, I’m a big advocate of bringing graph-based technology to security, given its power to reshape how we think about
security threat defense” said Sean Catlett, CSO at Slack.
author: Dark Reading Staff
url: https://www.darkreading.com/dr-tech/jupiterone-unveils-starbase-for-graph-based-security

You will need two basic components, as depicted in Figure 12-1: a software package
that can carry out the entity extraction from the natural language text in the article
collection and a graph platform to store the results of the process as connected
entities.

From Strings to Things: Annotating Documents with Entities | 213

https://oreil.ly/fRkjH
https://oreil.ly/fRkjH
https://www.itnews.com.au/digitalnation/news/twitter-chair-patrick-pichette-joins-graph-data-platform-neo4j-board-of-directors-572498
https://www.itnews.com.au/digitalnation/news/twitter-chair-patrick-pichette-joins-graph-data-platform-neo4j-board-of-directors-572498
https://www.darkreading.com/dr-tech/jupiterone-unveils-starbase-for-graph-based-security

For this first example, you will use Hugging Face to take care of the entity extraction
and Neo4j for the storage and analysis of the results in the form of a knowledge
graph.

Figure 12-1. Extracting entities from natural language text and storing them in a graph
database

Under its Token Classification subtasks, Hugging Face includes NER. Its use is quite
straightforward if you stick to the defaults. Example 12-1 shows a Python code
snippet that extracts the entities from the title of the first of the articles in the list. In
a complete example, you would iteratively apply this type of analysis to all articles in
your collection.

Example 12-1. Extracting entities from natural language text using Python

from transformers import pipeline

ner_pipe = pipeline("ner", aggregation_strategy="simple")

title = """Twitter chair Patrick Pichette joins graph data
 \ platform Neo4j board of directors."""

for entity in ner_pipe(title):
 print(entity)

When not overridden, the pipeline uses the bert-base-NER model, which performs
great in the example with general English language. If you are working on a very
specific domain and your natural language documents use highly technical terms,
you will want to use an NER model trained specifically for that domain. Both the
creation and the use of a custom model is beyond the scope of this book, but the
Hugging Face documentation is very useful.

The output from the code is shown in Example 12-2 and is basically the list of entities
identified in the text, with their types and a score associated with each of them.

214 | Chapter 12: Semantic Search and Similarity

https://huggingface.co
http://neo4j.com
https://oreil.ly/YGqm4

Example 12-2. Entities extracted

{'entity_group': 'ORG', 'score': 0.9961534, 'word': 'Twitter', 'start': 0, 'end': 7}
{'entity_group': 'PER', 'score': 0.9972605, 'word': 'Patrick Pichette',
 'start': 14, 'end': 30}
{'entity_group': 'ORG', 'score': 0.8314789, 'word': 'Neo4j', 'start': 62, 'end': 67}

Because entities can be of different types and not all are equally important in the
context of the natural language text being analyzed, it is quite common for NER
processors to return the following in addition to a list of entities:

type
Is it a person? Is it a location? Is it an organization? The set of categories will
depend on the specific model used. The bert-base-NER distinguishes four types
of entities: location (LOC), organization (ORG), person (PER), and miscellaneous
(MISC).

salience
The relative importance in the text analyzed or, in other words, the entity’s
relevance. Is the entity central to the text (higher score/salience), or is it just
mentioned tangentially (lower score/salience)?

Now that you know how to extract entities from natural language, you can store these
entities along with the information about the articles they come from. When doing
that, you will make the connection between articles and entities explicit and weighted
(the salience) and form a knowledge graph like the one in Example 12-3.

As in the previous example, for simplicity the code only shows the process for a single
entry in the article list (the title, the author, the URL, and a fragment of text). A
complete version would iterate over the list of articles and invoke the following logic
for each of them.

Example 12-3. Writing entities to a knowledge graph

from neo4j import GraphDatabase

driver = GraphDatabase.driver("bolt://your.db.ip:7687",
 auth=("neo4j", "pwd"))

title = "the title of the article"
fragment = "article fragment"
author = "the author of the article"
url= "https://the.url.of.the.article"

entity_list = []
for entity in ner_pipe(title + fragment):
 entity_list.append(entity)

From Strings to Things: Annotating Documents with Entities | 215

cypher_query = '''
MERGE (a:Article { url:$url}) ON CREATE SET a.title= $title, a.text= $frg
MERGE (p:Person { name: $author})
MERGE (a)-[:has_author]->(p)
WITH a UNWIND $entityList AS entity
MERGE (e:Entity { name: entity.word , type: entity.type })
MERGE (a)-[:references { salience: entity.score }]->(e)
'''

with driver.session(database="neo4j") as session:
 session.write_transaction(
 lambda tx: tx.run(cypher_query, url=url, author=author, title=title,
 frg=fragment,
 entityList=[{ "word": x["word"], "type":x["entity_group"] }
 for x in entity_list])
)

driver.close()

This code produces a knowledge graph like the one in Figure 12-2. Such a graph
enables a much richer use of the data in the documents.

Figure 12-2. Graph with explicit entities sourced from articles

Having a collection of entities that make the content of the articles explicit substan‐
tially enriches the options for search. You can now list the entities mentioned in the
articles, or in other words, answer the question “What is this document about?” with
the simple Cypher query shown in Example 12-4.

216 | Chapter 12: Semantic Search and Similarity

Example 12-4. A Cypher query shows entities referenced in articles

MATCH (a1:Article)-[:references]->(e:Entity)
WHERE a1.url = $url
RETURN e.name AS entityName, e.type AS entityType

The exact same pattern also answers the inverse question “Which articles mention
this entity?"” The complete Cypher would be the one shown in Example 12-5.

Example 12-5. A Cypher query shows articles that reference specific entities

MATCH (a:Article)-[:references]->(e:Entity)
WHERE e.name = $entityName AND e.type = $entityType
RETURN a.url AS articleLink, a.title AS articleTitle

This technique also helps determine popularity and trends at the entity level, as
opposed to the much less meaningful word level. Think of an entity frequency metric
versus a basic word count. You can aggregate mentions of entities to compute the
most or least popular entities of all time or over a particular time range. You can even
analyze trends for entities over time and see how their popularity evolves, just by
counting how frequently they appear in documents over a given time period.

Example 12-6 shows how to get the data points to populate a monthly time series
with the frequency of the appearance of a given entity in articles published each
month.

Example 12-6. A Cypher query to find popular entities over a period of 12 months

MATCH (c:Entity { name: $entityName, type: $entityType })
WITH c, date() - duration("P1Y") AS startdate
UNWIND range(0,11) AS increment
MATCH (c)<-[:references]-(a:Article)
WHERE startdate + duration("P"+ (increment - 1) +"M")
 < a.published < startdate + duration("P"+ increment +"M")
RETURN startdate + duration("P"+ increment +"M") AS date, count(a)

Navigating the Connections: Document Similarity for
Recommendations
You have seen how document annotation surfaces a graph that enables search at a
higher level of abstraction (entities versus words). Now you will see that the analysis
of the structure of this graph, as Figure 12-3 shows, can help you uncover similarities
between documents with very high precision.

Navigating the Connections: Document Similarity for Recommendations | 217

Figure 12-3. Enabling navigation from one document to another via entities

Content-based recommender systems are centered on the features of the items to
recommend—“You may also like X”—as opposed to collaborative filtering ones that
focus on the analysis of the behavior of the consumers—“Customers like you also
bought/read/watched X.” If you are browsing for desks on your favorite furniture
ecommerce and you click on a white solid wood one, it should not surprise you if you
see on the side of your screen a list of “similar items” with more white wood desks or
items that share a good number of features with the one you are looking at. It’s easy
to extrapolate this approach: the items are the articles, and the features are the entities
that you extracted from them.

All you need now is a systematic way to combine the feature matches to come up
with a similarity metric. Ordering the results by that metric will give you the top n
elements to recommend. In the case of the furniture ecommerce, it might be tricky
to determine whether a match on the color is more important than a match on the
material, so the weights would probably be determined by domain experts. In this
case, the salience of the entity in a document gives a useful hint.

Taking this step by step, the starting point is that articles are related to each other
by the entities they share. Given two articles, a simple graph pattern like the one
shown in Example 12-7 will find the collection of entities that are referenced in both
of them.

Example 12-7. A Cypher query shows entities that are referenced in both articles

MATCH (a1:Article)-[:references]->(e:Entity)<-[:references]-(a2:Article)
WHERE a1.url = $url1 AND a2.url = $url2
RETURN e.name AS entityName, e.type AS entityType

The Cypher query takes only the URLs (unique identifiers) of the articles. In the
example, the results would show that for the two articles in Table 12-1, Neo4j Inc. is
the only entity that happens to relate to both.

218 | Chapter 12: Semantic Search and Similarity

This simple pattern can be extended to compute the similarity metric for any pair of
documents. In the query in Example 12-8, the similarity is defined as the weighted
sum of entities shared between two articles. The bigger the entity overlap, the greater
the similarity between the articles. But not all entities are counted in the same way—
remember that the relationships between articles and entities are weighted with the
salience of the entity in that particular document.

Example 12-8. A Cypher query calculating a similarity metric between a pair of articles

MATCH (a1:Article)-[r1:references]->(e:Entity)<-[r2:references]-(a2:Article)
WHERE a1.url = $url1 AND a2.url = $url2
RETURN sum(r1.salience * r2.salience) AS similarity_metric

This is a very simple graph pattern but an extremely powerful metric that will help
you offer a recommendation about what to read next, based on the assumption that
the reader will want to continue reading about similar topics.

Nearly as important as having a way of measuring how similar two items are is a
precise description of how exactly they are related because that will help you produce
not only a relevant recommendation but also an explainable one. It turns out that it is
easily in reach of the knowledge graph. Example 12-9 shows the complete recommen‐
dation query returning the top five similar articles along with an enumeration of the
shared entities that explain the similarity.

Example 12-9. A Cypher query finds similar articles computing the similarity metric on
the fly (at query time)

MATCH (a1:Article)-[r1:references]->(e:Entity)<-[r2:references]-(recommendation)
WHERE a1.url = $url1
RETURN recommendation,
 sum(r1.salience * r2.salience) AS similarity_metric,
 collect(e) AS explanation
ORDER BY similarity_metric DESC LIMIT 5

In some cases, it will make sense to compute the recommended set on the fly as
in Example 12-9, but sometimes you will want to enrich the graph by materializing
the similarities between articles with a new weighted relationship directly connecting
similar articles where the weight in the relationship would encode the similarity
metric computed with the previous formula. This approach is described visually in
Figure 12-4.

Navigating the Connections: Document Similarity for Recommendations | 219

Figure 12-4. Creating a new weighted similarity relationship between articles

The creation of such relationship would require just a minor change to the previous
query, as seen in Example 12-10.

Example 12-10. A Cypher query creates a new weighted similarity relationship between
articles

MATCH (a1:Article)-[r1:references]->(e:Entity)<-[r2:references]-(a2:Article)
WITH a1, a2, sum(r1.salience * r2.salience) AS similarity_metric
MERGE (a1)-[:similar { metric: similarity_metric }]-(a2)

If you want to run this type of query on a large graph, you’ll want
to batch it instead of running it in a single transaction. You can
achieve this with the Cypher clause CALL { … } IN TRANSACTIONS
or using the periodic execution methods in the APOC library.

Once the metric is persisted in the graph, generating recommendations based on a
selected article becomes a lot simpler, as shown in Example 12-11.

220 | Chapter 12: Semantic Search and Similarity

https://oreil.ly/lzym6

Example 12-11. A Cypher query finds similar articles using a precomputed similarity
metric

MATCH (a1:Article)-[r:similar]-(recommendation)
WHERE a1.url = $url1
RETURN recommendation,
 r.metric AS similarity_metric
ORDER BY similarity_metric DESC LIMIT 5

The Cold Start Problem
Document similarity is useful for recommending what to show, read, or buy next,
but it requires some context, something to anchor your queries on. The previous
recommendations selected an article (or a set of recently read articles) as the anchor
points.

But what about a “cold start” where there are no anchor points in your knowledge
graph? How could you generate an initial recommendation, for example, to populate
a home page and overcome the cold start problem? In that case, it might be reason‐
able to display currently trending topics. Those can be found using the query shown
in Example 12-12, which is similar to the trend analysis query in Example 12-6.

Example 12-12. A Cypher query that ranks the most popular topics over the last six
months

MATCH (c:Concept)<-[:refers_to]-(a:Article)
WHERE date() - duration("P6M") < a.datetime < date()
RETURN c.label, count(a) AS freq LIMIT 10

Example 12-12 doesn’t directly provide a semantically rich answer to a question since
at cold start there is no such question. It does provide some way of making forward
progress into the world of linked entities and semantic search.

While not as computationally cheap as the approach in Exam‐
ple 12-12, there are other ways you could lessen the effects of
the cold start problem. For example, you could run a similarity
algorithm (as per Chapter 5) on the existing graph. The results of
that algorithm would immediately be able to suggest similar things
to the user, once the user anchors to a particular topic/article/etc.
Moreover, with careful design, the similarity algorithm can be run
periodically (on a secondary server), with its results being written
directly into the production graph.

Navigating the Connections: Document Similarity for Recommendations | 221

https://oreil.ly/ssxQg

Making the Annotation Semantic with an
Organizing Principle
Document annotation based on NER has been a significant step in the right direction,
but it’s limited in two obvious ways:

• Entities are not disambiguated. The consequence is that if one of the documents•
in my collection mentions the United Kingdom and another one does the same
using the acronym UK, the NER software will probably successfully identify the
entities as locations but will not be able to determine that they both represent the
same thing.

• There are no relationships linking entities and capturing the domain knowledge.•
To continue the geography-based example, a third document mentioning Wales
would have the location entity identified but the fact that there is a PART_OF
relationship between Wales and the United Kingdom is not known to search/
recommendation systems.

The way to overcome these limitations is to match the entities to known entries in an
organizing principle to form a semantic knowledge graph. Recall that an organizing
principle can be an ontology, a concept scheme, or a vocabulary, and it describes the
different entities in a particular domain as well as how they relate to one another.

The adoption of standard organizing principles varies by industry.
One of the more prolific ones in this area is the pharmaceutical,
health care, and life sciences industry. Examples of well-known
and mature organizing principles are Medical Subject Headings
(MeSH), a comprehensive controlled vocabulary for indexing jour‐
nal articles and books in the life sciences, and the Disease Ontol‐
ogy, a standardized ontology for human disease.

A visual intuition of this idea can be produced as an extension of the image in
Figure 12-3 by adding to it an organizing principle. The extra layer would effectively
offer new ways to explore the data by bringing in explicit domain knowledge as seen
in Figure 12-5.

222 | Chapter 12: Semantic Search and Similarity

https://oreil.ly/PvtXI
https://oreil.ly/PvtXI
https://oreil.ly/EkpOR
https://oreil.ly/EkpOR

Figure 12-5. An organizing principle offers additional paths for search and exploration

The process of matching entities to uniquely defined entries in a shared concept
scheme is often referred to as named-entity linking or entity disambiguation.

This task is often bundled with the entity extraction process and carried out by
specifically trained extractors that are aware of the target organizing principle and
that generate entities prematched to elements in that organizing principle. When
using general-purpose NER engines like the ones described in the previous sections,
we will have to apply custom algorithms, often based in heuristics, to connect the
entities resulting from the NER with the elements in the organizing principle. That
use case will be explained later in the chapter, but first you should understand the
more common approach.

For this example, you will use a different natural language package: the Google Cloud
Platform (GCP) Natural Language API. The GCP Natural Language API includes
an entity extraction feature very similar to the one offered by Hugging Face but
with one interesting addition: the API adds some metadata to the entities it extracts,
including Wikipedia URLs. These URLs will help you to match them to entities in an
organizing principle in a nonambiguous way.

Just like in Example 12-1 with Hugging Face, in Example 12-13 you can see a small
code fragment that calls the GCP Natural Language API to run entity recognition on
the title of one of the articles used in the previous section.

Making the Annotation Semantic with an Organizing Principle | 223

https://oreil.ly/Dmrkk
https://oreil.ly/fgflu
https://oreil.ly/fgflu

Example 12-13. Python code shows how to call the GCP Natural Language API

from google.cloud import language_v1

client = language_v1.LanguageServiceClient.from_service_account_json
 ('services.json')

text = u"Twitter chair Patrick Pichette joins
 graph data platform Neo4j board of directors"
document = language_v1.Document(
 content=text, type_=language_v1.Document.Type.PLAIN_TEXT
)

response = client.analyze_entities(request={"document": document})

for entity in response.entities:
 print(entity)

When you run this code, you get a list of entities with their type and salience, as
shown in Example 12-14. Note that they are returned with some additional metadata
that effectively disambiguates them by linking them to Wikipedia entries (other
elements like the Google Knowledge Graph ID have been removed for clarity).

Example 12-14. A list of entities with Wikipedia links

name: "Patrick Pichette"
type_: PERSON
metadata {
 key: "wikipedia_url"
 value: "https://en.wikipedia.org/wiki/Patrick_Pichette"
}
salience: 0.6320402026176453

name: "Twitter"
type_: ORGANIZATION
metadata {
 key: "wikipedia_url"
 value: "https://de.wikipedia.org/wiki/Twitter"
}
salience: 0.22149702906608582

name: "Neo4j"
type_: ORGANIZATION
metadata {
 key: "wikipedia_url"
 value: "https://en.wikipedia.org/wiki/Neo4j"
}
salience: 0.020158693194389343

224 | Chapter 12: Semantic Search and Similarity

The solution to the linking problem would be complete if you could find an organiz‐
ing principle that would include in its elements the same metadata (a reference to
the Wikipedia page). Interestingly, some public ontologies and knowledge bases like
Wikidata or DBPedia are cross-referenced, and they do include the Wikipedia page
reference in their elements.

As an example, Example 12-15 shows a fragment of the Wikidata graph describ‐
ing the entity Neo4j (identified as wd:Q1628290). The description includes a state‐
ment indicating that the Wikipedia page https://en.wikipedia.org/wiki/Neo4j is about
(schema:about) that particular entity.

Note that Wikidata uses numeric values to identify all elements in
it. Just like Neo4j is identified as wd:Q1628290, it is classified as a
graph database, which is itself identified as wd:Q595971.

Example 12-15. A fragment of the code from the Wikidata graph for Neo4j

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix schema: <http://schema.org/> .
@prefix wdp: <http://www.wikidata.org/prop/direct/> .
@prefix wd: <http://www.wikidata.org/entity/> .

wd:Q1628290
 rdfs:label "Neo4j"@de ;
 schema:description "graph database implemented in Java"@en ;
 wdp:P31 wd:Q595971 .

<https://en.wikipedia.org/wiki/Neo4j> schema:about wd:Q1628290 .

With these two parts, it’s straightforward to build a semantic knowledge graph, as
described in Figure 12-6.

Making the Annotation Semantic with an Organizing Principle | 225

https://www.wikidata.org
https://dbpedia.org
https://oreil.ly/LnJA4
https://oreil.ly/LnJA4
https://en.wikipedia.org/wiki/Neo4j

Figure 12-6. Entity disambiguation in two steps using GCP’s Natural Language API and
Wikidata

The following example shows a Cypher-only version of this process. You can do
that because the APOC library in Neo4j offers wrapper methods that invoke the
GCP Natural Language API without having to write any external code as in previous
examples in this chapter.

1. Import articles as nodes in the graph. The Cypher statement in Example 12-161.
parses the list of articles as a CSV file (articles.csv) with four columns: uri, title,
body, and datetime. It also creates a node for each of the records.

Example 12-16. Loading articles into a knowledge graph

LOAD CSV WITH HEADERS FROM 'file:///articles.csv' AS row
CREATE (a:Article { uri: row.uri})
SET a.title = row.title, a.body = row.body, a.datetime =
 datetime(row.date)

2. Import the organizing principle into the graph. Assume that the organizing2.
principle is described using any of the common W3C standards: OWL, SKOS or

226 | Chapter 12: Semantic Search and Similarity

RDFS. You then rely on the neosemantics library for the import, as shown in
Example 12-17.

Example 12-17. Import the organizing principle for the knowledge graph using
neosemantics

CALL n10s.graphconfig.init({ handleVocabUris: "IGNORE",
 classLabel: "Concept", subClassOfRel: "broader"})

CALL n10s.skos.import.fetch
 ("path-to-file-containing-organizing-principle","RDF/XML")

3. Run entity extraction on the contents of the articles and link the returned entities3.
with the organizing principle. Notice the use of the apoc.nlp.gcp.entities.
stream method in Example 12-18 that is in charge of calling the GCP Natural
Language API used in this example.

Example 12-18. Call the GCP Natural Language API from Cypher to perform entity
extraction

CALL apoc.periodic.iterate(
 "MATCH (a:Article)
 WHERE a.processed IS NULL // (1)
 RETURN a",
 "CALL apoc.nlp.gcp.entities.stream([item in $_batch | item.a], { // (2)
 nodeProperty: 'body',
 key: $key
 })
 YIELD node, value
 SET node.processed = true // (3)
 WITH node, value
 UNWIND value.entities AS entity // (4)
 WITH entity, node
 WHERE NOT (entity.metadata.wikipedia_url is null)
 MATCH (c:Concept {altLabel: entity.metadata.wikipedia_url}) // (5)
 MERGE (node)-[rt:refers_to]->(c) SET rt.salience = entity.salience", // (6)
 {batchMode: "BATCH_SINGLE", batchSize: 10, params: {key: $key}})
YIELD batches, total, timeTaken, committedOperations
RETURN batches, total, timeTaken, committedOperations;

A few comments on the previous code fragment:

• The logic is organized as an iterative producer-consumer structure apoc•
.periodic.iterate. The first block "MATCH ..." streams batches of size batch
Size: 10 to the second block "CALL ..." that processes them

Making the Annotation Semantic with an Organizing Principle | 227

https://oreil.ly/BvULd

• In (1) you iterate over all articles that have not been processed yet. In (3) you flag•
articles as processed to make sure you do it only once per article.

• In (2) you invoke the GCP Natural Language API for each article in the batch.•
The method call includes two additional parameters: the name of the property
containing the natural language text to be analyzed (body in this example) and
the API key required to use the service.

• In (4) you iterate over the entities returned by the API, and you create nodes of•
type Concept for each one of them in (5).

• Finally, in (6) the Article nodes are linked to the Concept nodes through a•
refers_to relationship, weighted with the salience also returned by the API.

The result of this process is a graph quite similar to the one created in the previ‐
ous section but now with the explicit semantics overlay added by the organizing
principle:

• Entities become unambiguous and uniquely identifiable using a concept scheme.•
Such schemes can be public or private, use case or industry specific, departmen‐
tal or enterprise wide.

• Entities become more interconnected in a meaningful and explainable way, offer‐•
ing new paths for exploration and analysis.

What kind of semantic exploitation can you carry out now? Well, now if you search
for articles related to “NoSQL database management systems,” you would get results
even though no single article explicitly mentions that set of terms.

Why is that? Because by bringing the organizing principle into the graph, you make
it explicit that Neo4j is a graph database, and a graph database is a kind of NoSQL
database (along with column stores, document databases, and key-value stores), as
shown in Figure 12-7. This is what is often referred to as semantic search. You have
managed to make your search independent of the ambiguous natural language text
and base it on well-defined domain entities. In other words, you have effectively
implemented the “things, not strings” principle.

228 | Chapter 12: Semantic Search and Similarity

Figure 12-7. Knowledge graphs are the strongest foundation for semantic search

In making the semantics (your knowledge about a domain) explicit, you are making
them programmatically exploitable. A simple Cypher query like Example 12-19 cap‐
tures the basic logic: You select the concept you are interested in, and the pattern
(c:Concept)<-[:broader*0..]-(sc) recursively navigates the organizing principle
to find any other concept that is a subconcept, at any level of depth. As a conse‐
quence, the query will return all the Article nodes directly or indirectly connected to
the selected concept.

Example 12-19. A Cypher query finds articles based on concepts

MATCH (c:Concept)
 <-[:broader*0..]-(sc)<-[:refers_to]-(article:Article)
WHERE c.prefLabel = "NoSQL database management system"
RETURN article.title AS searchResult

This approach can be extended with multiple organizing principles. The articles in
the example, just as products in a catalog can be classified according to multiple
dimensions, effectively creating multiple complementary paths for both semantic
search and similarity. This is an extremely powerful pattern and supercharges busi‐
ness information systems with search, in much the same way that knowledge graphs
have supercharged Web search.

Making the Annotation Semantic with an Organizing Principle | 229

Here are some real-world scenarios where you can see these ideas
in action.
In the field of health care, document annotation is applied to dis‐
charge summaries, clinical notes, scientific literature, and clinical
trial protocols, among others. All of these documents are typically
unstructured text. The results can be used to do advanced search
and analysis of patient data, and it is also a step toward building a
360-degree view of the patient.
In news and media, document annotation can associate articles
with searchable metadata describing key entities like persons,
objects, locations, and events. Recommendations and personaliza‐
tion are the most obvious uses—“watch/read next…”—but not the
only ones. When used on transcripts of audio or video media,
annotation enables more sophisticated (and nonlinear) ways of
consuming such media, like zooming in on specific moments and
language in the timeline.

You have covered the case where the entity linkage is taken care of by the NER
software. When that is not the case, some manual matching is required. Techniques
for disambiguation include using textual analysis and graph analysis. One approach
is annotating the concepts in the organizing principle with sets of keywords or even
regular expressions to apply to the identifiers of the entities extracted by the NLP, as
in Example 12-20.

Example 12-20. Annotate concepts with keywords and regular expressions

// keyword based
CREATE (c:Category { name: "Person", alts: ["Human","Pax", "Pers"]})

//regex based (inclusion/exclusion list)
CREATE (c:Category { name: "COVID-19", inc: ["covid.*","corona.*"],
 excl: ["sars.*"]})

One limitation of this approach is its strong reliance on the precision of such key‐
words or regexes. You would need to write some custom code to take care of the
linkage, with logic similar to Example 12-21.

Example 12-21. Linking categories in Cypher

MATCH (e:Entity { name: $entityname })
MATCH (c:Category)
WHERE e.name IN c.alts
WITH e, collect(c) AS candidate_cats
WITH e, selection_logic(candidate_cats) AS selected_cat
MERGE (e)-[:references]->(selected_cat)

230 | Chapter 12: Semantic Search and Similarity

The selection_logic function abstracts the problem of selecting the most plausible
candidate in case there are multiple matches. It can be as simple as picking one
random one, or assigning weights based on the relevance in the context, which could
be computed using domain-specific heuristics or structural features like distance,
centrality, or others.

Case Study: NASA Lessons Learned
Semantic search knowledge graphs aren’t science fiction—they’re science fact. Dating
all the way back to the Apollo moon missions in the 1960s and spanning more than
half a century of collective knowledge, NASA’s “lessons learned” is a treasure trove
of knowledge gained from positive experiences, such as successful missions and tests,
and negative experiences, as in failures and mishaps.

NASA’s lessons learned information system (LLIS) contains hundreds of millions of
documents, reports, and scientific research findings from multiple databases across
the agency. Previously, it held less than 1% of the organization’s 20 million docu‐
ments. With a total of 80,000 employees, the volume, variety, and velocity of data
were taxing the system. NASA needed a better way for end users to access this
information.

In the early 2000s, the LLIS was significantly underutilized because it was not easy to
navigate or search. The biggest challenge was accessing the data, which was in silos
strewn across groups, departments, programs, and products. Nothing connected or
even cross-referenced the data. Keyword search queries across all 20 million documents
took a long time to run. Search results returned 1,100 documents. The user would then
need to read those articles (or at least scan them) to get to an answer.

But there was hope. There is a great deal of metadata associated within the lessons
learned, so NASA was able correlate the topics (by extracting entities) based on their
self-assigned categories. They could see each lesson with its topic as well as correla‐
tions between topics, so they could also see how topics correlated to one another. This
allowed users to look at trends, which can potentially help NASA engineers prevent
disastrous outcomes.

Fast forward to today, and LLIS at NASA is now a rich knowledge graph. Search is
faster and provides fewer—but much more relevant—results. The knowledge graph
plays a fundamental role in two main ways.

First, it gathers data from various siloed sources (as per Chapter 5). It then links the
data together via entities using the techniques in this chapter. The lessons learned
database has already generated significant value. One NASA engineer said, “This has
saved us at least a year and over $2M in research and development towards our
Mission to Mars planning.” If your semantic search knowledge graphs are as good,
who knows how far they’ll take you?

Making the Annotation Semantic with an Organizing Principle | 231

Summary
The ability to search for concepts rather than specifying index keys is revolutionary.
Using a semantic search knowledge graph, this becomes possible. Not only does your
organization keep more of its knowledge, but accessing that knowledge becomes
straightforward through the knowledge graph.

From semantic search, you can go one level further and try to understand natural
language. In the next chapter, you’ll see how search and NLP go hand in hand, using
real-world examples to demonstrate.

232 | Chapter 12: Semantic Search and Similarity

CHAPTER 13

Talking to Your Knowledge Graph

In the previous chapter, you saw NLP applied to the construction of knowledge
graphs to support semantic search over collections of things (articles, products,
documents, and so forth). This relied on an NLP task called entity extraction, or NER.
But NER is only one of the ways in which NLP can interact with knowledge graphs,
out of three broad categories:

1. Where knowledge graphs are populated with entities, facts and knowledge come1.
from applying NLP techniques to natural language text. This includes what you
learned in Chapter 12 as well as the cases where NLP is used for fact extraction to
build question-answering knowledge graphs. This category is natural language as
input to a knowledge graph.

2. You will see in this chapter how natural language can also be generated from2.
knowledge graphs. This can be used to produce a conversational answer to a
query or for automated report generation, as some examples. This category is
natural language as output.

3. Somewhere in between, knowledge graphs can be a tool providing structured3.
context for NLP tasks, either at the lexical or at the conceptual level (or both).

Figure 13-1 depicts the three categories.

233

Figure 13-1. Types of interaction between natural language and knowledge graphs

This chapter is split into three parts. In the first part, you will learn how NER can
be complemented with fact extraction to build a knowledge graph for answering
questions as opposed to document search and recommendation. The second part
explores techniques for implementing conversational interfaces to interact with the
knowledge graph. This includes both processing natural language questions and
translating them into structured queries on the graph, as well as generating text from
the graph to produce the answers. The last section focuses on knowledge graphs
for lexical databases where you need to build a custom entity extractor which has
specialized domain knowledge. You will learn how a public lexical database (like
WordNet) can be used to provide a detailed analysis of the use of such specialized
knowledge graphs and the implementation of semantic similarity metrics in them.

Question Answering: Natural Language as a Source of
Facts for a Knowledge Graph
The techniques described in the previous chapter were document centric. You applied
NER and entity disambiguation to the items (products, articles, documents…) in
a collection to annotate them and build a knowledge graph capable of doing effec‐
tive semantic search over large sets of documents or computing semantic similarity
between documents to drive recommendation and penalization.

In this section, you will explore the case when documents are just a source of facts
that get interconnected in a knowledge graph with the objective of answering domain
questions rather than carrying out sophisticated tasks on the documents they are

234 | Chapter 13: Talking to Your Knowledge Graph

extracted from. In this type of scenario, you query the knowledge graph expecting an
answer, not a list of documents where you will find that answer.

Note that this is not incompatible with keeping a reference to the source documents
for provenance and trust purposes, but the ultimate objective is the creation of a
knowledge graph that will not answer the question “Which documents talk about
Tesla?” but rather “Who is the CEO of Tesla?” or “Where is Tesla’s headquarters?”

The nature and complexity of the NLP used will vary and with it the richness of the
graph created from the unstructured data. The role of the NLP moves from entity
extraction to fact extraction. This effectively means that you will want to extract
statements from the natural language text that will then be modeled in the graph as
either node properties or relationships connecting nodes.

To show this in action, the example will use yet another NLP package: Diffbot.
Diffbot’s Natural Language API offers fact extraction in addition to entity extraction.
Example 13-1 shows some sample code that takes the first sentence in one of the
articles and extracts facts from it by invoking the Diffbot Natural Language API.

Example 13-1. Using Diffbot’s Natural Language API to extract facts from text

import json
import requests

payload = {
 "content": "Pichette is a partner at Inovia Capital and chair of" \
 "commerce platform Lightspeed",
 "lang": "en"
 }
res = requests.post("https://{}/v1/?fields={}&token={}".format
 (HOST, "entities,facts", TOKEN), json=payload)

for ent in res.json()["entities"]:
 print(ent)
 //write to graph

for fact in res.json()["facts"]:
 print(fact)
 //write to graph

The extracted facts are structured as entity-property-value triplets. The real output
is a rich JSON structure like the one shown in Example 13-2 that includes unique
identifiers, cross references to public knowledge bases like Wikidata, and additional
attributes like salience, confidence, sentiments, and others.

Question Answering: Natural Language as a Source of Facts for a Knowledge Graph | 235

https://www.diffbot.com

Example 13-2. Raw facts extracted with the Diffbot Natural Language API

{"sentiment": -0.32881057,

 "entities": [{"name": "Patrick Pichette", "confidence": 0.81,
 "salience": 0.64345313, "sentiment": 0.0, "isCustom": ... }],

 "facts": [{
 "humanReadable": "[Patrick Pichette] employee or member of [Innovia Capital]",
 "entity": { "name": "Patrick Pichette",
 "diffbotUri": "https://diffbot.com/entity/EYwbLa__MNVGtPMryqqCCEA",
 "confidence": 0.9999268,
 "allUris": ["http://www.wikidata.org/entity/Q3369779"],
 "allTypes": [{"name": "person",
 "diffbotUri": "https://diffbot.com/entity/E4aFoJie0MN6dcs_yDRFwXQ",
 "dbpediaUri": "http://dbpedia.org/ontology/Person"}],
 "isCustom": False, "entityIndex": 5},
 "property": {"name": "employee or member of",
 "diffbotUri": "https://docs.diffbot.com/ontology#Person.memberOf"},
 "value": {"name": "Innovia Capital",
 "confidence": 0.9989188, "allUris": [],
 "allTypes": [{"name": "date",
 "diffbotUri": "https://diffbot.com/entity/EGTSOJhZ0NnqIjbjgQ8pyLg"}],
 "isCustom": False, "entityIndex": 0},
 "confidence": 0.9498123,
 "evidence": [{"passage": "Pichette is a partner at Inovia Capital",
 "entityMentions": [{
 "text": "Pichette", "beginOffset": 111, "endOffset": 113,
 "isPronoun": False, "confidence": 0.9985091}],
 "valueMentions": [{"text": "Innovia Capital",
 "beginOffset": 119, "endOffset": 132,
 "confidence": 0.9989188}]}]},
 {"humanReadable": ... }] ,
 ...
}

A visual and more intuitive view of the same output is presented in Figure 13-2.

Figure 13-2. Diffbot Natural Language API extracts facts from text

236 | Chapter 13: Talking to Your Knowledge Graph

That output can be directly consumed to populate the knowledge graph, as shown in
Example 13-3.

Example 13-3. Importing facts from Diffbot into your knowledge graph

//code incomplete...
entity_list = res.json()["entities"]
fact_list = res.json()["facts"]

//call write transaction with params entities and facts and Cypher below

cypher= "
UNWIND $facts AS fact
MERGE (source:Entity { id: fact.entity.diffbotUri })
MERGE (target:Entity { id: fact.value.diffbotUri })
WITH source, target, fact
CALL apoc.create.relationship(source,fact.property.name,{},target)
//add salience etc
"

A knowledge graph of these characteristics can then be queried (see Example 13-4)
to answer domain questions like “Which individuals are directly related to Inovia
Capital and what’s the nature of their relationship?”

Example 13-4. A Cypher query shows who is related to Inovia Capital

MATCH (:Organization { name : "Inovia Capital"})-[rel]-(p:Person)
RETURN p.name AS person, type(rel) AS rel_type

Running the Cypher query in Example 13-4 produces the expected results shown in
Example 13-5.

Example 13-5. Results of a Cypher query showing who is related to Inovia Capital

╒══════════════════╤═══════════════════════╕
│"person" │"rel_type" │
╞══════════════════╪═══════════════════════╡
│"Patrick Pichette"│"EMPLOYEE_OR_MEMBER_OF"│
└──────────────────┴───────────────────────┘

The challenge with this approach is the harmonization of relationships. To avoid an
undesired proliferation of relationships between entities, fact extraction tools need
additional input about the types of relationships that are relevant and how to identify
and disambiguate them.

Question Answering: Natural Language as a Source of Facts for a Knowledge Graph | 237

Using Natural Language Query with a Knowledge Graph
You have seen how information rich a knowledge graph can be, and you have also
seen that you can get value from it through both visual exploration with tools like
Bloom and programmatic access with Cypher. While Bloom is more universal and
only requires a basic understanding of the domain, Cypher is only really accessible to
technical specialists. One way to widen the spectrum of potential users getting value
from a knowledge graph is by enabling natural-language-based interfaces. You are no
doubt used to interacting with personal assistants like Siri or Alexa using your voice
or having conversations with chatbots when contacting the customer support of any
of your service providers. While you are aware that you are exploring a knowledge
base, being able to articulate your questions in natural language lowers the barrier for
accessing the content. In the world of knowledge graphs, conversational interactions
require the translation of natural language into a structured query to the graph.

In this section, you will see a motivating example to guide you through the process.
The example shows how to implement a basic natural language interface for Neo4j’s
movie database. The NLP library used in this case will be spaCy, using its rule-based
matching capability.

If you are familiar with regular expressions, spaCy’s rule-based matcher engines take
this approach to the next level. In addition to finding words and phrases, they give
you access to the tokens within the document and their relationships. This means you
can easily access and analyze the surrounding tokens, combine them, process them to
make sense of the meaning of the natural language question, and ultimately be able to
translate it into a structured query in Cypher.

Before getting into the details, you can initialize the knowledge graph with the movies
dataset with a simple instruction on the Neo4j Browser, :play movies, and then click
through to have the nodes and relationships created. The resulting graph contains
two types of entities, Person and Movie, connected through relationships of type
ACTED_IN, DIRECTED, PRODUCED, WROTE, and REVIEWED. Figure 13-3 shows a small
excerpt of the resulting graph.

238 | Chapter 13: Talking to Your Knowledge Graph

https://spacy.io

Figure 13-3. Excerpt of the movie dataset

The central element of the rule-based matching capability in spaCy is called a
Matcher. A Matcher takes a configuration in the form of a rich pattern that describes
the type of structure you want to detect in the natural language text received as input.
Example 13-6 shows how to initialize and configure a Matcher.

Example 13-6. A Matcher capturing simple questions about movies (part 1)

import spacy
from spacy.matcher import Matcher

nlp = spacy.load('en_core_web_sm')

matcher = Matcher(vocab=nlp.vocab)

q1_pattern = [{"LOWER":"who"},
 {"LEMMA":
 {"IN": ["direct", "produce", "write", "review"]}, "POS": "VERB"},
 {'IS_ASCII': True, 'OP': '+'},
 {'IS_PUNCT': True, 'OP': '?'}]

matcher.add("q_1", patterns=[q1_pattern]) . # (1)

doc = nlp("do you know who wrote a few good men?") # (2)

result = matcher(doc, as_spans=True) # (3)

print(result)

Using Natural Language Query with a Knowledge Graph | 239

The sentence types that this pattern will capture are of the form “Who directed The
Da Vinci Code?” or “Do you know who wrote A Few Good Men?” You can get all
the details in the spaCy documentation, but you are defining a pattern with four
components (tokens):

• The word who described in its lowercase form. This means that if the input uses•
any case variant of it (Who, WHO, …), the pattern will still work.

• A verb—that is, what the part of speech configuration specifies "POS": "VERB"--•
having as lemma any of the ones in the list: direct, produce, write, review. A
lemma is the canonical form of a set of words. In this case, direct would be the
lemma for directs or directed.

• A word, any alphanumeric word (IS_ASCII), with one important modifier: it•
can appear one or more times. That is what the optionality modifier 'OP': '+'
specifies.

• The pattern ends with an optional punctuation sign. This would correspond•
to the question mark when used. It has been made optional (again with the
optionality modifier 'OP': '?') for the cases where the request is formulated in
an assertive way rather than as a question: “Tell me who wrote X.”

The pattern is added to the Matcher in (1), and when the sentence do you know
who wrote a few good men? is passed to the nlp method in (2), it does match the
pattern and will therefore be included in the results in (3). The result includes all the
information you need to transform the detected meaning into a valid Cypher query.
All you need is a way to map the different verbs that the second token in the pattern
can match to the relevant schema elements in your graph model.

A simple way to do this is to build a dictionary with the correspondences. In this pat‐
tern, the verbs correspond to relationships in the graph so the code in Example 13-7
should as well.

Example 13-7. A Matcher capturing simple questions about movies (part 2)

map tokens to graph schema elements
q1_verb_to_rel = {"direct" : "DIRECTED", "produce" : "PRODUCED",
 "write" : "WROTE", "review" : "REVIEWED"}

max_match = result[-1]
verb = max_match[1].lemma_ # (1)
title = ' '.join([tk.text for tk in max_match[2:] if tk.pos_ != 'PUNCT']) # (2)
query_as_cypher = "MATCH (p:Person)-[:{rel_type}]->(m:Movie) " \
 "WHERE toLower(m.title) CONTAINS '{movie_title}' " \
 "WITH collect(p.name) AS answer_as_list " \
 "RETURN CASE WHEN size(answer_as_list) > 0 THEN " \
 " substring(reduce" \

240 | Chapter 13: Talking to Your Knowledge Graph

https://oreil.ly/Tvivz

 "(result='', x in answer_as_list | result + ', ' + x),2) " \
 " ELSE \"I cannot answer your question about " \
 "'{movie_title}' \" end AS answer " \
 .format(rel_type=q1_verb_to_rel[verb], movie_title=title.lower()) # (3)

print(query_as_cypher)

You can extract the relevant tokens from the Span (a Span is a sequence of tokens in
spaCy terminology). In (1) the verb is extracted, followed by (2) where the collection
of words that represent the movie title in the sentence are also extracted. With the
results of (1) and (2), it’s easy to build a query that encodes the semantics of the
natural language received as input.

Ignoring the last four lines that take care of the formatting of the output, the query
synthesized by this process is the one you would expect from visually inspecting the
graph and is shown in Example 13-8.

Example 13-8. The Cypher query generated from a natural language fragment

MATCH (p:Person)-[:WROTE]->(m:Movie)
WHERE toLower(m.title) CONTAINS 'a few good men'
WITH collect(p.name) AS answer_as_list
RETURN CASE WHEN size(answer_as_list) > 0 THEN
 substring(reduce(result='', x in answer_as_list | result + ', ' + x),2)
 ELSE "I cannot answer your question about 'a few good men' "
 end as answer

You may be thinking that this is a quite scripted approach because you have to be
explicit about all the patterns that you want your Matcher to be aware of. That is
correct to some extent, but in the next section you will see how to fully automate
this by annotating the organizing principle in your knowledge graph. To understand
how this is possible, remember that the graph is a self-describing data structure.
You can ask the graph the types of entities, properties, and relationships that it’s
aware of just by calling the db.schema.* procedures. Some simple annotation on the
common natural language terms for the elements in the schema is all that’s needed
to dynamically create a rich natural language interface and have it evolve as the
knowledge graph evolves.

To complete this section, Example 13-9 shows the entire code of a rule-based con‐
versational interface with multiple different patterns interacting with a Neo4j graph
database.

Example 13-9. A conversational interface

import spacy
from spacy.matcher import Matcher
from neo4j import GraphDatabase, basic_auth

Using Natural Language Query with a Knowledge Graph | 241

driver = GraphDatabase.driver(
 "bolt://localhost:7687",
 auth=basic_auth("neo4j", "neo"))
session = driver.session(database="data") // 1

def query_db(session, cypher): // 2
 results = session.read_transaction(
 lambda tx: tx.run(cypher).data())
 return results[0]["answer"]

nlp = spacy.load('en_core_web_sm')

matcher = Matcher(vocab=nlp.vocab)

q1_pattern = [{"LOWER":"who"},
 {"LEMMA": {"IN": ["direct", "produce", "write", "review"]}, "POS": "VERB"},
 {'IS_ASCII': True, 'OP': '+'},
 {'IS_PUNCT': True, "OP":"?"}]

q1_verb_to_rel = {"direct" : "DIRECTED", "produce" : "PRODUCED",
 "write" : "WROTE", "review" : "REVIEWED"}
matcher.add("q_1", patterns=[q1_pattern]) // 3

q2_pattern = [{"LOWER": "when"},
 {"LEMMA": "be"},
 {'IS_ASCII': True, 'OP': '+'},
 {"LEMMA": {"IN": ["release","premiere"]}, "POS": "VERB", "OP":"?"},
 {"LEMMA": "out", "OP":"?"},
 {'IS_PUNCT': True, "OP":"?"}]

q2_word_to_prop = {"release" : "released",
 "premiere" : "released", "out" : "released"}
matcher.add("q_2", patterns=[q2_pattern])) // 4

q3_pattern = [{"LOWER": "who"},
 {"LEMMA": {"IN": ["act", "perform", "appear", "be"]},
 "POS": {"IN": ["VERB", "AUX"]}},
 {"LEMMA": "in"},
 {'IS_ASCII': True, 'OP': '+'},
 {'IS_PUNCT': True, "OP":"?"}]

matcher.add("q_3", patterns=[q3_pattern])) // 5

def process_question(question): // 6
 doc = nlp(question)

 result = matcher(doc, as_spans=True)

242 | Chapter 13: Talking to Your Knowledge Graph

 if (len(result) > 0):
 max_match = result[-1]
 pattern_detected = nlp.vocab[max_match.label].text // 7
 if (pattern_detected == 'q_1'):
 verb = max_match[1].lemma_
 title = ' '.join([tk.text for tk in max_match[2:] if tk.pos_ != 'PUNCT'])
 query_as_cypher = "MATCH (p:Person)-[:{rel_type}]->(m:Movie) " \
 "WHERE toLower(m.title) CONTAINS '{movie_title}' " \
 "WITH COLLECT(p.name) AS answer_as_list " \
 "RETURN CASE WHEN size(answer_as_list) > 0 THEN " \
 " substring(reduce(result='', x in answer_as_list" \
 " | result + ', ' + x),2) " \
 " ELSE \"I cannot answer your question about " \
 "'{movie_title}' \" end AS answer " \
 .format(rel_type=q1_verb_to_rel[verb], movie_title=title.lower())

 elif (pattern_detected == 'q_2'):
 word_pos = -2 if max_match[-1].is_punct else -1
 word = max_match[word_pos].lemma_
 title = ' '.join([tk.text for tk in max_match[2:word_pos]])
 query_as_cypher = "MATCH (m:Movie) " \
 "WHERE toLower(m.title) CONTAINS '{movie_title}' " \
 "WITH collect(m.{movie_prop}) AS answer_as_list " \
 "RETURN CASE WHEN size(answer_as_list) > 0 THEN " \
 " substring(reduce(result='', x in answer_as_list" \
 " | result + ', ' + x),2) " \
 " ELSE \"I cannot answer your question about " \
 "'{movie_title}' \" end AS answer " \
 .format(movie_prop=q2_word_to_prop[word], movie_title=title.lower())

 elif (pattern_detected == 'q_3'):
 title = ' '.join([tk.text for tk in max_match[3:-1]])
 query_as_cypher = "MATCH (p:Person)-[:ACTED_IN]->(m:Movie) " \
 "WHERE toLower(m.title) CONTAINS '{movie_title}' " \
 "WITH collect(p.name) AS answer_as_list " \
 "RETURN CASE WHEN size(answer_as_list) > 0 THEN" \
 " substring(reduce(result='', x in answer_as_list |" \
 " result + ', ' + x),2) " \
 " ELSE \"I cannot answer your question about " \
 "'{movie_title}' \" end AS answer " \
 .format(movie_title=title.lower())

 print("Q:", question)
 print("A:", query_db(session, query_as_cypher))
 print("Explain:", query_as_cypher[:90], "...\n")

questions = ["could you tell me who reviewed the Da Vinci code?",
 "who directed unforgiven ?",
 "do you happen to know who appears in Jerry Maguire?",
 "Who acts in Apollo 13?",
 "tell me when was the birdcage released",

Using Natural Language Query with a Knowledge Graph | 243

 "do you know who produced the matrix reloaded?",
 "do you remember who was in cloud atlas?",
 "name the person who wrote When Harry Met Sally",
 "when was top gun out?"] // 8

for question in questions:
 process_question(question) // 9

driver.close()

Example 13-9 starts by initializing a driver and a session to talk to the knowledge
graph in (1). In (2) a function query_db is defined to use the session created in
(1) and run a read query. It takes only one parameter, the Cypher query itself, and
returns a string with the result of running the query on the graph. In (3), (4), and
(5) you register each pattern with a unique identifier for the type of queries that it
describes. This will be useful in (7) to identify which of the patterns has been detected
in the text and generate the right Cypher query by following the relevant branch in
the if structure. The whole processing of the text has been bundled in a function
called process_question defined in (6), which takes the natural language question
and prints out three values: the original question in natural language, the answer
to the question returned from running the Cypher translation against the movies
knowledge graph, and the Cypher query itself as an explanation.

A few natural language sentences are defined in (8) and used as a test in (9),
producing the results shown in Example 13-10. (Note that the queries have been
truncated for brevity, but the final fragment is very similar to the one generated in
Example 13-8 and can also be gleaned from the source code in Example 13-9.)

Example 13-10. Results of processing natural language questions on the movie database

Q: could you tell me who reviewed the Da Vinci code?
A: Jessica Thompson, James Thompson
Explain: MATCH (p:Person)-[:REVIEWED]->(m:Movie)
 WHERE toLower(m.title) CONTAINS 'the da vinci code ...

Q: who directed unforgiven ?
A: Clint Eastwood
Explain: MATCH (p:Person)-[:DIRECTED]->(m:Movie)
 WHERE toLower(m.title) CONTAINS 'unforgiven' WITH ...

Q: do you happen to know who appears in Jerry Maguire?
A: Bonnie Hunt, Jay Mohr, Cuba Gooding Jr., Jonathan Lipnicki, ...
Explain: MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
 WHERE toLower(m.title) CONTAINS 'jerry maguire' wi ...

Q: Who acts in Apollo 13?
A: Tom Hanks, Ed Harris, Gary Sinise, Kevin Bacon, Bill Paxton

244 | Chapter 13: Talking to Your Knowledge Graph

Explain: MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
 WHERE toLower(m.title) CONTAINS 'apollo 13' WITH c ...

Q: tell me when was the birdcage released
A: 1996
Explain: MATCH (m:Movie)
 WHERE toLower(m.title) CONTAINS 'the birdcage'
 WITH collect(m.released) AS ...

Q: do you know who produced the matrix reloaded?
A: Joel Silver
Explain: MATCH (p:Person)-[:PRODUCED]->(m:Movie)
 WHERE toLower(m.title) CONTAINS 'the matrix reload ...

Q: do you remember who was in cloud atlas?
A: Tom Hanks, Jim Broadbent, Halle Berry, Hugo Weaving
Explain: MATCH (p:Person)-[:ACTED_IN]->(m:Movie)
 WHERE toLower(m.title) CONTAINS 'cloud a ...

Q: name the person who wrote When Harry Met Sally
A: Nora Ephron
Explain: MATCH (p:Person)-[:WROTE]->(m:Movie)
 WHERE toLower(m.title) CONTAINS 'when harry met sally ...

Q: when was top gun out?
A: 1986
Explain: MATCH (m:Movie)
 WHERE toLower(m.title) CONTAINS 'top gun'
 WITH collect(m.release...

Natural Language Generation from Knowledge Graphs
Often there’s a need to generate natural language out of a knowledge graph. Examples
of this can be generating a report in natural language from an investigative exercise in
a graph (such as the Panama Papers investigation) or just the results of a query as the
output of a conversational interface.

In this context, the self-describing nature of graph data gives a substantial advantage.
Start with the basic (but still largely valid) modeling approach that transforms nouns
in nodes in the graph and verbs in relationships. A good example is the already
famous sentence “Dan loves Ann.” When modeled as a graph, it becomes two nodes
representing the two nouns Dan and Ann and one relationship connecting Dan to
Ann representing the verb to love.

If you invert this logic and generalize it, you can produce a simple protosentence
of the form “subject-predicate-object” by just concatenating the words identifying
any pair of nodes in a graph, connected by a word identifying the relationship. An
example of a minimal subgraph extracted from the Panama Papers database can be
created with the script in Example 13-11.

Natural Language Generation from Knowledge Graphs | 245

https://oreil.ly/Yq83_

Example 13-11. A simple fragment from the Panama Papers dataset

MERGE (x:Entity { name: "Euroyacht Limited" , jurisdiction: "BM" })
MERGE (y:Entity { name: "TUC LIMITED", jurisdiction: "MLT",
 incorporation_date: date("2013-10-07")})
MERGE (z:Entity {name: "GLOBAL TUITION & EDUCATION INSURANCE CORPORATION",
 jurisdiction: "BRB", incorporation_date: date("1998-04-03") })
MERGE (x)-[:OFFICER_OF]->(y)
MERGE (x)-[:OFFICER_OF]->(z)

Now you can write a completely generic query capturing any pair of nodes connected
by a relationship (pattern (x)-[r]->(y)) and returning a string built by concatenat‐
ing the three elements to form the basic sentence shown in Example 13-12.

Example 13-12. A completely generic query producing basic sentences from the graph
structure and data

MATCH (x)-[r]->(y)
RETURN x.name + " " + toLower(replace(type(r),"_"," ")) + " " + y.name AS sentence

Notice that the query contains some basic formatting like adding a couple of white‐
spaces to separate words and replacing the underscores in names with whitespaces to
make it even more natural. Nothing very sophisticated for this initial example. The
query produces the results shown in Example 13-13, which are surprisingly close to
correct English.

Example 13-13. Result of running a completely generic query producing a basic English
sentence from the graph structure and data

╒══╕
│"sentence" │
╞══╡
│"Euroyacht Limited officer of GLOBAL TUITION & EDUCATION INSURANCE CORPORATION" │
├──┤
│"Euroyacht Limited officer of TUC LIMITED" │
└──┘

Given the fact that the query is totally generic in the sense that it does not contain
any schema-specific elements, it would be valid for any graph. Taking this same query
and running it on the movie database shipped with Neo4j (just run the :play movies
command) would produce sentences like “Keanu Reeves acted in Johnny Mnemonic.”

It’s quite good value for two lines of code. But it does not stop here. The same concept
can be applied to the properties of a node too, as shown in Example 13-14.

246 | Chapter 13: Talking to Your Knowledge Graph

Example 13-14. Another completely generic query producing basic sentences from the
graph structure and data

MATCH (n:Entity) UNWIND keys(n) AS property
RETURN n.name + "'s " + replace(property,"_"," ") + " is " + n[property] AS sentence

This property-oriented query produces results shown in Example 13-15 that are once
again decent English fragments.

Example 13-15. Result of running a completely generic query producing a basic sentence
from the graph structure and data

╒══╕
│"sentence" │
╞══╡
│"Euroyacht Limited's jurisdiction is BM" │
├──┤
│"TUC LIMITED's jurisdiction is MLT" │
├──┤
│"TUC LIMITED's incorporation date is 20113-10-07" │
├──┤
│"GLOBAL TUITION & EDUCATION INSURANCE CORPORATION's jurisdiction is BRB" │
├──┤
│"GLOBAL TUITION & EDUCATION INSURANCE CORPORATION's incorporation date is │
│ 1998-04-03" │
└──┘

This is a great starting point that reflects practically how the structure captured by a
knowledge graph can be directly read and used to generate natural language. This is
empiric confirmation that graphs capture the understanding of a domain similar to
humans. It’s quite straightforward to read the information from a knowledge graph
and express it in natural language.

But there are a couple of points that have been temporarily ignored in the previous
examples and that are important in this process. If you paid close attention, you
might have noticed that the previous queries were not completely generic; they
did actually contain one schema element: the property name. Generating subject-
predicate-object sentences requires having a way to name things (nodes). The pre‐
vious queries assumed that there would always be a name property, which is not
necessarily the case. For a generally valid solution, a way of referring to nodes would
be required.

Another thing to keep in mind is that, depending on how relationships and proper‐
ties are named (the graph’s schema), the resulting sentences will be more or less
readable. Think of the sentence that would result from a relationship called sub_109.
A generally valid solution will want to detach itself from the actual schema element
names. While it can be practical to have a relationship named sub_109 to be able

Natural Language Generation from Knowledge Graphs | 247

to write compact Cypher queries, a natural-language-oriented annotation of the
property would be required to make the two independent of each other.

Finally, the previous queries navigated outgoing relationships (from source to target).
But sometimes exploring incoming relationships is required. Linguistically, that’s
a challenge since Person - ACTED_IN - Movie or Entity - HAS_JURISDICTION
- Jurisdiction only reads correctly one way around. You solve this problem by
providing additional annotation for relationships for navigation in both directions
containing the reciprocal natural language: MOVIE - FEATURED - Actor for example.
But a more general approach can be achieved through annotating the knowledge
graph’s ontology, which is explored next.

Annotating the Knowledge Graph’s Organizing Principle to Drive
Natural Language Generation
This section presents an automated approach for generating natural language from
a property graph by creating and annotating an ontology with information that
a general-purpose natural language generator uses to produce high-quality natural
language from the data. It’s assumed that such ontology will be stored along with
the instance data in such a way that the natural language engine will have access
to both, but it’s important to understand that this approach could be generalized to
follow alternative architectures: the ontology could be read directly from an external
repository, stored in a separate graph in a fabric configuration, and so on.

The starting point is to create and store the ontology of the knowledge graph. An
ontology can be formalized using W3C standards like RDF Schema or OWL and then
imported into Neo4j using the neosemantics plugin or, alternatively, created as a set
of nodes and relationships directly in Neo4j.

The ontology contains descriptions for the types of entities that will be described
using natural language. This declarative description of the schema can also be seen as
the configuration for a general-purpose natural language generation engine to work.

The examples use the movies database that contains nodes of type Person and Movie.
The first requirement is to identify for each node type the property that will be used
to refer to the node. In the case of nodes of type Person, it will be the property
name, and for nodes of type Movie, it will be the property title. This can be formally
described using OWL, as shown in Example 13-16.

Example 13-16. Ontology annotated with information on entity names

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix talk: <http://www.neo4j.org/2022/07/talkable#> .

248 | Chapter 13: Talking to Your Knowledge Graph

@prefix mv: <http://www.neo4j.org/sch/movies#> .

 mv:Movie rdf:type owl:Class ;
 talk:name "title" ;
 rdfs:label "Movie" .

 mv:Person rdf:type owl:Class ;
 talk:name "name" ;
 rdfs:label "Person" .

This can be generated either manually or with any ontology modeling tool and
then imported into Neo4j using the neosemantics plugin in one line, as shown in
Example 13-17.

Example 13-17. Code to import an ontology into Neo4j

CALL n10s.onto.import.fetch("file containing the onto","Turtle")

If compliance with W3C standards is important to your project and/or reuse of
existing ontologies, then the previous two steps will be extremely useful. If that does
not apply to you, the same can be achieved with Cypher, as shown in Example 13-18.

Example 13-18. Creating an organizing principle with plain Cypher

CREATE (:Class { "name":"title","label":"Movie" })

These annotated class definitions help the engine determine how to refer to nodes
when producing a natural language sentence. When talking about a Movie, you will
use its title, and when talking about a Person, you will use its name property. The
next thing is to describe and annotate relationships. Example 13-19 shows how.

Example 13-19. Ontology annotated with information on relationships

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix talk: <http://www.neo4j.org/2022/07/talkable#> .
@prefix mv: <http://www.neo4j.org/sch/movies#> .

mv:ACTED_IN rdf:type owl:ObjectProperty ;
 rdfs:domain mv:Person ;
 rdfs:range mv:Movie ;
 talk:direct "acted in"@default ,
 "is in the cast of"@long ,
 "worked in"@short ;
 talk:inverse "has $o in it"@default ,
 "includes"@short ,
 "includes $o in its cast"@long ;

Natural Language Generation from Knowledge Graphs | 249

 rdfs:label "ACTED_IN" .

mv:WROTE rdf:type owl:ObjectProperty ;
 rdfs:domain mv:Person ;
 rdfs:range mv:Movie ;
 talk:direct "is the author of"@default ,
 "wrote"@short ,
 "wrote the script of"@long ;
 talk:inverse "is authored by"@default ,
 "is written by"@long ,
 "is by"@short ;
 rdfs:label "WROTE" .

For each of the relationships in the knowledge graph that you’d like to express in
natural language, you need to provide the source and target in the form of domain
and range and annotate them with both a direct and inverse way of navigating it.
What that means is that when traversing the relationship in the natural direction—
in the case of ACTED_IN, that would be from the Person to the Movie—use one of
the direct expressions: “person X is in the cast of movie Y.” But when navigating
the relationship in the inverse way (from Movie to Person), take one of the inverse
expressions: “movie Y includes person X.” Multiple versions of the natural language
to be generated from the relationship are provided. In the example, there is a long
and a short form, but you could have a formal and a casual one chosen, depending on
context. Finally, parameters are used to add more flexibility to the natural language
generated (noted with the $ sign). Sometimes the basic pattern subject-predicate-
object is too limiting to generate richer expressions. When you want to describe the
ACTED_IN connection between Keanu Reeves and the movie The Matrix in natural
language, for example, you express it with a sentence like "The Matrix has Keanu
Reeves in it.” The object (Keanu Reeves) is embedded in the sentence rather than
appended at the end.

Finally, a similar definition for node properties is provided, as shown in Exam‐
ple 13-20.

Example 13-20. Ontology annotated with information on node properties

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix talk: <http://www.neo4j.org/2022/07/talkable#> .
@prefix mv: <http://www.neo4j.org/sch/movies#> .

mv:born rdf:type owl:DatatypeProperty ;
 rdfs:domain mv:Person ;
 talk:direct "The birth year of $s was"@long ,
 "spawned in"@short ,
 "was born in"@default ;

250 | Chapter 13: Talking to Your Knowledge Graph

 rdfs:label "born" .

mv:released rdf:type owl:DatatypeProperty ;
 rdfs:domain mv:Movie ;
 talk:direct "premiered in"@short ,
 "The release year of $s was"@long ,
 "was released in"@default ;
 rdfs:label "released" .

mv:tagline rdf:type owl:DatatypeProperty ;
 rdfs:domain mv:Movie ;
 talk:direct "'s tagline goes: '$o'"@default ,
 "'s tagline is"@short ,
 "the tagline for $s was"@long ;
 rdfs:label "tagline" .

With this type of description stored in the graph along with the data, the Cypher
expression in Example 13-21 can dynamically generate a natural language description
of any given node.

Example 13-21. A Cypher natural language generating engine driven by the ontology

MATCH (n)-[r]-(o) WHERE id(n) = $entity_id
MATCH (cn:Class)<-[:domain|range]-(op:ObjectProperty)-[:domain|range]->(co:Class)
WHERE type(r) IN op.label
 AND (op.direct IS NOT NULL OR op.inverse IS NOT NULL)
 AND [x in labels(n) where x <> "Resource"][0] IN cn.label
 AND [x in labels(o) where x <> "Resource"][0] IN co.label
WITH n[cn.name[0]] AS subj ,
 n10s.rdf.getLangValue("default" ,
 op[case when startNode(r) = n THEN "direct" else "inverse" end]) AS pred ,
 substring(reduce(res="", x IN collect(o[co.name[0]]) | res +","+ x),1) AS obj
WITH CASE WHEN pred CONTAINS '$s' THEN '' ELSE subj end AS subj ,
 replace(replace(pred,'$o',obj),'$s',subj) AS pred,
 CASE WHEN pred CONTAINS '$o' THEN '' ELSE obj end AS obj
RETURN subj + " " + pred + " " + obj AS sentence

Example 13-21 can produce competent sentences like those in Example 13-22.

Natural Language Generation from Knowledge Graphs | 251

Example 13-22. A Cypher natural language generating engine driven by the ontology

╒══╕
│"sentence" │
╞══╡
│"Lilly Wachowski wrote V for Vendetta,Speed Racer" │
├──┤
│"Laurence Fishburne worked in The Matrix Revolutions,The Matrix Reload│
│ed,The Matrix" │
├──┤
│"Hugo Weaving worked in Cloud Atlas,V for Vendetta,The Matrix Revoluti│
│ons,The Matrix Reloaded,The Matrix" │
├──┤
│"Lana Wachowski wrote V for Vendetta,Speed Racer" │
├──┤
│"Emil Eifrem worked in The Matrix" │
└──┘

This approach offers a pure Cypher solution to the generation of natural language
from a knowledge graph by using an ontology as a configuration artifact. For any
given X, it returns a natural language description of “all the knowledge graph knows
about X”. While this can be useful for generating documentation and similar use
cases, it’s still quite limited.

More sophisticated approaches can include the use of lexical databases like WordNet
or ML elements that can learn from common expressions and eventually reconfigure
themselves instead of requiring manual sentence pattern definitions.

Example 13-23 shows a small fragment of a real-world example using the open source
bot framework Rasa. Rasa includes “knowledge base actions” to leverage information
from external databases and can be used to interact with a knowledge graph built on
Neo4j.

Example 13-23. Connecting the Rasa open source bot framework to a Neo4j knowledge
graph

from rasa_sdk.knowledge_base.storage import KnowledgeBase
from rasa_sdk.knowledge_base.actions import ActionQueryKnowledgeBase

class MyKnowledgeBaseAction(ActionQueryKnowledgeBase):
 def __init__(self):
 knowledge_base = KnowledgeBase("ref to neo4j")
 super().__init__(knowledge_base)

252 | Chapter 13: Talking to Your Knowledge Graph

https://oreil.ly/dzGj-
https://rasa.com

Working with Lexical Databases
WordNet is a lexical database of English. Nouns, verbs, adjectives, and adverbs are
grouped into sets of cognitive synonyms (called synsets), each expressing a distinct
concept. Synsets are interlinked by means of conceptual-semantic and lexical rela‐
tions. The result is a network of elements that can be stored naturally in a graph.

Before exploring some of the possibilities for analyzing the WordNet database as a
graph, it’s worth understanding how to construct that graph. Use a public version
of WordNet published by the Global WordNet Association. The latest release can be
found in the WordNet GitHub repository.

One of the formats available for WordNet is RDF. This simplifies things significantly
because you can automate importing RDF into Neo4j, as shown in Example 13-24.

Example 13-24. Importing RDF into your knowledge graph using Cypher

CREATE CONSTRAINT n10s_unique_uri ON (r:Resource)
 ASSERT r.uri IS UNIQUE

CALL n10s.graphconfig.init({handleVocabUris : "IGNORE"});

CALL n10s.rdf.import.fetch(".../english-wordnet-2021.ttl.gz","Turtle");

Figure 13-4 shows a fragment of the structure (schema) of the graph, whose form is
Lexical Entry–Lexical Sense–Lexical Concept.

Figure 13-4. The main graph pattern in the WordNet knowledge graph

An explicit and detailed graph representation of a lexical database like WordNet has
many different uses, but most importantly, it gives control over its content and makes
it possible to adapt and extend it for specific uses. But first, it’s interesting to try some
basic queries over the graph that return meanings of words or reveal the nature of
certain words, such as their precision or their ambiguity.

WordNet can be used to get all possible meanings of a word or a set of words. Most
queries in this analysis will be based on a traversal of the main graph pattern Form–
Lexical Entry–Lexical Sense–Lexical Concept, shown in Figure 13-4.

The Cypher query shown in Example 13-25 returns all the meanings for the word
clear.

Working with Lexical Databases | 253

https://oreil.ly/saBy2
https://oreil.ly/Iqc-V
https://oreil.ly/pHPKh

Example 13-25. A Cypher query that returns all the meanings for the word clear

MATCH (lemma:Form)<-[:canonicalForm]-(le:LexicalEntry)
 -[:sense]->()-[:isLexicalizedSenseOf]->(concept)
WHERE lemma.writtenRep = "clear"
RETURN le.partOfSpeech AS PoS, concept.definition AS definition

The results are numerous since clear is a word that can act as a noun, a verb, an
adjective, or an adverb. The query returns the results in tabular form, and they match
the ones you can get from querying WordNet through their public online search
interface (see Figure 13-5).

Figure 13-5. WordNet results for the meaning of clear are the same in the Neo4j Browser
(left) and WordNet’s web interface (right)

Example 13-26 shows how a slightly modified version of the query can be used to
return a graph visualization of meanings (LexicalConcepts) of the word clear.

Example 13-26. A Cypher query that retrieves a graph visualization of meanings of the
word clear

MATCH path = (lemma:Form)<-[:canonicalForm]-(:LexicalEntry)
 -[:sense]->()-[:isLexicalizedSenseOf]->()
WHERE lemma.writtenRep = "clear"
RETURN path

In Figure 13-6, you can see the lexical concepts playing the role of a verb, adjectives,
adverbs, and nouns in different components of the graph.

254 | Chapter 13: Talking to Your Knowledge Graph

https://oreil.ly/-BCyd
https://oreil.ly/-BCyd

Figure 13-6. A graph visualization of the meanings of the word clear in Neo4j Bloom,
with verbs, adjectives, adverbs, and nouns

Aggregations can be used to find the most polysemic words (words with multiple
meanings) in English. It’s just about counting the number of Lexical Entry–Lexical
Sense–Lexical Concept patterns coming out of a given word or set of words (Word‐
Net uses the term lemma, or a canonical or dictionary form for this). The query in
Example 13-27 produces a list of the five most polysemic words.

Example 13-27. A Cypher query to find the top five words with the most meanings

MATCH (lemma:Form)
RETURN lemma.writtenRep AS lemma,
 size((lemma)<-[:canonicalForm]-(:LexicalEntry)-[:sense]->())
 AS senseCount
ORDER BY senseCount DESC LIMIT 5

The top five polysemic words in the current version of WordNet (2021) are shown in
Table 13-1.

Working with Lexical Databases | 255

Table 13-1. Top five words with the most meanings

lemma senseCount
break 75

cut 70

run 57

play 52

make 51

An inverse lookup is more interesting. With WordNet in a knowledge graph, you
can find the opposite pattern by traversing the same graph pattern in the opposite
direction, starting from a concept and navigating out to find all the words in the
English language that can be used to express it. Figure 13-7 shows the three ways of
expressing the concept of being unsuccessful.

Figure 13-7. Three ways to be unsuccessful

But which concepts have the most ways to express them? The query in Exam‐
ple 13-28 performs the traversals, aggregates the results, and sorts them by lemmas
per lexical concept.

Example 13-28. A Cypher query that finds concepts that have many words to express
them

MATCH (lemma:Form)<-[:canonicalForm]-(:LexicalEntry)-[:sense]->
 (s)-[:isLexicalizedSenseOf]->(con:LexicalConcept)
RETURN con.definition AS concept, count(lemma.writtenRep)
 AS wordCount, collect(lemma.writtenRep) AS words
ORDER BY wordCount DESC LIMIT 10

256 | Chapter 13: Talking to Your Knowledge Graph

The results are quite interesting, should you choose to run that code snippet. Now
you can dive into some of the more advanced features of WordNet.

Our WordNet graph is enriched with semantic relationships between lexical concepts.
The list of relationships is quite extensive. You will find hypernymy (being more
general than), hyponymy (being more specific than), meronymy (being part of), and
many more. The complete list can be explored using the CALL db.relationship
Types() method. The first two (hyper/hypo) form a taxonomy in the graph. You can
navigate the graph to expand the analysis of a concept and find more specific (or
alternatively, more generic) meanings for it. At the lemma level, this can be used to
find more generic or more specific words.

The path in Figure 13-8 shows that sphere is a more general term for globe for the
specific meaning a sphere on which a map (especially of the earth) is represented.

Figure 13-8. A globe is a kind of a sphere

On a more practical level, the exploration of these taxonomies has been used to
define semantic similarity metrics between lexical concepts.

Graph-Based Semantic Similarity
Some of the most popular NLP libraries implement a number of standard semantic
similarity metrics. These metrics turn out to be based on the exploration of paths in
the lexical knowledge graph. You will explore three of the most commonly used ones
and reproduce them using Cypher. You will also see how being able to customize the
graph by adding terms and concepts specific to your domain can help you to use
these metrics in multiple scenarios.

Graph-Based Semantic Similarity | 257

Path Similarity
The path similarity metric is based on the shortest path that connects the two lexical
concepts in the taxonomy. Figure 13-9 shows how it is calculated.

Figure 13-9. How path similarity is calculated

You can test it by comparing the similarity between the concepts denoted by the
words dog and lion. The graph representation in Figure 13-10 shows the hypernym
taxonomy between the concepts denoted by dog and lion, and you can see that the
path is of length 5.

Figure 13-10. The shortest path between the concepts of dog and lion

The Cypher implementation of path similarity is shown in Example 13-29.

Example 13-29. A Cypher implementation of path similarity

MATCH (a:LexicalConcept {uri: $a_id})
MATCH (b:LexicalConcept {uri: $b_id })
MATCH p = shortestPath((a)-[:hypernym*0..]-(b))
WITH a, b, length(p) AS pathLen

258 | Chapter 13: Talking to Your Knowledge Graph

RETURN a.definition AS a_def, b.definition
 AS b_def, pathLen, 1.0/(1+pathLen) AS pathSim

When run for params {a_id: "https://en-word.net/id/oewn-02086723-n",

b_id: "https://en-word.net/id/oewn-02131817-n" } (the unique identifiers of
the lexical concepts denoted by dog and lion, respectively), the Cypher query returns
the results in Table 13-2.

Table 13-2. Dog and lion concepts, path length, and similarity

a_def b_def pathLen pathSim
“a member of the genus Canis (probably descended from
the common wolf) that has been domesticated by man since
prehistoric times; occurs in many breeds”

“large gregarious
predatory feline of
Africa and India
having a tawny coat
with a shaggy mane
in the male”

5 0.16666666666666666

The same results can be achieved using some popular NLP libraries. In this section,
the Natural Language Toolkit for Python, more commonly known as NLTK, is used.
The Python code snippet in Example 13-30 calls the path_similarity method in a
synset to return that metric.

Example 13-30. Calling the path similarity method in Python via NLTK

from nltk.corpus import wordnet as wn

dog = wn.synset('dog.n.01')
lion = wn.synset('lion.n.01')
print(dog.definition())
print(lion.definition())
print(dog.path_similarity(lion))

That code produces exactly the same results you got with the Cypher query, shown in
Example 13-31.

Example 13-31. The results for path similarity from calling NLTK are the same as those
from Cypher

a member of the genus Canis (probably descended from the common wolf) that has been
domesticated by man since prehistoric times; occurs in many breeds

large gregarious predatory feline of Africa and India having a tawny coat with a
shaggy mane in the male

0.16666666666666666

Graph-Based Semantic Similarity | 259

https://www.nltk.org

Why use Cypher instead of NLTK? There are several advantages to being able to
control the implementation of the similarity algorithm:

• There is no dependency on the version of WordNet currently supported by•
NLTK. At this writing, NLTK supports WordNet 3.0 only, which is years behind
the current version. Though in the example the results from the graph and those
from NLTK are identical, it is easy to find cases where they are different.

• New lexical terms and associated lexical concepts can be added to the graph•
to provide domain-specific detail in areas not covered by WordNet. All that’s
needed is to extend the graph by adding the relevant nodes and the relationships
representing these entities.

• The previous point taken to the extreme means it’s possible to apply these metrics•
to any other taxonomic organization not necessarily based on WordNet.

• The algorithm itself can be modified and adapted if desired.•

Some of these advantages will be evident on analysis of the metrics in the following
sections.

Leacock-Chodorow Similarity
The Leacock-Chodorow similarity metric adds one extra element to the computation,
and that is the depth of the taxonomy. You can easily compute the depth of a taxon‐
omy as the greatest length of the path between any element and the root element.
The way to get the depth of a taxonomy in Cypher is by using variable-length path
expressions, as shown in Example 13-32.

Example 13-32. A Cypher query that finds the depth of the taxonomy

MATCH path = (leaf:LexicalConcept)-[:hypernym*0..]->(root)
WHERE NOT EXISTS (()-[:hypernym]->(leaf))
 AND NOT EXISTS ((root)-[:hypernym]->())
RETURN max(length(path)) AS maxTaxonomyDepth

The query returns the value 19 for this graph, the global maximum.

There is not always a single root category that all categories are connected directly
or indirectly to. There are graphs (WordNet is one of them) where there are multiple
root elements or, in other words, multiple disconnected taxonomies. In those cases,
you need to compute the depth of the taxonomy containing the elements being
compared.

The Leacock-Chodorow similarity metric is defined by the formula in Figure 13-11.

260 | Chapter 13: Talking to Your Knowledge Graph

Figure 13-11. The Leacock-Chodorow distance formula finds the depth of the taxonomy

This metric boosts similarities that happen in deeper hierarchies. And as in the
previous case, the metric can be implemented using Cypher over your WordNet
knowledge graph, as shown in Example 13-33.

Example 13-33. A Cypher implementation of the Leacock distance formula

MATCH (a:LexicalConcept {uri: $a_id})
MATCH (b:LexicalConcept {uri: $b_id })
MATCH p = shortestPath((a)-[:hypernym*0..]-(b))
WITH a, b, length(p) AS pathLen
RETURN a.definition AS a_def, b.definition AS b_def,
 pathLen, -log10(pathLen/(2.0*$depth)) AS LCSim

Again, using Cypher produces results similar to the ones obtained by using the NLTK
version, shown in Example 13-34.

Example 13-34. Cypher and NLTK produce similar results

from nltk.corpus import wordnet as wn

dog = wn.synset('dog.n.01')
lion = wn.synset('lion.n.01')
print(dog.definition())
print(lion.definition())
print(wn.lch_similarity(dog, lion))

Wu and Palmer Similarity
The Wu and Palmer similarity metric is based on the notion of the least common
subsumer (LCS). The LCS is the most specific ancestor node of the two elements that
are being compared.

The metric combines the depths of the two elements being compared and that of
their LCS as defined by the formula in Figure 13-12.

Graph-Based Semantic Similarity | 261

Figure 13-12. The Wu-Palmer distance formula

To explain the calculation of the metric with the example you have been using in
the previous sections, you need to provide additional context on the position in the
overall WordNet taxonomy of the lexical concepts denoted by dog and lion. The
diagram in Figure 13-13 shows the key elements for the Wu and Palmer metric.

Figure 13-13. The Wu-Palmer distance

To get the LCS with Cypher, you need to draw two variable-length patterns converg‐
ing on the LCS, as shown in Example 13-35.

Example 13-35. Cypher implementation of the Wu-Palmer distance formula

MATCH (a:LexicalConcept {uri: $a_id})
MATCH (b:LexicalConcept {uri: $b_id })
MATCH p = (a)-[:hypernym*0..]->(lcs)<-[:hypernym*0..]-(b)
WITH a, b, lcs, length(p) AS pathLen
MATCH p = (lcs)-[:hypernym*0..]->(root)
 WHERE NOT (root)-[:hypernym]->()
RETURN lcs.definition AS lcs_def, lcs.uri AS lcs_id,
 length(p) AS lcs_depth
ORDER BY pathLen LIMIT 1

Table 13-3 shows the results.

262 | Chapter 13: Talking to Your Knowledge Graph

Table 13-3. Using the Cypher implementation of Wu-Palmer distance formula to determine
the LCS

lcs_def lcs_id lcs_depth
a terrestrial or aquatic flesh-eating mammal https://en-word.net/id/oewn-02077948-n 11

Once you have the LCS, calculating the Wu and Palmer similarity metric is straight‐
forward, as shown in Example 13-36.

Example 13-36. Calculating the Wu and Palmer similarity metric in Cypher

MATCH (a:LexicalConcept {uri: $a_id})
MATCH (b:LexicalConcept {uri: $b_id })
MATCH (lcs:LexicalConcept {uri: $lcs_id })
MATCH a_to_lcs = (a)-[:hypernym*0..]->(lcs)
MATCH b_to_lcs = (b)-[:hypernym*0..]->(lcs)
WITH a, b, lcs, length(a_to_lcs) AS depth_a,
 length(b_to_lcs) AS depth_b
RETURN (2.0 * $lcs_depth) / (2.0 * $lcs_depth + depth_a + depth_b)
 AS wp_sim

As in the previous metrics, we’ll show how to achieve the same using NLTK directly.
It’s not very different from what you saw for Leacock-Chodorow, just a different
function name, as shown in Example 13-37.

Example 13-37. Calculating the Wu and Palmer similarity metric in Python

from nltk.corpus import wordnet as wn

dog = wn.synset('dog.n.01')
lion = wn.synset('lion.n.01')
print(dog.definition())
print(lion.definition())
print(wn.wup_similarity(dog, lion))

One of the advantages of storing the lexical database in a knowledge graph is that it
introduces transparency in an otherwise black box solution. This is reflected in the
fact that the knowledge graph is a dynamic entity that allows for the addition of new
elements.

What is the process for adding a new entity to the WordNet knowledge graph in
Neo4j? Well, first you need to construct the pattern Form–Lexical Entry–Lexical
Sense–Lexical Concept. This requires the concepts of proprietary software and open
source software as hyponyms of software.

In Example 13-38, the set of CREATE statements in Cypher adds the nodes and
relationships representing the lemmas (Form and LexicalEntry) that identify the

Graph-Based Semantic Similarity | 263

https://en-word.net/id/oewn-02077948-n

sets of words proprietary software and closed-source software, both denoting the same
meaning (LexicalConcept) with the following definition: computer software released
under a license restricting use, study, or redistribution. To complete the pattern defined
in WordNet, you must also include the intermediate LexicalSense.

Example 13-38. Adding lexical concepts to the knowledge graph in Cypher

CREATE (lc:LexicalConcept:Noun
 { subject:"noun.communication",
 partOfSpeech:"Noun",
 definition:"computer software released under a license
 restricting use, study or redistribution",
 uri:"https://custom.extension/id/15349-n",
 example:["the use of proprietary software is not allowed in our organization"]
 })
CREATE (ls1:LexicalSense
 {uri: "https://custom.extension/lemma/prop-soft#15349"})
CREATE (lc)<-[:isLexicalizedSenseOf]-(ls1)
CREATE (le1:LexicalEntry:Noun
 { canonicalForm: "proprietary software",
 partOfSpeech: "Noun",
 uri: "https://custom.extension/lemma/prop-soft#prop-soft-n"
 })
CREATE (ls1)<-[:sense]-(le1)
CREATE (f1:Form
 { writtenRep: "proprietary software",
 uri: "https://custom.extension/lemma/prop-soft"
 })
CREATE (le1)-[:canonicalForm]->(f1)

CREATE (ls2:LexicalSense {uri: "https://custom.extension/lemma/closed-soft#15348"})
CREATE (lc)<-[:isLexicalizedSenseOf]-(ls2)
CREATE (le2:LexicalEntry:Noun
 { canonicalForm: "closed-source software",
 partOfSpeech: "Noun",
 uri: "https://custom.extension/lemma/closed-soft#closed-soft-n"
 })
CREATE (ls2)<-[:sense]-(le2)
CREATE (f2:Form
 { writtenRep: "closed-source software",
 uri: "https://custom.extension/lemma/closed-soft"
 })
CREATE (le2)-[:canonicalForm]->(f2)

A similar script (excluded for brevity) would introduce the sets of words OSS and
open source software denoting the same meaning (LexicalConcept) with the defini‐
tion: software whose source code is available under an open source license.

264 | Chapter 13: Talking to Your Knowledge Graph

Once the two new lexical concepts have been introduced, they need to be hooked to
the existing hierarchy in WordNet with hypernym and the corresponding symmetric
hyponym relationships, as shown in Example 13-39.

Example 13-39. Hooking added concepts to the existing hierarchy in Cypher

MATCH (prop:LexicalConcept { uri:"https://custom.extension/id/15349-n"})
MATCH (oss:LexicalConcept { uri:"https://custom.extension/id/15350-n"})
MATCH (sw:LexicalConcept { uri:"https://en-word.net/id/oewn-06578068-n"})
MERGE (prop)-[:hypernym]->(sw)-[:hyponym]->(prop)
MERGE (oss)-[:hypernym]->(sw)-[:hyponym]->(oss)

The subgraph created by the previous scripts can be visually explored with the query
in Example 13-40, which yields a graph like that shown in Figure 13-14.

Example 13-40. Query to explore the new lexical subgraph

MATCH p = (lc:LexicalConcept {uri:"https://en-word.net/id/oewn-06578068-n"})
 <-[:hypernym]-()<-[:isLexicalizedSenseOf]-(ls)
 <-[:sense]-(le)-[:canonicalForm]->(f)
RETURN p

Figure 13-14. A visualization of the subgraph added to the WordNet knowledge graph

Graph-Based Semantic Similarity | 265

The extended graph is ready for semantic similarity computations, and the semantic
similarity metrics discussed in this section can now be computed seamlessly (with
exactly the same queries) on the newly created entities, producing the results in
Table 13-4.

Table 13-4. Similarity metrics for the concepts added to the WordNet knowledge graph

concept A concept B Path sim Leacock-
Chodorov sim

Wu and
Palmer sim

software whose source code is
available under an open source
license

computer software released under
a license restricting use, study, or
redistribution

0.4 0.846 0.973

This idea of modifying the graph can be generalized and the similarity metrics can
be applied to a completely different knowledge graph as long as it contains some
kind of hierarchical organization. This is the case with large knowledge graphs like
Wikidata or DBPedia that have their entities classified in taxonomies using the
rdf:SubClassOf (DBPedia) and wd:P279 (Wikidata) relationships, respectively.

You have seen that knowledge graphs import any kind of textual information, includ‐
ing any existing relationships, as with the many semantic relationships defined in
WordNet. With your text in a knowledge graph, you can perform all the operations
available in other tools using Cypher. You can add to your knowledge graph, adding
domain-specific terms as needed. It’s a pattern often seen in the real world. For
example, the German Center for Diabetes Research (DZD) has incorporated clinical
trial data, its own research data, and the entirety of the PubMed database of published
medical research into its knowledge graph.

Summary
In this chapter, you’ve seen a collection of powerful techniques and patterns for
powering conversational systems with knowledge graphs. You’ve seen how special‐
ist third-party tools and interoperability formats can be used to create compelling
systems. Moreover, you’ve seen how straightforward building systems can be with
commonplace graph database technology. You’ve reached an impressive level of
understanding.

But that begs the question, “What’s next for knowledge graphs?” Chapter 14 makes
some predictions about the future of knowledge graphs, based on everything you’ve
learned in this book.

266 | Chapter 13: Talking to Your Knowledge Graph

CHAPTER 14

From Knowledge Graphs to
Knowledge Lakes

Data is one of a modern enterprise’s most valuable assets. With an organizing prin‐
ciple in hand, you can build a knowledge graph that drives significant business
value for many use cases. This final chapter examines potential future directions for
knowledge graphs. You’ll see how knowledge graphs may move down the enterprise
stack into a more foundational role and how in that role their scope will broaden.
This intriguing pattern is known as a knowledge lake, and it might be one possible
future for knowledge graph technology.

Conventional Knowledge Graph Deployments
In the last few years, the deployment of knowledge graphs has proliferated, mirroring
the advances in modern graph technology. Knowledge graphs for individual use cases
or departments are becoming commonplace. Indeed, knowledge graphs for signifi‐
cant cross-functional business activities (e.g., compliance) or entities (e.g., customers)
are now becoming increasingly common. At each step, as the scope of the knowledge
graph grows, the infrastructure to support it moves further down the stack, as shown
in Figure 14-1.

267

Figure 14-1. Knowledge graph proliferation to date

The high-level architecture shown in Figure 14-1 is uncontroversial. Some knowledge
graphs have narrow use, and some have broader use. Each drives some business
value.

The knowledge graph starts as a departmental asset fueled by that department’s data.
But as your needs become more sophisticated, those graphs may be interlocked via
ontologies and middleware to create a knowledge graph that spans data from multiple
departments.

At the most sophisticated level, the knowledge graph not only spans data from mul‐
tiple departments but becomes a foundational technology layer for enterprise-wide
reuse. Using a large knowledge graph system as a foundation conveniently allows
other knowledge-intensive systems to be built atop its curated data. This is a success
insofar as knowledge graphs have been broadly adopted and have themselves become
a foundation for other useful systems.

But the question arises: what happens when the proliferation of knowledge graphs
becomes a victim of its own success? How does an enterprise manage with many
knowledge graphs without them becoming an ungovernable mess? Does the enter‐
prise architecture devolve into a system of recursive knowledge graphs all the way
down? Hopefully not.

From Knowledge Graphs to Knowledge Lakes
The prospect of more and better-quality data is intriguing. It implies a bigger and
broader role for knowledge graphs and, consequently, an increasingly foundational
role for them. As knowledge graphs become more fundamental for businesses, the
deployment architecture changes. You move from (potentially many) knowledge
graphs for individual use cases and specific cross-functional activities into a general-
purpose approach. This general-purpose approach is known as a knowledge lake
whose architecture is shown in Figure 14-2.

268 | Chapter 14: From Knowledge Graphs to Knowledge Lakes

Figure 14-2. A knowledge lake is a general-purpose contextualized information system
at scale

A knowledge lake is an architecture and usage pattern that is itself a knowledge
graph and can subsume other knowledge graphs and nongraph data. It sits right
next to an enterprise’s data warehouses and data lakes. It stores a curated subset
of the organization’s data, represented as a graph, which can then be served up to
multiple projects inside that enterprise. It is effectively a collection of knowledge
graphs designed for reuse.

It’s important to understand that a knowledge lake isn’t a replacement for a data lake
or (to a lesser extent) a data warehouse. Data lakes have the property that data can be
poured into them at high volume, on the basis that meaning can be established later.
Volume and throughput are key characteristics.

A knowledge lake brings meaning to this data after the fact. It makes the huge
volumes of data in the lake or warehouse meaningful so that it has value to the
business. It is therefore the knowledge lake that becomes the primary lens through
which business-meaningful data is consumed. In effect, you get the best of both
worlds.

Throughout this book, you’ve seen how knowledge graphs help businesses harness
connected data to drive business value. You’ve also seen how this can be done without
high-cost, high-risk, rip-and-replace technical projects. Instead, you now understand
that knowledge graphs can be deployed as a nondisruptive technology sitting along‐
side existing systems while simultaneously enhancing their utility and value.

Despite their scope, knowledge lakes are no different. While the end goal might be
to provide contextualized understanding and linkage with broad coverage across the
enterprise, the starting point can be as small as a single system. Like any graph, your
knowledge lake can grow over time and accrete more data and use cases. While it
needs governance and automation to ensure that it doesn’t become stale or patchy, the
end game is a knowledge lake that can map out the entirety of the enterprise’s data, so
it can be discovered, used (and reused), and curated.

From Knowledge Graphs to Knowledge Lakes | 269

Looking to the Future
We are drowning in information but starved for knowledge.
—John Naisbitt, Megatrends

Naisbitt is right. Our businesses are not short of data. The challenge is to understand
that data and put it to good use.

Knowledge graphs and, in the future, knowledge lakes, represent a significant oppor‐
tunity to understand data in context. The patterns and use cases you’ve seen in this
book provide the foundation you need to tackle this monumental challenge. Today,
you have the ability to create systems of immense business value. Tomorrow, you may
well be able to tame the complexity of the most challenging data-intensive systems
and extract business value from them as easily as querying a single database. There’s
an exciting journey ahead!

270 | Chapter 14: From Knowledge Graphs to Knowledge Lakes

Index

A
ACID (atomicity, consistency, isolation, dura‐

bility)
Neo4j, 49

additive dependencies, 193-195
aggregation, 169

additive/aggregate dependencies, 193
aggregate dependencies, 199-201
aggregate multi-dependencies, 195-197,

202-203
Cypher functions, 44
datasets, 131
master entities, 147
polysemic words, 255

alarm correlation, root cause analysis, 206
algorithms, 93

analytical, use cases, 95
centrality, 95
community detection, 95
entity matching, 141
GPUs (graphics processing units), 96
influence and, 95
link detection and, 95
Louvain, 159
ML (machine learning), 95
Neo4j Graph Data Science, 96

execution phases, 97
graph projection phase, 98
queries, 99
scale-out approach, 98

network propagation, 95
reasons to use, 93-94
statistical, 94

use cases, 95

stream version, 147
taxonomies, 19
WCC (Weakly Connected Components), 96
writer version, 147

annotations, text, 212-217
semantic search and, 222-231

anonymous activity, duplicate data and, 137
Apache Hop, ETL (extract, transform, load),

89-91
Apache Kafka, 84-86
Apache Spark, 87-89
APOC library, Neo4j, 45

data virtualization and, 75-79
server-side procedures, 74
virtual resources, 75-79

B
Banking Circle case study, 164
betweenness centrality, 101
blocking keys, 141
Bloom (Neo4j), 12, 101

C
calculating indegree, 10
Cartesian products, 60
case studies

Banking Circle, 164
DXC Technology, 185
Meredith Corporation, 153
NASA, 231

centrality, 95
charts

org charts, 165-166
versus graphs, 2

271

community detection
algorithms and, 95
Louvain algorithm, 159

composite databases, federation, 72-73
constraints, 6

creating, 34
contracts, 14, 14
conventional knowledge graphs, 267-268
conversational interfaces, 234
CREATE CONSTRAINT (Cypher), 54
CREATE keyword (Cypher), 29
CSV (comma-separated values) files

Data Importer (Neo4j), 51-55
LOAD CSV (Cypher), 56-61

Cypher, 28
CALL syntax, 44
CREATE CONSTRAINT, 54
digital twins, 76
functions

aggregation, 44
custom, 79-81

keywords
CREATE, 29
DELETE, 32
EXPLAIN, 45
MATCH, 30
MERGE, 33
PROFILE, 46

LOAD CSV, 56-61
MERGE, 54
versus NLTK (Natural Language Toolkit

Python), 260
parameterization, 70
path similarity and, 258
process_question, 244
properties, creating, 140
queries

if structure and, 244
natural language, 238-245
pattern-based, 190
query_db function, 244

UNWIND, 54
Cypher query language

D
DAG (directed acyclic graph), 202
data fabric, 65

benefits, 67
golden records, 65

integration layer, 66
master data, 65

Data Importer (Neo4j), CSV files, 51-55
data integration, 65-66

duplicate data and, 136
data models, relationships, 7
data preparation, entity resolution and, 138-141
data sinks, 130
data virtualization, APOC library, 75-79
data, loading (see loading data)
database drivers (see drivers)
databases

composite, federation, 72-73
graph, 27
lexical, 234

synsets, 253
WordNet, 253-257

records, removing, 32
resetting, 32

datasets, metadata knowledge graphs, 128
DELETE keyword (Cypher), 32
dependency modeling, 187

complex dependencies
root cause analysis, 206-210
SPOF (single-point-of-failure) analysis,

205-206
dependencies as tables, 187-190
hidden dependencies, 188
historized dependency graph, 193
impact propagation, 198-201
importing dependencies, 189
multidependency, 193

additive dependencies, 193-195
redundant dependencies, 195-197

qualified dependencies, 190-193
recursive dependencies, 188-190
temporal validity, 192
validation, 201

aggregate multi-dependencies, 202-203
consumption, 203
cycles, 202
redundant dependency configuration,

204
Diffbot Natural Language API, 235-237
digital twins, 76
directed relationships, 5
direction of relationship, 30
distributed data stewardship, 127-128
document similarity

272 | Index

searches and, 217-221
cold start, 221

drivers, 67
Neo4j, 67-68

Java driver, 69-70
objects, 70

duplicate data
anonymous activity and, 137
data integration and, 136
identity and, 135
intentional/fraudulent, 137

DXC Technology case study, 185

E
entities

identifying, 141
NER (named-entity recognition), 213-217
text annotations, 212-217

entity disambiguation, 222-231
entity resolution, 135, 137

data preparation and, 138-141
data sets, overlapping, 137
entity matching, 141-145
persisted record of master entities, 145-149

entity-property-value triplets, 235
ETL (extract, transform, and load)

Apache Hop, 89-91
Euler, Leonhard, 3-5
event correlation, root cause analysis, 206
expertise knowledge graph, 170-173
EXPLAIN keyword (Cypher), 45
extracted facts (see fact extraction)

disambiguation and, 237
entity-property-value triplets, 235

F
fact extraction

NER (named-entity recognition) and, 234
NLP and, 234-237

feature engineering, 116
federation, 71

composition databases, 72-73
first-party fraud, 156-157
fixed-length records, 47
flexibility, 24
fraud detection, 155

first-party fraud, 156-157
fraud rings, 159-162
operationalizing graph, 164

separating from data, 157-159
fraud rings, 159-162
fraudulent duplicate data, 137
functions

calling, 44-45
custom, 79-81
invoking, 45

G
global queries, 42-44
golden records, master data, 65, 135, 137
GQL (Graph Query Language), 28
graph algorithms (see algorithms)
graph data science, 93

(see also Neo4j Graph Data Science)
graph databases, 27

Cypher, 28
Neo4j, 28

graph global queries, 42-44
graph local queries, 37-41
graph models, enriched, 11
graph theory, 3
graph-feature engineering, 116
graph-native machine learning, 113

complementary actors, 117-125
pipelines, 116-117

GraphDataScience class, 103-104
GraphQL, 82-84
graphs

description, 2
networks, 3
versus charts, 2
versus knowledge graphs, 10

H
hidden dependencies, 188
hierarchy, taxonomies as, 14-19
HTAP (hybrid transactional and analytics pro‐

cessing), 108
hypergraphs, 5
hypernymy, 257, 265
hyponymy, 257, 265

I
identity

duplicate data, 136-137
duplicate data and, 135
unstructured data, 149-153

Index | 273

impact propagation, 198-201
importing dependencies, 189
in-graph machine learning, 114-116
input, natural language as, 233
intentional duplicate data, 137
interoperability, ontologies, 23

J
JSON (JavaScript Object Notation)

APOC and, 75
extracted facts, 235
results serialization, 148

Jupyter Notebook, 101

K
Kafka Connect plug-in, 84-86
key-value pairs, 5, 11
keys, blocking, 141
knowledge graphs, 1

constraints, 34
data creation, 29-31
definition, 8
duplicates, avoiding, 31-37
enriching, 109-111
motivation for, 7
organizing principle, 8
organizing principles, choosing, 21-22
queries

graph global queries, 42-44
graph local queries, 37-41

versus graphs, 10
knowledge lakes, 268-269

L
labeled property graph model

polymorphism, 15
type system, 15

labels
associativity, 15
nodes, 5

groups, 30
layered ontologies, 20
LCS (least common subsumer), 261
Leacock-Chodorow similarity, 260-261
lemma, 255-256
lexical databases, 234

polysemic words, 255-256
semantic relationships, 257

synsets, 253
WordNet, 253-257

Lexical Entry-Lexical Sense-Lexical Concept,
253

link prediction, algorithms and, 95
link prediction, pipelines, 116-117
Linkurious, 12
LLIS (lessons learned information system),

NASA, 231
LOAD CSV (Cypher), 56-61
loading data

initial bulk load, 61-64
LOAD CSV (Cypher), 56-61
Neo4j Data Importer, 51-55
neo4j-admin tool, 61-64

local queries, graph local queries, 37-41
locality benefits, 98
Louvain algorithm, 159

M
master data

golden records, 65
management, 135

master entities, persisted representation,
145-149

MATCH keyword (Cypher), 30
MERGE (Cypher), 54
MERGE keyword (Cypher), 33
meronymy, 257
metadata, 1, 128
metadata knowledge graphs, 127

data sinks, 130
datasets, platforms, 128
distributed data, 127-128
example, 130-131
queries, 131-132
relationships, 133-134
tasks, 129-130

ML (machine learning), 113
(see also graph-native machine learning)
algorithms, 95
feature engineering and, 116
graph feature engineering, 114, 116
in-graph machine learning, 114
topological, 114-116

multidependency, 193
additive dependencies, 193-195
redundant dependencies, 195-197

274 | Index

N
NASA case study, 231
natural language

generating from graph, 245-252
as input, 233
organizing principle annotation, 248-252
as output, 233
queries, 238
semantics, 23
subject-predicate-object sentences, 245-247

natural language interfaces, 234
processing results, 244

Neo4j
ACID and, 49
Apache Kafka, 84-86
APOC library, 45
Bloom, 101
Cypher, 67
Data Importer, CSV files, 51-55
GraphQL, 82-84
importing RDF, 253
queries

hardware, 48
index-free adjacency, 47
property storage, 48

REPL (read-evaluate-print loop) console, 67
spaCy and, 238-245
Spark, 87-89

Neo4j Composite Databases, 72-73
Neo4j drivers, 67-68

Java driver, 69-70
Neo4j Graph Data Science, 93

algorithms, 96
execution phases, 97
graph projection phase, 98
queries, 99
scale-out approach, 98

counterintuitive results, 107
experiments, 101-107
graph database integration, 96
in-graph machine learning, 114
Jupyter Notebook, 101
Pythonic API, 101

Neo4j graph database, 28
Cypher, 28
data storage, 30

neo4j-admin, 61-64
NER (named-entity recognition), 213-217

fact extraction and, 234

network propagation, algorithms and, 95
networks, 3
NLP (natural language processing), 211

Diffbot Natural Language API, 235-237
fact extraction and, 234-237
knowledge graphs and, 233
NER (named-entity recognition), 213-217
spaCy, 238

NLTK (Natural Language Toolkit for Python)
versus Cypher, 260
path_similarity method, 259

nodes
calculating the indegree, 10
labels, 5

groups, 30
properties, 5

O
ontologies, 19

as semantic bridge, 20
examples, 23
interoperability, 23
knowledge and, 21
layered, 20
standard, 23

ontology, natural language generation and,
248-252

org charts, 165-166
organizational performance predictions,

179-186
organizational planning knowledge graph,

175-179
organizing principles, 9

annotating, natural language generation
and, 248-252

annotations, semantic search, 222-231
as contract, 14
choosing, 21-22
creating, 23-24
OWL (Web Ontology Language), 23
RDF Schema, 23
SKOS (Simple Knowledge Organization Sys‐

tem), 23
output, natural languages as, 233
OWL (Web Ontology Language), 23

P
path similarity, 258-260
pattern detection graphs

Index | 275

fraud detection, 155
first-party fraud, 156-157
fraud rings, 159-162
operationalizing graph, 164
separating from data, 157-159

performance, 24
persisted master entities, entity resolution and,

145-149
pip, Pythonic API, 101
polymorphism, 15
polysemic words, 255-256
primary servers, 107
primitives, 5
procedures

calling, 44-45
invoking, 45

production, 107-109
PROFILE keyword (Cypher), 46
properties

Cypher, creating in, 140
Neo4j, 48
nodes, 5
relationships, 5

property graph model, 5
as contract, 14
constraints, 6
label associativity, 15
nodes, 5
relationships, 5, 6

Pythonic API for Graph Data Science, 101

Q
qualified dependencies, 190-193
queries

graph global queries, 42-44
graph local queries, 37-41
if structure and, 244
metadata knowledge graphs, 131-132
natural language, 238-245
Neo4j

hardware, 48
index-free adjacency, 47
property storage, 48

parameterized, 70
query_db function, 244
read-only, 70
read/write, 70

R
random forest method, classification and

regression, 183
RDF (Resource Description Framework), 25

importing to Neo4j, 253
RDF Schema, 23
records

creating, 32
database management, 49
duplicate, 137
fixed-length, 47
golden, 135, 137
golden records, 65
persisted record of master entities, 145-149
redirecting, 66
removing, 32

recursive dependencies, 188-190
redundant dependencies, 195-197
regular expressions, spaCy and, 238
relationships

data models, 7
directed, 5
direction, 30
FRIEND, 57-59
hypergraphs, 5
LIVES_IN, 57-59
metadata knowledge graphs, 133-134
nodes, calculating the indegree, 10
properties, 5
property graph model, 6
types, 5
undirected, 5

root cause analysis, dependency modeling,
206-210

S
schemas, 6
search engines, 212
searches, 211

(see also semantic search)
Google web searches, 212

secondary servers, 107
semantic relationships, 257
semantic search

document similarity and, 217-221
cold start, 221

results, ranking, 212
text annotations

entities and, 212-217

276 | Index

NER (named-entity recognition),
213-217

organizing principle, 222-231
unstructured data, 211-212

semantic similarity
Leacock-Chodorow similarity, 260-261
path similarity, 258-260
Wu and Palmer similarity, 261-266

Semantic Web technology stack, 15
semantics, 9

just-enough, 22
natural language, 23
ontologies and, 20

sentence generation, natural language, 245-247
server-side procedures, 73

APOC library, 74
SQL database drivers, 74

servers
primary, 107
secondary, 107

skills matching
career growth, individual, 173-175
expertise knowledge graph, 170-173
org charts, 165-166
organizational performance, predicting,

179-186
organizational planning, 175-179
skills knowledge graph, 167-170

SKOS (Simple Knowledge Organization Sys‐
tem), 23

spaCy, 238
Matchers, 239-240

patterns, 240
Neo4j and, 238-245
regular expressions and, 238
Spans, 241

Spark, 87-89
SPOF (single point of failure), 205-206
statistical algorithms, 94

use cases, 95
subject-predicate-object sentences, natural lan‐

guage, 245-247
synsets, 253

T
taxonomies, hierarchy and, 14-19
temporal validity, dependencies, 192
text annotation, 212-217

semantic search, organizing principle,
222-231

topological machine learning, 114-116
type systems, labeled property graph model, 15

U
undirected relationships, 5
unstructured data

identity and, 149-153
semantic search, 211-212

UNWIND (Cypher), 54

V
validation

dependency modeling
aggregate multi-dependencies, 202-203
consumption, 203
cycles, 202
redundant dependency configuration,

204
Vanguard Group, 209
virtual resources, APOC library, 75-79
visualization

Bloom (Neo4j), 12, 101
Linkurious, 12

W
WCC (Weakly Connected Components), 96,

145
WordNet database, 253-257

adding entities, 263
lemma, 255-256
RDF (resource description framework), 253
semantic relationships, 257

Wu and Palmer similarity, 261-266

Index | 277

About the Authors
Dr. Jesús Barrasa an expert in semantic technologies and graph databases, is head
of the solutions architecture team in EMEA at Neo4j and leads the development
of neosemantics (a Neo4j plugin for RDF). He cowrote Knowledge Graphs: Data in
Context for Responsive Businesses (O’Reilly) and is cohost of the Going Meta live
webcast.

Dr. Jim Webber is chief scientist at Neo4j, where he works on fault-tolerant graph
databases. He coauthored Graph Databases for Dummies (Wiley) and Graph Data‐
bases and Knowledge Graphs: Data in Context for Responsive Businesses, both for
O’Reilly. He’s also a visiting professor at Newcastle University, UK.

Colophon
The animal on the cover of Building Knowledge Graphs is a sable antelope. It is a
large antelope native to the wooded savannas stretching from Kenya to South Africa.
Females and juveniles usually range in color from chestnut to dark brown, while
males turn dark brown to black as they mature. They have white underparts and
mostly white faces, with dark stripes on the nose and the sides of the snout. Both
sexes have a dark mane and ringed, backward-curving horns. These horns can reach
up to 3 feet long in females and over 5 feet long in males.

Sable antelopes live in herds of up to 20 indivuduals in a matriarchal structure,
with one adult male per herd. Juvenile males are forced to leave the herd at about
three years of age, and they congregate in bachelor groups of up to about a dozen
individuals until they can take the position of the adult male in a herd.

The sable antelope is considered a species of least concern, though one subspecies,
the giant sable antelope, is critically endangered. Sable antelope numbers are declin‐
ing due to deforestation, development, and trophy hunting. Many of the animals on
O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from The Museum of Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Neo4j
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Knowledge Graphs
	What Are Graphs?
	The Motivation for Knowledge Graphs
	Knowledge Graphs: A Definition
	Summary

	Chapter 2. Organizing Principles for Building Knowledge Graphs
	Organizing Principles of a Knowledge Graph
	Plain Old Graphs
	Richer Graph Models
	Knowledge Graphs Using Taxonomies for Hierarchy
	Knowledge Graphs Using Ontologies for Multilevel Relationships

	Which Is the Best Organizing Principle for Your Knowledge Graph?
	Organizing Principles: Standards Versus Create Your Own
	Creating Your Own Organizing Principle

	Essential Characteristics of a Knowledge Graph
	Summary

	Chapter 3. Graph Databases
	The Cypher Query Language
	Creating Data in a Knowledge Graph
	Avoiding Duplicates When Enriching a Knowledge Graph
	Graph Local Queries
	Graph Global Queries
	Calling Functions and Procedures
	Supporting Tools for Writing Knowledge Graph Queries

	Neo4j Internals
	Query Processing
	ACID Transactions

	Summary

	Chapter 4. Loading Knowledge Graph Data
	Loading Data with the Neo4j Data Importer
	Online Bulk Data Loading with LOAD CSV
	Initial Bulk Load
	Summary

	Chapter 5. Integrating Knowledge Graphs with Information Systems
	Towards a Data Fabric
	The Database Driver
	Graph Federation with Composite Databases
	Server-Side Procedures
	Data Virtualization with Neo4j APOC
	Custom Functions and Procedures
	Complementary Tools and Techniques
	GraphQL
	Kafka Connect Plug-In
	Neo4j Spark Connector
	Apache Hop for ETL

	Summary

	Chapter 6. Enriching Knowledge Graphs
with Data Science
	Why Graph Algorithms?
	Different Classes of Graph Algorithms
	Graph Data Science Operations
	Experimenting with Graph Data Science
	Production Considerations
	Enriching the Knowledge Graph
	Summary

	Chapter 7. Graph-Native Machine Learning
	Machine Learning in a Nutshell
	Topological Machine Learning
	Graph-Native Machine Learning Pipelines
	Recommending Complementary Actors
	Summary

	Chapter 8. Mapping Data with Metadata
Knowledge Graphs
	The Challenge of Distributed Data Stewardship
	Datasets Connected to Data Platforms
	Tasks and Data Pipelines
	Data Sinks
	Metadata Graph Example
	Querying the Metadata Graph Model
	Using Relationships to Connect Data and Metadata
	Summary

	Chapter 9. Identity Knowledge Graphs
	Knowing Your Customer
	When Does the Problem Appear?
	Graph-Based Entity Resolution Step by Step
	Data Preparation
	Entity Matching
	Build/Update a Persisted Record of Master Entities

	Working with Unstructured Data
	Summary

	Chapter 10. Pattern Detection Knowledge Graphs
	Fraud Detection
	First-Party Fraud
	Uncovering Fraud from Data
	Fraud Rings
	Innocent Bystanders
	Operationalizing the Fraud Detection Knowledge Graph

	Skills Matching
	Organizational Knowledge Graph
	Skills Knowledge Graph
	Expertise Knowledge Graph
	Individual Career Growth
	Organizational Planning
	Predicting Organizational Performance

	Summary

	Chapter 11. Dependency Knowledge Graphs
	Dependencies as a Graph
	Advanced Graph Dependency Modeling
	Qualified Dependencies
	Semantics of Multidependency

	Impact Propagation with Cypher
	Validating a Dependency Knowledge Graph
	Validation 1: No Cycles
	Validation 2: Aggregate Multidependencies Add Up to the Expected Total

	Complex Dependency Processing
	Single-Point-of-Failure Analysis
	Root Cause Analysis

	Summary

	Chapter 12. Semantic Search and Similarity
	Search over Unstructured Data
	From Strings to Things: Annotating Documents with Entities
	Navigating the Connections: Document Similarity for Recommendations
	The Cold Start Problem

	Making the Annotation Semantic with an
Organizing Principle
	Summary

	Chapter 13. Talking to Your Knowledge Graph
	Question Answering: Natural Language as a Source of Facts for a Knowledge Graph
	Using Natural Language Query with a Knowledge Graph
	Natural Language Generation from Knowledge Graphs
	Annotating the Knowledge Graph’s Organizing Principle to Drive Natural Language Generation

	Working with Lexical Databases
	Graph-Based Semantic Similarity
	Path Similarity
	Leacock-Chodorow Similarity
	Wu and Palmer Similarity

	Summary

	Chapter 14. From Knowledge Graphs to
Knowledge Lakes
	Conventional Knowledge Graph Deployments
	From Knowledge Graphs to Knowledge Lakes
	Looking to the Future

	Index
	About the Authors
	Colophon

