The #1 Platform for Connected Data

-Neoq|

<<
&.
£
{5}
=
T
Q.
(V]
Z
e
} S
(1]
=

https://neo4j.com/?ref=pdf-ebook-graph-algo

;rK3()4u

Ebook

The #1 Platform for Connected Data

TABLE OF CONTENTS

Part I: Connected Data and

Graph Analysis 3
Making Sense of
Connected Data 4

The Rise of Graph Analytics &

Neo4j Graph Analytics 14

Part II: Graph Algorithms
in Neo4j 17

Graph Algorithm Concepts 18

The Neo4j Graph
Algorithms Library 20

Pathfinding and
Graph Search Algorithms 24

Centrality Algorithms 34

Community Detection

Algorithms 52
Graph Algorithms

in Practice 71
Conclusion 79
Appendix A:

Performance Testing 80

Appendix B: Installing the
Neo4j Graph Algorithms
Library 81

A Comprehensive Guide
to Graph Algorithms

Mark Needham, Developer Relations Engineer
Amy E. Hodler, Director, Graph Analytics and Al Programs

Preface
Connectivity is the single most pervasive characteristic of today’s networks and systems.

From protein interactions to social networks, from communication systems to power
grids, and from retail experiences to supply chains - networks with even a modest degree
of complexity are not random, which means connections are not evenly distributed nor
static. This is why simple statistical analysis alone fails to sufficiently describe - let alone
predict - behaviors within connected systems. Consequently, most big data analytics today
do not adequately model the connectedness of real-world systems and have fallen short
in extracting value from huge volumes of interrelated data.

As the world becomes increasingly interconnected and systems increasingly complex,

it's imperative that we use technologies bullt to leverage relationships and their dynamic
characteristics. Not surprisingly, interest in graph data science has exploded because it
was explicitly developed to gain insights from connected data. Graph analytics reveal the
workings of intricate systems and networks at massive scales - not only for large labs but
for any organization. Graph algorithms are processes used to run calculations based on
mathematics specifically created for connected information.

We are passionate about the utility and importance of graph analytics as well as the joy
of uncovering the inner workings of complex scenarios. Until recently, adopting graph
analytics required significant expertise and determination, since tools and integrations
were difficult and few knew how to apply graph algorithms to their quandaries. It is our
goal to help change this. We wrote this ebook to help organizations better leverage graph
analytics so they make new discoveries and develop intelligent solutions faster.

While there are other graph algorithm libraries and solutions, we've chosen to focus on
the graph algorithms in the Neo4| platform. However, you'll find this guide helpful for
understanding more general graph concepts regardless of what graph technology you
use.

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/retail/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/supply-chain-management/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-ebook-graph-algo
https://neo4j.com/graph-data-science-library/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/?ref=pdf-ebook-graph-algo

"Graph analysis is
possibly the single
most effective
competitive
differentiator for
organizations
pursuing data-driven
operations and
decisions.”

This ebook is written in two parts. For product managers and solution owners, Part

| provides an overview of graph algorithms and their uses. In these chapters, the
background of graph analytics is used to illustrate basic concepts and their relevance to
the modern data landscape.

Part II, the bulk of this ebook, is written as a practical guide to getting started with graph
algorithms for engineers and data scientists who have some Neo4j experience. It serves
as a detailed reference for using graph algorithms. At the beginning of each category of
algorithms, there is a reference table to help you quickly jump to the relevant algorithm.

For each algorithm, you'll find:

+ An explanation of what the algorithm does

+ Use cases for the algorithm and references to read more about them

+ Walkthroughs with example code providing concrete ways to use the algorithm
In the reference section, you'll find notes, tips and code.

Note: Details about the workings of the algorithm that you may want to know

about.

Tip: Details you should be aware of with regard to the algorithm, such as the types
of graphs it works best with or values that are not permitted.

@ Code examples, node names and relationships are shown in a code font,
Courier New.

If you have any questions or need any help with any of the material in this ebook, send us
an email at

We've thoroughly enjoyed putting together the material for this ebook and would like to
thank all those who assisted. We'd especially like to thank Michael Hunger for his guidance
and Tomaz Bratanic for his keen research. Finally, we greatly appreciate Yelp for permitting
us to use its rich dataset for powerful examples and Tomer Elmalem for brainstorming
with us on ideas.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://www.gartner.com/doc/2852717/it-market-clock-database-management
mailto:devrel%40neo4j.com?subject=

A Comprehensive Guide to Graph Algorithms in Neo4j

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

The Latin root of
valence is the same
as value, valere, which
means to be strong,
powerful, influential
or healthy.

Chapter 1
Making Sense of Connected Data

Connected Data Today

There are four to five "Vs” often used to help define big data (volume, velocity, variety,
veracity and sometimes value) and yet there's almost always one powerful “V" missing:
valence. In chemistry, valence is the combining power of an element; in psychology, it is
the intrinsic attractiveness of an object; and in linguistics, it's the number of elements a
word combines.

Although valence has a specific meaning in certain disciplines, in almost all cases there is
an element of connection and behavior within a larger system. In the context of big data,
valence is the tendency of individual data to connect as well as the overall connectedness
of datasets. Some researchers measure the valence of a data collection as the ratio of
connections to the total number of possible connections. The more connections within
our dataset, the higher its valence.

Your data wants to connect, to form new data aggregations and subsets, and then
connect to more data and so forth. Moreover, data doesn't arbitrarily connect for its own
sake; there's significance behind every connection it makes. In turn, this means that the
meaning behind every connection is decipherable after the fact. Although this may sound
like something that's mainly applicable in a biological context, most complex systems
exhibit this tendency. In fact, we can see this in our daily lives with a simple example of
highly targeted purchase recommendations based on the connections between our
browsing history, shopping habits, demographics, and even current location. Big data has
valence - and it's strong.

Scientists have observed the growth of networks and the relationships within them for
some time. Yet there is still much to understand and active work underway to further
quantify and uncover the dynamics behind this growth. What we do know is that valence
increases over time but not uniformly. Scientists have described preferential attachment
(for example, the rich get richer) as leading to power-law distributions and scale-free
networks with hub and spoke structures.

Preferential attachment means that the more
connected a node is, the more likely it is to receive new
links. Source: Wikipedia

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/whitepapers/return-on-connected-data/?ref=pdf-ebook-graph-algo
https://neo4j.com/whitepapers/return-on-connected-data/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-data-relationships-matter/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Preferential_attachment
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model

A Comprehensive Guide to Graph Algorithms in Neo4j

Highly dense and lumpy data networks tend to develop, in effect growing both your

big data and its complexity. This is significant because densely yet unevenly connected
data is very difficult to unpack and explore with traditional analytics. In addition, more
sophisticated methods are required to model scenarios that make predictions about a
network’s evolution over time such as how transportation systems grow. These dynamics
further complicate monitoring for sudden changes and bursts, as well as discovering
emergent properties. For example, as density increases in a social group, you might

see accelerated communication that then leads to a tipping point of coordination and a
subsequent coalition or, alternatively, subgroup formation and polarization.

This data-begets-data cycle may sound intimidating, but the emergent behavior and
patterns of these connections reveal more about dynamics than you learn by studying
individual elements themselves. For example, you could study the movements of a single
starling but until you understood how these birds interact with each other in a larger
group, you wouldn't understand the dynamics of a flock of starlings in flight. In business
you might be able to make an accurate restaurant recommendation for an individual, but
it's a significant challenge to estimate the best group activity for seven friends with different
dietary preferences and relationship statuses. Ironically, it's this vigorous connectedness
that uncovers the hidden value within your data.

Economist Jeffrey
Goldstein defined
emergence as "the
arising of novel and
coherent structures,
patterns and
properties during
the process of self-
organization in
complex systems."

Economist Jeffrey Goldstein defined emergence as "the arising of novel and coherent
structures, patterns and properties during the process of self-organization in complex
systems.” That includes the common characteristics of:

- Radical novelty (features not previously observed in systems);

- Coherence or correlation (meaning integrated wholes that maintain themselves over
some period of time);

-+ Aglobal or macro "level" (i.e., there is some property of "wholeness");
+ Being the product of a dynamical process (it evolves); and

+ An ostensive nature (it can be perceived). (Source: Wikipedia)

5 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Emergence

For today's connected data, it's a mistake to scrutinize data elements and aggregations for
insights using only simple statistical tools because they make data look uniform and they
hide evolving dynamics.

within - and of - networks and systems.

Networks are a representation, a tool to understand complex systems and the complex
connections inherent in today’s data. For example, you can represent how a social system
works by thinking about interactions between pairs of people. By analyzing the structure
of this representation, we answer questions and make predictions about how the system
works or how individuals behave within it. In this sense, network science is a set of
technical tools applicable to nearly any domain, and graphs are the mathematical models
used to perform analysis.

Networks also act as a bridge for understanding how microscopic interactions and
dynamics lead to global or macroscopic regularities as well as correlate small scale
clusters to a larger scale element and shape projection. Networks bridge between the
micro and the macro because they represent exactly which things are interacting with
each other. It's a common assumption that the average of a system is sufficient because
the results will even out. However, that's not true. For example, in a social setting, some
people interact heavily with others while some only interact with a few. An averages
approach to data completely ignores the uneven distributions and locality within real-
world networks.

TRANSPORTATION
CLUSTERS

3.200 airports
60.000 routes g
EUROPE ¥
.] i
GEOGRAPHICAL LAYOUT

Color = Longitude
Size = Number of routes

AFRICA

MIDDLE

LATIN AMERICA

CC-BY martingrandjean.ch 2016
Data: openfiights.org

Transportation networks illustrate the uneven distribution of relationships and groupings.
Source:

An extremely important effort in network science is figuring out how the structure of a
network shapes the dynamics of the whole system. Over the last 15 years we've learned
that for many complex systems, the network is important in shaping both what happens
to individuals within the network and how the whole system evolves.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-data-relationships-matter/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-data-relationships-matter/?ref=pdf-ebook-graph-algo
http://www.martingrandjean.ch/connected-world-air-traffic-network/

A Comprehensive Guide to Graph Algorithms in Neo4j

Graph analytics, based on the specific mathematics of graph theory, Propagation
examine the overall nature of networks and complex systems through Pathways
their connections. With this approach, we understand the structure of

connected systems and model their processes to reveal hard-to-find

yet essential information: propagation pathways, such as the route of

diseases or network failures; flow capacity and dynamics of resources,

such as information or electricity; or the overall robustness of a system. i .

.) L s nteractions Flow &
Understanding networks and the connections within them offers immense & Resiliency Dynamics
potential for breakthroughs by unpacking structures and revealing patterns
used for science and business innovations as well as for safeguarding
against vulnerabilities, especially those unforeseen within the labyrinth.

The Power of Graph Algorithms

Researchers have found common underlying principles and structures across a wide variety of networks and have figured out
how to apply existing, standard mathematical tools (i.e., graph theory) across different network domains.

But this raises questions: How do people who are not mathematicians conversant in network science apply graph analytics
appropriately? How can everyone learn from connected data across domains and use cases?

This is where graph algorithms come into play. In the simplest terms, graph algorithms are mathematical recipes based on graph
theory that analyze the relationships in connected data.

Even a single graph algorithm has many applications across multiple use cases. For example, the PageRank graph algorithm -

invented by Google founder Larry Page - is useful beyond organizing web search results. It's also been used to study the role of
species in food webs, to research telomeres in the brain, and to model the influence of particular network components in just
about every industry.

In studying the brain, scientists
found that the lower the
PageRank of a telomere, the
shorter it was - and there's a
strong correlation between
short telomeres and cellular

aging.

Graph algorithms play a powerful role in graph analytics, and the purpose of this ebook is to showcase that role. But first let's step
back and look at the rise of graph analytics as a whole and its many applications in exploring connected data.

7 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/graph-databases-for-beginners-wait-what-do-you-mean-by-graph/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

"The tools of graph
theory can be utilized
in order to analyze
the networks and
obtain a better
understanding

of their overall
construction.

This approach

has led to several
groundbreaking
discoveries on

the nature of
networks, crossing
fields of research
from biology, to
social science and
technology.”

- Albert-LdszI6 Barabdsi
Director, Center for Complex
Network Research, Northeastern
University

Chapter 2
The Rise of Graph Analytics

The Roots of Graph Analytics

Graph analytics has a history dating back to 1736, when Leonhard Euler solved the “Seven
Bridges of Kénigsberg” problem. The problem asked whether it was possible to visit all
four areas of a city, connected by seven bridges, while only crossing each bridge once. It
wasn't. With the insight that only the connections themselves were relevant, Euler set the
groundwork for graph theory and its mathematics.

Source: Wikipedia

But graph analytics did not catch on immediately. Two hundred years would pass before
the first graph textbook was published in 1936. In the late 1960s and 1970s, network
science and applied graph analytics really began to emerge.

In the last few years, there's been an explosion of interest in and usage of graph
technologies. Demand is accelerating based on a need to better understand real-world
networks and forecast their behaviors, which is resulting in many new graph-based
solutions.

Why Now? Forces Fueling the Rise in Graph Analytics

This growth in network science and graph analytics is the result of a combined shift in
technical abilities, new insights, and the realization that existing business intelligence
systems and simple statistics fail to provide a complete picture of real-world networks.
Several forces are driving the rise in graph analytics.

First of all, we've seen real-world applications of graph analytics and their impact on us all.
The power of connected data for business benefit has been demonstrated in disruptive
success stories such as Google, LinkedIn, Uber, and eBay, among many others.

At the same time, digitization and the growth in computing power (and connected
computing) have given us an unprecedented ability to collect, share and analyze massive
amounts of data. But despite the masses of data they have, organizations are frustrated
with the unfulfilled promises of big data and their inability to analyze it.

The majority of analytics used today handle specific, well-crafted questions efficiently but
fall short in helping us predict the behavior of real systems, groups and networks. Most
networks defy averages and respond nonlinearly to changes. As a result, more businesses
are turning to graph analytics, which are built for connected data and responsive to
dynamic changes.

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

In addition, there's been a recognition of how graphs enhance machine learning and "We need to combine
provide a decision-making framework for artificial intelligence. From data cleansing for

machine learning to feature extraction in model development to knowledge graphs that transactional and

provide rich context for Al, graph technology is enhancing Al solutions. This is described in analytic systems
more detail later in this chapter. into transalytic
systems and stop
Bringing Together Analytics & Transactions thinking about these
Historically, the worlds of analytics (OLAP) and transactions (OLTP) have been siloed as two separate
despite their interdependence (analytics drives smarter transactions, which creates new Sygtems_ 2018 is

opportunities for analysis), which is especially true with connected data.

going to be the
This line has been blurred in recent years and modern data-intensive applications year we'll see major
combine real-time transactional queries with less time-sensitive analytics queries. The

merging of analytics and transactions enables continual analysis to become ingrained corporations Collapse

in regular operations. As data is gathered - from point-of-sale (POS) systems, from these two systems
manufacturing equipment, from IoT devices, or from wherever - analytics at the moment together, so that
and location support an application’s ability to make real-time recommendations and . iy

. : . . . you have simplified
decisions. This blending of analytics and transactions was observed several years ago, .
and terms to describe this blurring and integration include “Transalytics” and Hybrid architecture and can
Transactional and Analytical Processing (HTAP). move at the pace of
“IHTAP] could potentially redefine the way some business business.
processes are executed, as real-time advanced analytics (for P
example, planning, forecasting and what-if analysis) becomes an Director of Enterprise Architecture
integral part of the process itself, rather than a separate activity Automotive Resources International

(ARI)

performed after the fact. This would enable new forms of real-
time business-driven decision-making process. Ultimately, HTAP
will become a key enabling architecture for intelligent business
operations.”

- Gartner

Graph algorithms provide the means to understand, model and predict complicated
dynamics such as the flow of resources or information, the pathways through which
contagions or network failures spread, and the influences on and resiliency of groups.
Neo4j brings together analytics and transactional operations in a native graph platform,
helping not only uncover the inner nature of real-world systems for new discoveries, but
also enabling faster development and deployment of graph-based solutions with more
closely integrated processing for transactions and analytics.

According to Gartner's
Magic Quadrant
survey, the biggest
Analytics Transactions reason for using

the Neo4j Graph
Platform "is to drive
innovation.”

Enrichment, Operational
Discovery & Design Activities

9 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/graph-data-science-artificial-intelligence/?ref=pdf-ebook-graph-algo
https://www.gartner.com/imagesrv/media-products/pdf/Kx/KX-1-3CZ44RH.pdf
http://www.fleetmanagementweekly.com/qa-bill-powell/
http://www.fleetmanagementweekly.com/qa-bill-powell/
http://www.fleetmanagementweekly.com/qa-bill-powell/
http://www.fleetmanagementweekly.com/qa-bill-powell/

A Comprehensive Guide to Graph Algorithms in Neo4j

Use Cases for Graph Transactions & Analytics

Today's most pressing data challenges center around connections, not just tabulating
discrete data. Graph analytics accelerate breakthroughs across industries with more
intelligent solutions.

eBay uses graphs to deliver real-time, personalized user experiences and
recommendations. Cybersecurity and fraud systems correlate network, social and

loT data to uncover patterns. More accurate modeling and decisioning for a range of
dynamic networks drives use cases from subsecond packaging of financial commodities
and routing logistics to IT service assurance to predicting the spread of epidemics.
Graph technologies help businesses with many practical use cases across industries and
domains, a few of which are highlighted in the sections that follow.

Real-Time Fraud Detection

Traditional fraud prevention measures focus on discrete data points such as specific
account balances, money transfers, transaction streams, individuals, devices or IP
addresses. However, today's sophisticated fraudsters escape detection by forming
fraud rings comprised of stolen and synthetic identities. To uncover such fraud rings,

it is essential to look beyond individual data points to the connections that link them.
Connections are key to identifying and stopping fraud rings and their ever-shifting
patterns of activities. Graph analytics enable us to find these patterns and shows us that
indeed, fraud has a shape.

Real-Time Recommendations

Graph-powered recommendation engines help companies personalize products, content
and services by contextualizing a multitude of connections in real time. Making relevant
recommendations in real time requires the ability to correlate product, customer, historic
preferences and attributes, inventory, supplier, logistics and even social sentiment data.
Moreover, a real-time recommendation engine requires the ability to instantly capture
any new interests shown during the customer’s current visit - something that batch
processing can't accomplish.

| 360°View of Data *

As businesses become more customer centric, it has never been more urgent to tap the
connections in your data to make timely operational decisions. This requires a technology
to unify vour master data, including customer, product, supplier and logistics information
to power the next generation of ecommerce, supply chain and logistics applications.

Organizations gain transformative real-time business insights from relationships in
master data when storing and modeling data as a graph. This translates to highlighting
time- and cost-saving queries around data ownership, customer experience and support,
organizational hierarchies, human capital management, and supply chain transparency.

10 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/case-studies/ebay/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/fraud-detection/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/fraud-detection/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/master-data-management/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/master-data-management/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

A flexible graph database model organizes and connects all of an organization's master
data to provide a live, real-time 360° view of customers.

Streamline Regulatory Compliance

Graph technology offers an effective and efficient way to comply with sweeping regulations
like the EU's General Data Protection Regulation (GDPR), which requires that businesses
connect all of the data that they have about their customers and prospects. Organizations
manage enterprise risk by providing both the user-facing toolkit that allows individuals

to curate their own data records and the data lineage proof points to demonstrate
compliance to authorities.

Management & Monitoring
of Complex Networks

Graph platforms are inherently suitable for making sense of complex interdependencies
central to managing networks and [T infrastructure. This is especially important in a time
of increasing automation and containerization across both cloud and on-premises data
centers. Graphs keep track of these interdependencies and ensure that an accurate
representation of operations is available at all times, no matter how dynamic the network
and IT environment.

Identity & Access Management

To verify an accurate identity, the system needs to traverse through a highly
interconnected dataset that is continually growing in size and complexity as employees,
partners and customers enter and leave the system. Users, roles, products and
permissions are not only growing in number but also in matrixed relationships where
standard “tree” hierarchies are less relevant. Traditional systems no longer deliver real-
time query performance required by two-factor authentication systems, resulting in long
wait times for users. Using a graph database for identity and access management enables
you to quickly and effectively track users, assets, devices, relationships and authorizations
in this dynamic environment.

Social Applications or Features

Social media networks are already graphs, so there’s no point converting a graph into
tables and then back again by building a social network on an RDBMS. Having a data
model that directly matches your domain model helps you better understand your
data, communicate more effectively and avoid needless work. A graph database such as
Neo4j enables you to easily leverage social connections or infer relationships based on
user activity to power vour social network application or add social features to internal
applications.

These are just a few of the use cases that are fueled by graph technology. Next we'll look
at how graphs are supporting an emerging category of algorithms and applications based
onAl.

11

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/privacy-risk-compliance/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/privacy-risk-compliance/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/gdpr-compliance/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/network-and-it-operations/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/network-and-it-operations/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/identity-and-access-management/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/identity-and-access-management/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/social-network/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/social-network/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/social-network/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Graph Technology & Al Applications

Graph technologies are the scaffolding for building intelligent applications, enabling more accurate predictions and faster
decisions. In fact, graphs are underpinning a wide variety of artificial intelligence (Al) use cases.

Knowledge Graphs

[oee Graph-Accelerated Al Development
Provide rich context for Al @

& Model Enhancement
=

Faster, more accurate development

Graph Execution of Al

& Decision Tracking

For real-time execution and
decisioning lineage

Al Visibility
Human-friendly graph visualization

A

® '
v —
@ Global Graph Analtyics
Connected Al System of Record =3 ¢ “\"‘ Graph algorithms to percolate global
Maintain a source of truth of Al composites %;8 5“" structures and patterns that then provide

graph-driven theories

Knowledge Graphs

Andrew Ng, a preeminent thought leader in the field, includes knowledge graphs as one
of the five main areas of Al. Knowledge graphs represent knowledge in a form usable by
machines.

Graph analysis surfaces relationships and provides richer and deeper context for
prescriptive analytics and Al applications like TextRank (a PageRank derivative)

alongside natural language processing (NLP) and natural language understanding

(NLU) technologies. For example, in the case of a shopping chatbot, a knowledge graph
representation helps an application intelligently get from text to meaning by providing the
context in which the word is used (such as the word “bat” in sports versus zoology).

Machine Learning Model Enhancement & Accelerated Al

Graphs are used to feed machine learning models and find new features to use for
training, subsequently speeding up Al decisions. Graph centrality algorithms such as
PageRank identify influential features to feed more accurate machine learning models and
measurable predictive lift. Graph analysis computes Boolean (yes/no) answers in real time
and continuously provides them as a tensor for Al recalculation and scoring.

12 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/graph-data-science-artificial-intelligence/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Andrew_Ng
https://neo4j.com/use-cases/knowledge-graph/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

"The major areas of
artificial intelligence
are speech, NLP,
computer vision,
machine learning,
[and] knowledge
graph.”

- Andrew Ng

13

Graph Execution of Al & Decision Tracking

An operational graph - replacing a rules engine to run Al - is a natural, next step for
intelligent applications. As coding Al systems in graphs becomes a norm, it will enable the
tracking of Al decisions. This kind of decision tree lineage is essential for adoption and
maintenance of Al logic in critical applications.

Global Graph Analytics for Theory Development

Graph analytics lift out global structures and reveal patterns in your data - without you
requiring any prior knowledge of the system. For example, community detection and
other algorithms are used to organize groups, suggest hierarchies, and predict missing
or vulnerable relationships. In this way, you are essentially using graph-driven theory
development that infers micro and macro behaviors.

Al Visibility

The adoption of Al in part depends largely on the ability to trust the results. Human-
friendly graph visualizations display or explain machine learning processes that are often
never exposed within ML's “black box.” These visualizations serve as an abstraction to
accelerate data scientists’ work and to provide a visual record of how a system'’s logic has
changed over time. Visualizations help explain and build confidence in and comfort with Al
solutions.

System of Record for Al Connections

Graphs serve as a source of truth for all your related Al components to create a pipeline
for iterative tasks. They automate the sourcing and capture of related Al components so
that data scientists focus on analysis and more easily share frameworks.

What Makes a Machine Intelligent?
While Al is the headliner, there are actually subsets of the technology
that can be applied to solving human problems in different ways.

Artificial Intelligence (Al) eececcccccccccns .s
A process where a °
computer solves a task in

a way that mimics human
behavior. Today, narrow Al -
when a machine is trained
to do one particular
task - is becoming
more widely used,
from virtual assistants
to self-driving cars to
automatically tagging
your friends in your
photos on Facebook.

e oo eeeMachine Learning (ML)
Algorithms that

allow computers to
learn from examples
without being explicitly
programmed.

Artificial Intelligence

Machine Learning

Deep Learning (DL)
. A subset of ML that
uses deep artificial
neural networks as
models and does
not require feature
engineering.

Deep Learning

Source: Curt Hopkins

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://community.hpe.com/t5/Behind-the-scenes-Labs/Labs-Deep-Learning-Cookbook-headlines-the-launch-of-HPE-s-AI/ba-p/6981300#.Wx_pbVMvx-U

A Comprehensive Guide to Graph Algorithms in Neo4j

Cha pter 3 “In fact, the rapid rise

. . of graph technologies
NEO4J Graph Analytlcs may signal that data

At a fundamental level, a native graph platform is required to make it easy to express connectedness is

relationships across many types of data elements. To succeed with connected data indeed a separate
applications, you need to traverse these connections at speed, regardless of how many)
hops your query takes. paradlgm from the

model consolidation
A graph platform must also offer a variety of skill-specific tools for business users, solution odel consolidatio

developers and data scientists alike. Each user group has different needs to visualize happening across the
connectedness, explore query results and update information. rest of the NoSQL
landscape.”
@ - Frost & Sullivan
Y S
Applications Business Users

R . Pty
Developers . 4

- f@neoy
8; Development Analytics 8;

& Admin Tooling
Graph Graph

Admins Transactions Analytics Data Scientists

—— Data Integration ——

A graph platform like Neo/| offers an efficient means for data scientists and solutions
teams to move through the stages of discovery and design.

First, when exploring a concept, teams look for broad patterns and structures best served
by global analysis. They need the ability to easily call upon packaged procedures and
algorithms. Organizations want tools to identify communities, bottlenecks, influence points
and pathways. In addition, a supported library of algorithms helps ensure that results are
consistent by reducing variability introduced by many individual procedures.

In the next phase of solution modeling, a streamlined process becomes extremely
important as teams must test a hypothesis and develop prototypes. And the iterative,
continuous nature of the above workflow heightens the need for extremely efficient tools
with fast feedback loops.

Teams will be using various data sources and tools, so a common, human-friendly way to
express connections and leverage popular tools is essential.

14 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/product/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

e Connections-First
Native Graph Database (2)=>(b) Query Language

Never lose relationships

Declarative and easy to read

neOA.j

Robust

Analytics
Integration ANALYTICS Procedures
Streamline i Extensive, trusted

workflows code resource

Optimized Algorithms : l

Reveal groups, influences and paths

Neo4j offers a growing, open library of graph algorithms that are optimized for fast
results. These algorithms reveal the hidden patterns and structures in your connected
data around community detection, centrality and pathfinding with a core set of tested and
supported algorithms.

Finds the shortest
path or evaluates route
availability and quality

Pathfinding

Community
Detection

Evaluates how a
group is clustered
or partitioned

Determines the
importance of distinct
nodes in the network

Graph algorithm types

Neo4j graph algorithms are simple to apply so data scientists, solution developers and
operational teams can all use the same graph platform.

Neo4j graph algorithms are efficient so you analyze billions of relationships and get results
in seconds to minutes, or in a few hours for more complicated queries that process large
amounts of connected data.

15

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/graph-data-science-library/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

The following table offers a sampling of problems and the specific graph algorithms that
have been used to solve them.

Challenges & Graph Algorithms That Have Been Used to Solve Them'

Challenge Algorithm Type

Figure out traffic load capacity and All Pairs Shortest Path Pathfinding
plan distribution or logistics in an

urban area

Create a low-cost tour of a travel Minimum Weight Pathfinding
destination Spanning Tree

Identify the most influential machine PageRank Centrality

learning features for extraction and
model updates

Separate the fraudsters from the Weighted Degree Centrality
legitimate users in an online auction Centrality
Identify the bridge points that connect Betweenness Centrality Centralit

separate groups

Determine the delivery ETA for a Closeness Centralit Centrality

package

Find potential duplicate records Union Find Community Detection
Figure out dangerous interactions Label Propagation Community Detection

between prescription drugs

Research structures in the brain Louvain Modularity Community Detection

1. This list offers inspiration about the types of problems that graph algorithms have solved. Inclusion on this list does not imply that
the work in question was done using Neo4j.

16 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/all-pairs-shortest-path/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/minimum-weight-spanning-tree/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/minimum-weight-spanning-tree/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/degree-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/degree-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/betweenness-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/closeness-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/wcc/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/label-propagation/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/https://neo4j.com/docs/graph-data-science/current/algorithms/closeness-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo

Part Il:
Graph Algorithms in Neo4j

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

“Graphs are one

of the unifying
themes of computer
science - an abstract
representation

that describes

the organization

of transportation
systems, human
interactions, and
telecommunication
networks. That

so many different
structures can be
modeled using a
single formalism

is a source of

great power to

the educated
programmer.”

- Frost & Sullivan

18

Chapter 4
Graph Algorithm Concepts

Traversal

The most fundamental graph task is to visit nodes and relationships in a methodical way;
this is called traversing a graph. Traversal means moving from one item to another using
predecessor and successor operations in a sorted order.

Although this sounds simple, because the sorted order is logical, the next hop is
determined by a node’s logical predecessor or successor and not by its physical nearness.
Complexity arises as values assigned to not only nodes but relationships may be factored
in. For example, in an unsorted graph, a node’s predecessor would hold the largest value
that is smaller than the current node’s value and its successor would be the node with the
smallest value that is larger.

Fundamental Traversal Algorithms

There are two fundamental graph traversal algorithms: breadth-first search (BFS) and
depth-first search (DFS).

/1N

6 oo

Breadth-first search

7y

/
y) @
é O &

Depth-first search

The main difference between the algorithms is the order in which they explore nodes in
the graph. Breadth-first search traverses a graph by exploring a node’s neighbors first
before considering neighbors of those neighbors, whereas depth-first search will explore
as far down a path as possible, always visiting new neighbors where possible.

While they are not often used directly, these algorithms form an integral part of other
graph algorithms:

+ Depth-first search is used by the Strongly Connected Components algorithms.

+ Breadth-first search is used by the Shortest Path, Closeness Centrality and Connected
Components algorithms.

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/dfs/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/bfs/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

It's sometimes not obvious which algorithm is being used by other graph algorithms. For
example, Neodj's Shortest Path algorithm uses a fast bidirectional breadth-first search as
long as any predicates can be evaluated while searching for the path.

Graph Properties

There are several basic properties of graphs that will inform your choice of how you
traverse a graph and the algorithms you use.

Undirected Directed Cyclic Acyclic
Weighted Unweighted Sparse Dense

SESIROR:

Undirected vs. Directed. In an undirected graph, there is no direction to the
relationships between nodes. For example, highways between cities are traveled in both
directions. In a directed graph, relationships have one specific direction. For example,
within cities, some roads are one-way streets. For some analyses, you may also want to
ignore direction, for example in friendships where you want to assume the relationship is
mutual. We'll also see how this is relevant to Community Detection algorithms, especially
Weakly and Strongly Connected Components.

Cyclic vs. Acyclic. In graph theory, cycles are paths through relationships and nodes
where you walk from and back to a particular node. There are many types of cycles within
graphs, but cycles require consideration when using algorithms that may cause infinite
loops, like PageRank, for example. An acyclic graph has no cycles; a tree structure is a
common type of connected and acyclic (and undirected) graph.

Weighted vs. Unweighted. Weighted graphs assign values (weights) to either the nodes

or their relationships; one example is the cost or time to travel a segment or the priority of a
node. The shortest path through an unweighted graph is quickly found with a breadth-first
search as it will always be the path with the fewest number of relationships. Weighted graphs
are commonly used in pathfinding algorithms and require consideration for calculating
additional values.

Sparse vs. Dense. Graphs with a large number of relationships compared to nodes are
called dense. Although not strictly defined, sparse graphs are loosely linear in the number
of relationships to nodes, whereas in a clearly dense graph the number of relationships
would typically be the square of the nodes. Most graphs tend toward sparseness,
especially where physical elements, such as pipe sizes, come into play. Care should be
taken when preparing your graph data for community detection algorithms: On graphs
that are extremely dense you'll find overly clustered, meaningless communities; and at the
other end of the spectrum, an extremely sparse graph may find no communities at all.

19 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/shortest-path/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 5
The Neo4j Graph Data Science Library

The Neo4| Graph Data Science Library is used on your connected data to gain new insights
more easily within Neo4j. These graph algorithms improve results from your graph data,
for example by focusing on particular communities or favoring popular entities.

We developed this library as part of our effort to make it easier to use Neo4j for a wider
variety of applications. These algorithms have been tuned to be as efficient as possible in
regards to resource utilization as well as streamlined for management and debugging.

They are available as user-defined procedures called as part of Cypher statements
running on top of Neo4j.

Here is an architecture diagram.

Graph API

Algorithm

& Datastructures

1.Load data in parallel from Neo4j

2.Store in efficient data structures

3.Run graph algorithm in parallel using the Graph API
4. Write data back in parallel

If you want to try out the examples in the rest of the book, you'll need to first install the
graph algorithms library. Please see the “Installing Graph Algorithms” section in Appendix
B.

20 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/graph-data-science-library/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Usage

These algorithms are exposed as Neo4j procedures. They are called directly using Cypher in your Neo4j Browser, from cypher-
shell or from your client code.

For most algorithms, there are two procedures:
* algo.<name> - This procedure writes results back to the graph as node-properties, and reports statistics.
* algo.<name>.stream - This procedure returns a stream of data. For example, node-ids and computed values.

For large graphs, the streaming procedure might return millions, or even billions, of results. In this case it may be more
convenient to store the results of the algorithm, and then use them with later queries.

This is one of the use cases for a handy feature called graph projection. Graph projection places a logical subgraph into a graph
algorithm when your original graph has the wrong shape or granularity for that specific algorithm. For example, if you're looking
to understand the relationship between drug results for men versus women but your graph is not partitioned for this, you'll be

able to temporarily project a subgraph to quickly run your algorithm upon and move on to the next step.

We project the graph we want to run algorithms on with either label and relationship-type projection, or Cypher projection.

Label and relationship-type

& Cypher projection

Neo4j stored graph Projected graph

Execute algorithm

<

The projected graph model is separate from Neo4j's stored graph model to enable fast caching for the topology of the graph,
containing only relevant nodes, relationships and weights. During projection of a directed subgraph, only one relationship
directed in and one relationship directed out is allowed between a pair of nodes. During the projection of an undirected
subgraph, two relationships between a pair of nodes is allowed (there is no direction).

Label & Relationship-Type Projection

We project the subgraph we want to run the algorithm on by using the label parameter to describe nodes, and relationship-
type to describe relationships.
The general call syntax is:

CALL algo.<name> ("NodeLabel", "RelationshipType", {config})

21 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/cypher-graph-query-language/?ref=pdf-ebook-graph-algo

If label and relationship-type projection is not selective enough to describe our subgraph to run the algorithm on, we use Cypher
statements to project subsets of our graph. Use a node-statement instead of the label parameter and a relationship-statement
instead of the relationship-type, and use graph: "cypher" in the config.

Relationships described in the relationship-statement will only be projected if both source and target nodes are described in the
node-statement. Relationships that don't have both source and target nodes described in the node-statement will be ignored.

We also return a property value or weight (according to our config) in addition to the ids from these statements.

Cypher projection enables us to be more expressive in describing the subgraph that we want to analyze, but it might take longer
to project the graph with more complex Cypher queries.

The general call syntax is:

CALL algo.<name> (
"MATCH (n) RETURN id(n) AS id",
"MATCH (n)-->(m) RETURN id(n) AS source, id(m) AS target",
{graph: "cypher"})

The default label and relationship-type projection has a limitation of two billion nodes and two billion relationships, so if our
projected graph is bigger than this, we need to use a huge graph projection. This is enabled by setting graph: "huge™" in the
config.

The general call syntax is:

CALL algo.<name> ("NodeLabel", "RelationshipType", {graph: "huge"})

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Algorithm Types

For transactions and operational decisions, you need real-time graph analysis to provide
a local view of relationships between specific data items and take action. To make
discoveries about the overall nature of networks and model the behavior of complex
systems, you need graph algorithms that provide a broader view of patterns and
structures across all data and relationships.

The following table is helpful for working out the appropriate algorithm for your use case.

Algorithm Type Graph Problem m

Find the optimal path or + Find the quickest route
Q Q Q evaluate route availability to travel from Ato B
| |
]

M and quality
] ’
Q-

Pathfinding & Search

- Telephone call routing

Determine the importance - Determine social media
of distinct nodes in the influencers
networks

+ Find likely attack targets
in communication and
transportation networks

Centrality

Evaluate how a group is + Segment customers

clustered or partitioned - Find potential members

of a fraud ring

Community Detection

The next three chapters provide a reference for these three types of algorithms. They can
be treated as a reference manual for the algorithms currently supported by the Neo4j
Graph Platform.

If you want to try out the examples in these chapters, you'll need to install the Graph
Algorithms library. Please see the “Installing Graph Algorithms” section in Appendix B.

23

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 6

Pathfinding and Graph Search Algorithms

Pathfinding and graph search algorithms start at a node and expand relationships until the

destination has been reached. Pathfinding algorithms do this while trying to find the cheapest path in

oXe

u

B

\
4

7

terms of number of hops or weight whereas search algorithms will find a path that might not be the

shortest.

Algorithm Type What It Does Example Uses

Shortest Path

Single Source
Shortest Path

All Pairs
Shortest Path

Minimum Weight
Spanning Tree

24

Calculates the shortest weighted path between a pair of
nodes.

Calculates a path between a node and all other nodes
whose summed value (weight of relationships such as
cost, distance, time or capacity) to all other nodes is
minimal.

Calculates a shortest path forest (group) containing all
shortest paths between all nodes in the graph.

Commonly used for understanding alternate routing
when the shortest route is blocked or becomes
suboptimal.

Calculates the paths along a connected tree structure
with the smallest value (weight of the relationship such as
cost, time or capacity) associated with visiting all nodes

in the tree. It's also employed to approximate some
problems with unknown compute times such as the
traveling salesman problem and randomized or iterative
rounding.

Shortest Path is used for finding directions between
physical locations, such as driving directions. It's also used
to find the degrees of separations between people in
social networks as well as their mutual connections.

Single Source Shortest Path is faster than Shortest Path
and is used for the same types of problems.

It's also essential in logical routing such as telephone call
routing (e.g., lowest cost routing).

All Pairs Shortest Path is used to evaluate alternate
routes for situations such as a freeway backup or network
capacity.

It's also key in logical routing to offer multiple paths, for
example, call routing alternatives in case of a failure.

Minimum Weight Spanning Tree is widely used for
network designs: least cost logical or physical routing
such as laying cable, fastest garbage collection routes,
capacity for water systems, efficient circuit designs and
much more.

It also has real-time applications with rolling optimizations
such as processes in a chemical refinery or driving route
corrections.

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Travelling_salesman_problem

The Shortest Path algorithm calculates the shortest (weighted) path between a pair of
nodes. In this category, Dijkstra's algorithm is the most well known. It is a real-time graph
algorithm, and is used as part of the normal user flow in a web or mobile application.

Pathfinding has a long history and is considered to be one of the classical graph problems;
it has been researched as far back as the 19th century. It gained prominence in the early
1950s in the context of alternate routing, that is, finding the second shortest route if the
shortest route is blocked.

Edsger Dijkstra came up with his algorithm in 1956 while trying to show off the new
ARMAC computers. He needed to find a problem and a solution that people not familiar
with computing would be able to understand, and he designed what is now known as
Dijkstra’s algorithm. He later implemented it for a slightly simplified transportation map of
64 cities in the Netherlands.

- Finding directions between physical locations. This is the most common usage, and
web mapping tools such as Google Maps use the shortest path algorithm, or a variant
of it, to provide driving directions.

- Social networks use the algorithm to find the degrees of separation between people.
For example, when you view someone’s profile on LinkedIn, it will indicate how
many people separate you in the connections graph, as well as listing your mutual
connections.

Dijkstra does not support negative weights. The algorithm assumes that adding
a relationship to a path can never make a path shorter — an invariant that would be
violated with negative weights.

Let's calculate Shortest Path on a small dataset.

The following Cypher statement creates a sample graph containing locations and
connections between them.

MERGE (a:Loc {name:"A"}

MERGE (b:Loc {name:"B"}

MERGE (c:Loc {name:"C"}

MERGE (d:Loc {name:"D"}

MERGE (e:Loc {name:"E"}

MERGE (f:Loc {name:"F"}

MERGE (a)-[:ROAD {cost:50}]1->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]1->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]1->(e)
MERGE (d)-[:ROAD {cost:80}]1->(f)
MERGE (e)-[:ROAD {cost:40}]1->(f);

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A

Comprehensive Guide to Graph Algorithms in Neo4j

Graph Model

Now we can run the Shortest Path algorithm to find the shortest path between A and F.
Execute the following query.

MATCH (start:Loc{name:"A"}), (end:Loc{name:"F"})
CALL algo.shortestPath.stream(start, end, "cost")
YIELD nodelId, cost

MATCH (other:Loc) WHERE id(other) = nodeld
RETURN other.name AS name, cost

Results

ame e

o N >

m

0
50
90
120
160

The quickest route takes us from A to F, via C, D, and E, at a total cost of 160:

- First, we go from A to C, at a cost of 50.

+ Then, we go from C to D, for an additional 40.

+ Then, from D to E, for an additional 30.

+ Finally, from E to F, for a further 40.

26

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/shortest-path/?ref=pdf-ebook-graph-algo

The
from a node to all other nodes in the graph.

calculates the shortest (weighted) path

SSSP came into prominence at the same time as the Shortest Path algorithm and Dijkstra’s
algorithm acts as an implementation for both problems.

Neo4j implements a variation of SSSP, the delta-stepping algorithm. The delta-stepping
algorithm and efficiently works in sequential and parallel settings
for many types of graphs.

is a routing protocol for IP networks. It uses Dijkstra’s algorithm
to help detect changes in topology, such as link failures, and

Delta-stepping does not support negative weights. The algorithm assumes that
adding a relationship to a path never makes a path shorter - an invariant that would
be violated with negative weights.

Let's calculate Single Source Shortest Path on a small dataset.

The following Cypher statement creates a sample graph containing locations and
connections between them.

MERGE (a:Loc {name:"A"})

MERGE (b:Loc {name:"B"})

MERGE (c:Loc {name:"C"})

MERGE (d:Loc {name:"D"})

MERGE (e:Loc {name:"E"})

MERGE (f:Loc {name:"F"})

MERGE (a)-[:ROAD {cost:50}]->(b)

MERGE (a)-[:ROAD {cost:50}]->(c)

MERGE (a)-[:ROAD {cost:100}]->(d
MERGE (b)-[:ROAD {cost:40}]->(d)

MERGE (c)-[:ROAD {cost:40}]->(d)

MERGE (c)-[:ROAD {cost:80}]->(e)

MERGE (d)-[:ROAD {cost:30}]->(e)

MERGE (d)-[:ROAD {cost:80}]->(f)

MERGE (e)-[:ROAD {cost:40}]->(f);

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/single-source-shortest-path/?ref=pdf-ebook-graph-algo
https://arxiv.org/pdf/1604.02113v1.pdf
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://routing-bits.com/2009/08/06/ospf-convergence/
https://routing-bits.com/2009/08/06/ospf-convergence/

A Comprehensive Guide to Graph Algorithms in Neo4j

Graph Model

Now we can run the Single Source Shortest Path algorithm to find the shortest path
between A and all other nodes. Execute the following query.

MATCH (n:Loc {name:"A"})

CALL algo.shortestPath.deltaStepping.stream(n,"cost",3.0

YIELD nodeId, distance

MATCH (destination) WHERE id(destination) = nodelId

RETURN destination.name AS destination,

Results

N

A
B
C
D
E
F

The above table shows the cost of going from a to each of the other nodes, including itself

at a cost of 0.

0
50
50
90
120
160

distance

28

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

The calculates the shortest (weighted) path
between all pairs of nodes. This algorithm has optimizations that make it quicker than
calling the Single Source Shortest Path algorithm for every pair of nodes in the graph.

Some pairs of nodes might not be reachable from each other, so no shortest path exists
between these pairs. In this scenario, the algorithm returns infinity value as a result
between these pairs of nodes.

+ The All Pairs Shortest Path algorithm is used in urban service system problems,
such as the location of urban facilities or the distribution or delivery of goods. One
example of this is determining the traffic load expected on different segments of a
transportation grid. For more information, see

- All Pairs Shortest Path is used as part of the REWIRE data center design algorithm,
which finds a network with maximum bandwidth and minimal latency. There are
more details about this approach in the following academic paper:

Let's calculate All Pairs Shortest Path on a small dataset.

The following Cypher statement creates a sample graph containing locations and
connections between them.

MERGE (a:Loc {name:"A"})

MERGE (b:Loc {name:"B"})

MERGE (c:Loc {name:"C"})

MERGE (d:Loc {name:"D"})

MERGE (e:Loc {name:"E"})

MERGE (f:Loc {name:"F"})

MERGE (a)-[:ROAD {cost:50}]->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]->(e)
MERGE (d)-[:ROAD {cost:80}]->(f)
MERGE (e)-[:ROAD {cost:40}]1->(f);

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/all-pairs-shortest-path/?ref=pdf-ebook-graph-algo
http://web.mit.edu/urban_or_book/www/book/
https://cs.uwaterloo.ca/research/tr/2011/CS-2011-21.pdf
https://cs.uwaterloo.ca/research/tr/2011/CS-2011-21.pdf

A Comprehensive Guide to Graph Algorithms in Neo4j

Graph Model

Now we run the All Pairs Shortest Path algorithm to find the shortest path between every pair of nodes. Execute the following query.

CALL algo.allShortestPaths.stream("cost", {nodeQuery:"Loc",defaultValue:1.0})

YIELD sourceNodeId, targetNodeId, distance
WITH sourceNodeId, targetNodeId, distance
WHERE algo.isFinite(distance) = true

MATCH (source:Loc) WHERE id(source) sourceNodeId
MATCH (target:Loc) WHERE id(target) targetNodeId
WITH source, target, distance WHERE source <> target

RETURN source.name AS source, target.name AS target,
ORDER BY distance DESC
LIMIT 10

Results

N T

A F 100

C F 90 This query returned the top

5 r 90 10 pairs of nodes that are the
furthest away from each other.

A E 80 F and E appear to be the most

c E 70 distant from the others.

B E 80

A B 50

D F 50

A C 50

A D 50

30 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

The starts from a given node,
and finds all its reachable nodes and the set of relationships that The algorithm operates as follows:
connect the nodes together with the minimum possible weight.
Prim’s algorithm is one of the simplest and best-known Minimum
Weight Spanning Tree algorithms. The K-Means variant of this

algorithm can be used to detect clusters in the graph. * Select the minimal-weight relationship coming
from that node and add it to our tree.

+ Start with a tree containing only one node
(and no relationships).

The first known algorithm for finding a minimum weight spanning
tree was developed by the Czech scientist Otakar Bor(vka in 1926
while trying to design an efficient electricity network for Moravia.
Prim’s algorithm was invented by Jarnik in 1930 and rediscovered

* Repeatedly choose a minimal-weight relationship
that joins any node in the tree to one that is not in
the tree, adding the new relationship and node to

by Prim in 1957. Itis similar to Dijkstra’s Shortest Path algorithm, our tree.
but rather than minimizing the total length of a path ending at + When there are no more nodes to add, the tree
each relationship, it minimizes the length of each relationship we have built is a minimum spanning tree.

individually. Unlike Dijkstra’s, Prim’s tolerates negative-weight
relationships.

- Minimum Weight Spanning Tree was applied to analyze airline and sea connections of Papua New Guinea and minimize
the travel cost of exploring the country. It could be used to help design low-cost tours that visit many destinations across a
country. The research mentioned is found here:

+ Minimum Weight Spanning Tree has been used to analyze and visualize correlations in a network of currencies based on the
correlation between currency returns. This is described in

+ Exhaustive clinical research has shown Minimum Weight Spanning Tree to be useful in tracing the history of infection
transmission in an outbreak. For more information, see

The Minimum Weight Spanning Tree algorithm only gives meaningful results when run on a graph where the
relationships have different weights. If the graph has no weights, or all relationships have the same weight, then any
spanning tree is a minimum spanning tree.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/minimum-weight-spanning-tree/?ref=pdf-ebook-graph-algo
http://www.dwu.ac.pg/en/images/Research_Journal/2010_Vol_12/1_Fitina_et_al_spanning_trees_for_travel_planning.pdf
https://www.nbs.sk/_img/Documents/_PUBLIK_NBS_FSR/Biatec/Rok2013/07-2013/05_biatec13-7_resovsky_EN.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC516344/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC516344/

A Comprehensive Guide to Graph Algorithms in Neo4j

Minimum Weight Spanning Tree Example
Let's see the Minimum Weight Spanning Tree algorithm in action. The following Cypher
statement creates a graph containing places and links between them.

MERGE (a:Place {id:"A"})
MERGE (b:Place {id:"B"})
MERGE (c:Place {id:"C"})
MERGE (d:Place {id:"D"})
MERGE (e:Place {id:"E"})
MERGE (f:Place {id:"F"})
MERGE (g:Place {id:"G"})

MERGE (d)-[:LINK {cost:4}]->(b)

MERGE (d)-[:LINK {cost:6}]->(e)

MERGE (b)-[:LINK {cost:1}]->(a)

MERGE (b)-[:LINK {cost:3}]->(c)

MERGE (a)-[:LINK {cost:2}]->(c)

MERGE (c)-[:LINK {cost:5}]->(e)

MERGE (f)-[:LINK {cost:1}]->(q);

6

0 ©0--
e 7

LINK —

Graph Model

32

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

We run the algorithm to find the Minimum Weight Spanning Tree starting from D by executing the following query.

MATCH (n:Place {id:"D"})

CALL algo.spanningTree.minimum("Place", "LINK", "cost", id(n),
{write:true, writeProperty:"MINST"})

YIELD loadMillis, computeMillis, writeMillis, effectiveNodeCount

RETURN loadMillis, computeMillis, writeMillis, effectiveNodeCount;

This procedure creates MINST relationships representing the minimum spanning tree. We then run the following query to find all
pairs of nodes and the associated cost of the relationships between them.

MATCH path = (n:Place {id:"D"})-[:MINST*]-()

WITH relationships (path) AS rels

UNWIND rels AS rel

WITH DISTINCT rel AS rel

RETURN startNode (rel) .id AS source, endNode(rel).id AS destination, rel.cost AS
cost

Results
N T
D B 4
B A 1
A C 2
C E 5

The Minimum Weight Spanning Tree excludes the relationship with cost 6 from D to E, and the one with cost 3 from B to c. Nodes
F and G aren't included because they're unreachable from D.

There are also variations of the algorithm that find the maximum weight spanning tree or k-spanning tree.

33 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 7
Centrality Algorithms

Centrality algorithms are used to find the most influential nodes in a graph.

Many of these algorithms were invented in the field of social network analysis.

Algorithm Type | What It Does Example Uses

PageRank

Degree Centrality

Betweenness
Centrality

Closeness
Centrality

Estimates a current node’s importance from its linked
neighbors and then again from their neighbors. A
node’s rank is derived from the number and quality

of its transitive links to estimate influence. Although
popularized by Google, it's widely recognized as a way of
detecting influential nodes in any network.

Measures the number of relationships a node has. It's
broken into indegree (flowing in) and outdegree (flowing
out) where relationships are directed.

Measures the number of shortest paths that pass through
a node. Nodes that most frequently lie on shortest

paths have higher betweenness centrality scores and

are the bridges between different clusters. It is often
associated with the control over the flow of resources and
information.

Measures how central a node is within its cluster. Nodes
with the shortest paths to all other nodes are assumed to
be able to reach the entire group the fastest.

PageRank is used to estimate importance and influence.
It's used to suggest Twitter accounts to follow and for
general sentiment analysis. PageRank is also used in
machine learning to identify the most influential features
for extraction as well as ranking text for entity relevance in
natural language processing.

In biology, it's been used to identify which species
extinctions within a food web would lead to the biggest
chain-reaction of species death.

Degree Centrality looks at immediate connectedness for
uses such as evaluating the near-term risk of a person
catching a virus or the probability of a person hearing a
given piece of information.

In social studies, indegree of a node is used to estimate
popularity and outdegree of a node is used for
gregariousness..

Betweenness Centrality applies to a wide range of
problems in network science and it pinpoints bottlenecks
or vulnerabilities in communication and transportation
networks.

In genomics, it helps researchers understand the control
certain genes have in protein networks for improvements
such as better drug disease targeting.

Betweenness Centrality has also been used to evaluate
information flows among multiplayer online gamers in
addition to analyzing expertise sharing in communities of
physicians.

Closeness Centrality is applicable in a number of resource,
communication and behavioral analyses, especially when
interaction speed is significant.

It has been used in identifying the best location of new
public services for maximum accessibility.

In social analysis, it helps find people with the ideal social
network location for faster dissemination of information.

TIP: Several of the centrality algorithms calculate shortest paths between every pair of nodes and can therefore run for a
long time. This works well for small- to medium-sized graphs but can be prohibitive for large graphs. Some algorithms (for
example, Betweenness Centrality) have approximating versions that are used to address longer runtimes or larger graphs.

34 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4;j

PageRank

PageRank is an algorithm that measures the transitive, or directional, influence of nodes. All other centrality algorithms we discuss
measure the direct influence of a node, whereas PageRank considers the influence of your neighbors and their neighbors. For
example, having a few influential friends could raise your PageRank more than just having a lot of low-influence friends.

PageRank is computed by either iteratively distributing one node’s rank (originally based on degree) over its neighbors or by
randomly traversing the graph and counting the frequency of hitting each node during these walks.

Step 1 Step 2
Node Value = 1/n (n = Total # of Nodes) Link Value = Node Value / # of Its Out-Links

0.17 0.17
0.33

@ 0.33

Step 1 Step 2

Node Value = Sum of Prior In-Link Values Link Value = Node Value / # of Its Out-Links

0.17 0.17
0.50

—@

0.17

0.17
0.17 0.17
0.42
0.25
Iterations continue until
there is convergence on
a solution, a set solution
04 02 range, or a set number
0.2 of iterations.

(_e (Neo4j uses the latter.)
0.2

35 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/?ref=pdf-ebook-graph-algo

PageRank is named after Google co-founder Larry Page and is used to rank websites
in Google’s search results. It counts the number, and quality, of links to a page, which
determines an estimation of how important the page is. The underlying assumption is
that pages of importance are more likely to receive a higher volume of links from other
influential pages.

PageRank is defined in the original Google paper as follows:
PR(A) = (1-d) + d (PR(T1)/C(T1l) + ... + PR(Tn)/C(Tn))
where,

+ we assume that a page A has pages T1 to Tn which point to it (i.e., are citations).
+ dis a damping factor which is set between 0 and 1. It is usually set to 0.85.

+ C(A) is defined as the number of links going out of page A.

PageRank can be applied across a wide range of domains. The following are some notable
use cases:

- Personalized PageRank is used by Twitter to present users with recommendations of
other accounts that they may wish to follow. The algorithm is run over a graph that
contains shared interests and common connections. Their approach is described in
more detail in

- PageRank has been used to rank public spaces or streets, predicting traffic flow and
human movement in these areas. The algorithm is run over a graph that contains
intersections connected by roads, where the PageRank score reflects the tendency of
people to park, or end their journey, on each street. This is described in more detail in

PageRank is also used as part of an anomaly or fraud detection system in the
healthcare and insurance industries. It helps find doctors or providers that are
behaving in an unusual manner and then feeds the score into a machine learning
algorithm.

There are many more use cases for PageRank described in David Gleich's paper,

There are some things to be aware of when using the PageRank algorithm:
+ If there are no links from within a group of pages to outside of the group, then the
group is considered a spider trap.
+ Rank sink occurs when a network of pages forms an infinite cycle.

« Dead-ends occur when pages have no out-links. If a page contains a link to a dead-
end page, the link is known as a dangling link.

If you see unexpected results from running the algorithm, it is worth doing some
exploratory analysis of the graph to see if any of these problems are the cause. You
can read to learn more.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://web.stanford.edu/~rezab/papers/wtf_overview.pdf
https://arxiv.org/pdf/0804.1630.pdf
https://arxiv.org/pdf/1407.5107.pdf
http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm

A Comprehensive Guide to Graph Algorithms in Neo4j

PageRank Example

Let's calculate PageRank on a small dataset. The following Cypher statement creates a
sample graph of web pages and links between them.

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

Graph Model

37

(home:Page {name:"Home"})
(about:Page {name:"About"})
(product:Page {name:"Product"})
(links:Page {name:"Links"})

(a:Page
(b:Page
(c:Page
(d:Page

{name:
{name:
{name:
{name:

"Site
"Site
"Site
"Site

A"})
B"})
c"})
D"})

(home) = [: LINKS] -> (about)
(about) - [:LINKS]-> (home)

(product) - [:LINKS] -> (home)
(home) - [:LINKS] -> (product)

(links)-[:LINKS]-> (home)
(home) = [:LINKS]->(links)
(links)-[:LINKS]-> (a)

(a) = [:LINKS]-> (home)

(links)-[:LINKS]->(b)

(b) = [:LINKS]-> (home)

(links)-[:LINKS]->(c)

(c)=-[:LINKS]->(home)

(links)-[:LINKS]->(d)
(d) =[:LINKS]-> (home

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Now we run the PageRank algorithm to calculate the most influential pages. Execute the
following query.

CALL algo.pageRank.stream("Page", "LINKS",
{iterations:20})
YIELD nodeld, score

MATCH (node) WHERE id(node) = nodeId

RETURN node.name AS page, score
ORDER BY score DESC

Results
I
Home 3.232
Product 1.059
Links 1.059
About 1.059
Site A 0.328
Site B 0.328
Site C 0.328
Site D 0.328

Site B

Site D

Site C

"/H

About

Product
Visualization of PageRank

As we might expect, the Home page has the highest PageRank because it has incoming
links from all other pages. Also, it's not only the number of incoming links that is important,
but also the importance of the pages behind those links.

38 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

is the simplest of all the centrality algorithms. It measures the number of
incoming and outgoing relationships from a node.

The algorithm helps us find popular nodes in a graph.

Degree Centrality was proposed by Linton C. Freeman in his 1979 paper,

While the algorithm is usually used to find the
popularity of individual nodes, it is often used as part of a global analysis where we calculate
the minimum degree, maximum degree, mean degree, and standard deviation across the
whole graph.

- Degree Centrality is an important component of any attempt to analyze influence by
looking at the number of incoming and outgoing relationships, such as connections
of people on a social network. For example, in BrandWatch's

, the top five people in each category have over 40 million
followers each.

-+ Weighted Degree Centrality has been used to help separate fraudsters from
legitimate users of an online auction. The weighted centrality for fraudsters is
significantly higher because they tend to collude with each other to artificially increase
the price of items. Read more in

Let's see how Degree Centrality works on a small dataset. The following Cypher statement
creates a Twitter-esque graph of users and followers.

MERGE (nAlice:User {id:"Alice"})
MERGE (nBridget:User {id:"Bridget"})
MERGE (nCharles:User {id:"Charles"})
MERGE (nDoug:User {id:"Doug"})

MERGE (nMark:User {id:"Mark"})

MERGE (nMichael:User {id:"Michael"})
MERGE (nAlice)-[:FOLLOWS]-> (nDougqg)
MERGE (nAlice)-[:FOLLOWS]->(nBridget)
MERGE (nAlice)-[:FOLLOWS]->(nCharles)
MERGE (nMark)-[:FOLLOWS]-> (nDoug)
MERGE (nMark)-[:FOLLOWS]->(nMichael)
MERGE (nBridget)-[:FOLLOWS]-> (nDoug)
MERGE (nCharles) -[:FOLLOWS]-> (nDoug)
MERGE (nMichael) -[:FOLLOWS]-> (nDoug)

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/degree-centrality/?ref=pdf-ebook-graph-algo
http://leonidzhukov.net/hse/2014/socialnetworks/papers/freeman79-centrality.pdf
http://leonidzhukov.net/hse/2014/socialnetworks/papers/freeman79-centrality.pdf
https://www.brandwatch.com/blog/react-influential-men-and-women-2017/
https://www.brandwatch.com/blog/react-influential-men-and-women-2017/
https://link.springer.com/chapter/10.1007/978-3-319-23461-8_11
https://link.springer.com/chapter/10.1007/978-3-319-23461-8_11

A Comprehensive Guide to Graph Algorithms in Neo4j

Bridget

SMO1104=>

Graph Model

The following query calculates the number of people that each user follows and is followed
by.

MATCH (u:User)

RETURN u.id AS name,
size ((u)-[:FOLLOWS]->()) AS follows,
size((u)<-[:FOLLOWS]-()) AS followers

Results
Came oo ol
Alice 3 0
Bridget 1 1
Charles 1 1
Doug 0 5
Mark 2 0
Michael 1 1
40

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Bridget

/‘

Ly
Michael

Alice

Mark

Charles

Visualization of Degree Centrality

Doug is the most popular user in our imaginary Twitter graph with five followers; all other
users follow him but he doesn't follow anybody back. In the real Twitter network, celebrities
have high follower counts but tend to follow few people. We could therefore consider Doug
a celebrity!

41 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Betweenness Centrality

Betweenness Centrality is a way of detecting the amount of influence a node has over the
flow of information in a graph. It is often used to find nodes that serve as a bridge from
one part of a graph to another.

In the following example, Alice is the main connection in the graph.

<
>
z
x>
(0]
m
l

Bridget R\ lass

w
G
<
=z
<
=
l

Alice

If Alice is removed, all connections in the graph would be cut off. This makes Alice
important, because she ensures that no nodes are isolated.

The Betweenness Centrality algorithm calculates the shortest (weighted) path between
every pair of nodes in a connected graph, using the breadth-first search algorithm. Each
node receives a score, based on the number of these shortest paths that pass through
the node. Nodes that most frequently lie on these shortest paths will have a higher
betweenness centrality score.

42

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/betweenness-centrality/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

The algorithm was given its first formal definition by Linton Freeman in his 1971 paper, "A.
Set of Measures of Centrality Based on Betweenness." It was considered to be one of the
three distinct intuitive conceptions of centrality.

The algorithm operates as follows:

1.5
+ First, find all shortest paths
+ Then, for each node, divide the number of shortest paths
6.5 that go through that node by the total number of shortest
paths in the graph

+ The higher scores, red node and then yellow node, have
0 the highest betweenness centrality

0

Betweenness Centrality

When Should | Use Betweenness Centrality?

- Betweenness Centrality is used to research the network flow in a package delivery
process or in a telecommunications network. These networks are characterized by
traffic that has a known target and takes the shortest path possible. This, and other
scenarios, are described by Stephen P. Borgatti in "Centrality and network flow.”

+ Betweenness Centrality is used to identify influencers in legitimate or criminal
organizations. Studies show that influencers in organizations are not necessarily
in management positions, but instead are found in brokerage positions of the
organizational network. Removal of such influencers could seriously destabilize
the organization. More details are found in "Brokerage gualifications in ringing
operations” by Carlo Morselli and Julie Roy.

- Betweenness Centrality is also used to help microbloggers spread their reach on
Twitter, with a recommendation engine that targets influencers that they should
interact with in the future. This approach is described in "Making Recommendations
in a Microblog to Improve the Impact of a Focal User."

43

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
http://moreno.ss.uci.edu/23.pdf
http://moreno.ss.uci.edu/23.pdf
http://www.analytictech.com/borgatti/papers/centflow.pdf
http://archives.cerium.ca/IMG/pdf/Morselli_and_Roy_2008_.pdf
http://archives.cerium.ca/IMG/pdf/Morselli_and_Roy_2008_.pdf
ftp://ftp.umiacs.umd.edu/incoming/louiqa/PUB2012/RecMB.pdf
ftp://ftp.umiacs.umd.edu/incoming/louiqa/PUB2012/RecMB.pdf

+ Betweenness Centrality makes the assumption that all communication between
nodes happens along the shortest path and with the same frequency, which isn't
always the case in real life. Therefore, it doesn't give us a perfect view of the most
influential nodes in a graph, but rather a good representation. Newman explains
this in more detail on page 186 of

+ For large graphs, exact centrality computation isn't practical. The fastest known
algorithm for exactly computing betweenness of all the nodes requires at least
O(nm) time for unweighted graphs, where n is the number of nodes and m is the
number of relationships. Instead, we use an approximation algorithm that works
with a subset of nodes.

Let's see how Betweenness Centrality works on a small dataset. The following Cypher
statement creates an organizational hierarchy.

MERGE (nAlice:User {id:"Alice"})
MERGE (nBridget:User {id:"Bridget"})
MERGE (nCharles:User {id:"Charles"})
MERGE (nDoug:User {id:"Doug"})

MERGE (nMark:User {id:"Mark"})

MERGE (nMichael:User {id:"Michael"})
MERGE (nAlice)-[:MANAGES]->(nBridget)
MERGE (nAlice)-[:MANAGES]->(nCharles)
MERGE (nAlice)-[:MANAGES]->(nDoug)
MERGE (nMark)-[:MANAGES]->(nAlice)
MERGE (nCharles)-[:MANAGES]->(nMichael) ;

/
ANAG £S ¥,
M AN, M GES
s/ AN
& “y,
@?‘$P\ ‘7/V

Graph Model

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://global.oup.com/academic/product/networks-9780199206650?cc=us&lang=en&

A Comprehensive Guide to Graph Algorithms in Neo4j

The following query executes the Betweenness Centrality algorithm.

CALL algo.betweenness.stream("User", "MANAGES", {direction:"out"})
YIELD nodeld, centrality

MATCH (user:User) WHERE id(user) = nodeld

RETURN user.id AS user,centrality
ORDER BY centrality DESC;

Results
Come o
Alice 4

Charles
Bridget
Michael

Doug

o O O O N

Mark

Michael
Charles Mark

Alice

@
Bridget .

Doug

Visualization of Betweenness Centrality

Alice is the main broker in this network, and Charles is a minor broker. The others don't have any
influence, because all the shortest paths between pairs of people go via Alice or Charles.

45

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Approximation of Betweenness Centrality

As mentioned above, calculating the exact betweenness centrality on large graphs can be very time
consuming. Therefore, you might choose to use an approximation algorithm that runs much quicker and
still provides useful information.

The RA-Brandes algorithm is the best-known algorithm for calculating an approximate score for
betweenness centrality. Rather than calculating the shortest path between every pair of nodes, the RA-
Brandes algorithm considers only a subset of nodes. Two common strategies for selecting the subset of
nodes are:

Random

Nodes are selected uniformly, at random, with defined probability of selection. The default probability is
log10(N) / e/2. If the probability is 1, then the algorithm works the same way as the normal Betweenness
Centrality algorithm, where all nodes are loaded.

Degree
First, the mean degree of the nodes is calculated, and then only the nodes whose degree is higher than
the mean are visited (i.e., only dense nodes are visited).

As a further optimization, you limit the depth used by the Shortest Path algorithm.

Approximation of Betweenness Centrality Example
Let's see how Approximation of Betweenness Centrality works on the same dataset that we used for the
Betweenness Centrality algorithm.

The following query executes the Approximation of Betweenness Centrality algorithm.

CALL algo.betweenness.sampled.stream("User", "MANAGES",
{strategy:"random", probability:1.0, maxDepth:1, direction:
"Out" })

YIELD nodeld, centrality
MATCH (user) WHERE id(user) = nodelId

RETURN user.id AS user,centrality
ORDER BY centrality DESC;

Results
Come o
Alice 3
Charles 1
Bridget 0
Michael 0
Doug 0
Mark 0
46

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Michael
Charles Mark

Alice

@
Bridget .

Doug

Visualization of Approximation of Betweenness Centrality

Alice is still the main broker in the network, and Charles is a minor broker, although their
centrality score has dropped as the algorithm only considers relationships at a depth of
1. The others don't have any influence, because all the shortest paths between pairs of
people go via Alice or Charles.

47

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

is a way of detecting nodes that are able to spread information
efficiently through a graph.

The closeness centrality of a node measures its average farness (inverse distance) to all
other nodes. Nodes with a high closeness score have the shortest distances to all other
nodes.

For each node, the Closeness Centrality algorithm calculates the sum of its distances to
all other nodes, based on calculating the shortest paths between all pairs of nodes. The
resulting sum is then inverted to determine the closeness centrality score for that node.

The raw closeness centrality of a node is calculated using the formula:

raw closeness centrality(node) = 1 / sum(distance from node to
all other nodes)

It is more common to normalize this score so that it represents the average length of
the shortest paths rather than their sum. This adjustment allows comparisons of the
closeness centrality of nodes of graphs of different sizes.

The formula for normalized closeness centrality is as follows:

normalized closeness centrality(node) = (number of nodes - 1)
/ sum(distance from node to all other node

+ Closeness centrality is used to research organizational networks where individuals
with high closeness centrality are in a favorable position to control and acquire vital
information and resources within the organization. One such study is

by Valdis E. Krebs.

- Closeness centrality is also interpreted as an estimated time of arrival through
telecommunications or package delivery networks where content flows through
shortest paths to a predefined target. It is also used in networks where information
spreads through all shortest paths simultaneously, such as infections spreading
through a local community. Find more details in by
Stephen P. Borgatti.

+ Closeness centrality helps estimate the importance of words in a document, based
on a graph-based keyphrase extraction process. This process is described by
Florian Boudin in

Academically, closeness centrality works best on connected graphs. If we use the
original formula on an unconnected graph, we end up with an infinite distance between
two nodes in separate connected components. This means that we'll end up with an
infinite closeness centrality score when we sum up all the distances from that node. In
practice, a variation on the original formula is used so that we don't run into these
issues.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/closeness-centrality/?ref=pdf-ebook-graph-algo
http://www.orgnet.com/MappingTerroristNetworks.pdf
http://www.orgnet.com/MappingTerroristNetworks.pdf
http://www.analytictech.com/borgatti/papers/centflow.pdf
https://www.aclweb.org/anthology/I/I13/I13-1102.pdf
https://www.aclweb.org/anthology/I/I13/I13-1102.pdf

A Comprehensive Guide to Graph Algorithms in Neo4j

Closeness Centrality Example

Let's see how Closeness Centrality works on a small dataset. The following Cypher

statement creates a graph with nodes and links between them.

«—LINK o L\N\‘/
LINK—

MERGE
MERGE
MERGE
MERGE
MERGE

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

(a:Node{id:
(b:Node{id:
(c:Node{id:
(d:Node{id:
(e:Node{id:
(a) - [:LINK]
(b) = [:LINK]
(b) = [:LINK]
(c)-[:LINK]
(c)-[:LINK]
(d) = [:LINK]
(d) = [:LINK]
(e)-[:LINK]

Graph Model

"A"})
"B"})
"CU})
"D"})
"E"})

->(b)
->(a)
->(c)
->(b)
—->(d)
->(c)
->(e)
->(d);

\,*\(

The following query executes the Closeness Centrality algorithm:

49

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

CALL algo.closeness.stream("Node", "LINK")
YIELD nodeld, centrality

MATCH (n:Node) WHERE id(n) = nodeId

RETURN n.id AS node, centrality
ORDER BY centrality DESC

LIMIT 20;
Results
(e oo
C 0.6666666666666666
B 0.5714285714285714
D 0.5714285714285714
A 04
E 0.4

=3
S

Visualization of Closeness Centrality

C is the best connected node in this graph, although B and D aren't far behind. 2 and E
don't have close ties to many other nodes, so their scores are lower. Any node that has a
direct connection to all other nodes would score 1.

50

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

(also known as valued centrality) is a variant of Closeness Centrality
that was invented to solve the problem the original formula had when dealing with

unconnected graphs. As with many of the centrality algorithms, it originates from the field
of social network analysis.

Harmonic centrality was proposed by Marchiori and Latora in
while trying to come up with a sensible notion of "average shortest path."

They suggested a different way of calculating the average distance to that used in the
Closeness Centrality algorithm. Rather than summing the distances of a node to all other
nodes, the Harmonic Centrality algorithm sums the inverse of those distances. This
enables it to deal with infinite values.

The raw harmonic centrality for a node is calculated using the following formula:

raw harmonic centrality(node) = sum(l / distance from node to
every other node excluding itself)

As with Closeness Centrality we also calculate a normalized harmonic centrality with
the following formula:

normalized harmonic centrality(node) = sum(l / distance from
node to every other node excluding itself) / (number of nodes -
1)

In this formula, « values are handled cleanly.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/harmonic-centrality/?ref=pdf-ebook-graph-algo
https://arxiv.org/pdf/cond-mat/0008357.pdf
https://arxiv.org/pdf/cond-mat/0008357.pdf

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 8

Community Detection Algorithms

A fairly common feature of complex graphs is that they consist of sets of nodes that interact more with
one another than with nodes outside the set. Social networks, for instance, might consist of tightly knit
communities of friends with rarer friendship ties between different communities. The idea that community
structures might be a defining characteristic of complex systems was first proposed by H.A. Simon in 1962.

When using community detection algorithms, we need to be conscious of the density of the relationships in

the subgraphs on which we're running the algorithm. If it's very dense and all nodes are connected to each other, we may end up
with all nodes congregating in one cluster. On the other hand if it's too sparse and few nodes are connected, then we may end up
with each node in its own cluster.

Algorithm Type What It Does Example Uses

Strongly Connected

Components

Weakly Connected

Components
Union Find

Label Propagation

Louvain Modularity

Triangle Count and
Average Clustering
Coefficient

Locates groups of nodes where each node is reachable
from every other node in the same group following the
direction of relationships. It's often applied from a depth-
first search.

Finds groups of nodes where each node is reachable
from any other node in the same group, regardless of
the direction of relationships. It provides near constant-
time (independent of input size) operations to add new
groups, merge existing groups and determine whether
two nodes are in the same group.

Spreads labels based on neighborhood majorities as a
means of inferring clusters. This extremely fast graph
partitioning requires little prior information and is widely
used in large-scale networks for community detection.
It's a key method for understanding the organization of a
graph and is often a primary step in other analysis.

Measures the quality (i.e., presumed accuracy) of a
community grouping by comparing its relationship
density to a suitably defined random network. It's often
used to evaluate the organization of complex networks,
in particular, community hierarchies. It's also useful

for initial data preprocessing in unsupervised machine
learning.

Measures how many nodes have triangles and the
degree to which nodes tend to cluster together. The
average clustering coefficient is 1 when there is a clique,
and 0 when there are no connections. For the clustering
coefficient to be meaningful, it should be significantly
higher than a version of the network where all of the
relationships have been shuffled randomly.

Strongly Connected Components is often used to enable
running other algorithms independently on an identified
cluster. As a preprocessing step for directed graphs, it
helps quickly identify disconnected groups.

In retail recommendations, it helps identify groups

with strong affinities that are then used for suggesting
commonly preferred items to those within a given group
who have not yet purchased one of the items.

Weakly Connected Components is often used in
conjunction with other algorithms, especially for high-
performance grouping. As a preprocessing step for
undirected graphs, it helps quickly identify disconnected
groups.

Label Propagation has diverse applications from
understanding consensus formation in social
communities to identifying sets of proteins that are
involved together in a process (functional modules) for
biochemical networks.

It's also used in semi- and unsupervised machine
learning as an initial preprocessing step.

Louvain is used to evaluate social structures in Twitter,
LinkedIn and YouTube. It's also used in fraud analytics to
evaluate whether a group has just a few bad behaviors
or is acting as a fraud ring that would be indicated by a
higher relationship density than average.

Louvain revealed a six-level customer hierarchy in a
Belgian telecom network.

The Average Clustering Coefficient is often used to
estimate whether a network might exhibit “small-world”
behaviors that are based on tightly knit clusters. It's also
a factor for cluster stability and resiliency.

Epidemiologists have used the Average Clustering
Coefficient to help predict various infection rates for
different communities.

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Strongly Connected Components

The Strongly Connected Components (SCC) algorithm finds sets of connected nodes in a
directed graph where each node is reachable in both directions from any other node in
the same set. It is often used early in a graph analysis process to give us an idea of how
our graph is structured.

SCC is one of the earliest graph algorithms, and the first linear-time algorithm was
described by Tarjan in 1972. Decomposing a directed graph into its strongly connected
components is a classic application of the depth-first search algorithm.

When Should | Use Strongly Connected Components?

- In the analysis of powerful transnational corporations, SCC is used to find the set of
firms in which every member directly owns and/or indirectly owns shares in every
other member. Although it has benefits, such as reducing transaction costs and
increasing trust, this type of structure weakens market competition. Read more in
"The Network of Global Corporate Control."

+ SCC has been used to compute the connectivity of different network configurations
when measuring routing performance in multihop wireless networks. Read more in
"Routing performance in the presence of unidirectional links in multihop wireless
networks."

- Strongly Connected Components algorithms are often used as a first step in many
graph algorithms that work only on strongly connected graphs. In social networks, a
group of people are generally strongly connected (for example, students of a class or
any other common place). Many people in these groups generally like some common
pages or play common games. The SCC algorithms are used to find such groups and
suggest the commonly liked pages or games to the people in the group who have not
yet liked those pages or games.

53 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/strongly-connected-components/?ref=pdf-ebook-graph-algo
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0025995&type=printable
https://dl.acm.org/citation.cfm?id=513803
https://dl.acm.org/citation.cfm?id=513803

A Comprehensive Guide to Graph Algorithms in Neo4j

Strongly Connected Components Example

Let's see the Strongly Connected Components algorithm in action. The following Cypher
statement creates a Twitter-esque graph containing users and FOLLOWS relationships

between them.

Graph Model

54

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

(nAlice:User {id:"Alice"})
(nBridget:User {id:"Bridget"})
(nCharles:User {id:"Charles"})
(nDoug:User {id:"Doug"})
(nMark:User {id:"Mark"})
(nMichael:User {id:"Michael"})

(nAlice)-[:FOLLOWS]-> (nBridget)
(nAlice)-[:FOLLOWS]->(nCharles)
(nMark) - [:FOLLOWS] —-> (nDoug)
(nMark) - [:FOLLOWS]-> (nMichael)
(nBridget) - [:FOLLOWS] -> (nMichael)
(nDoug) - [: FOLLOWS] —> (nMark)
(nMichael) - [:FOLLOWS]->(nAlice)
(nAlice)-[:FOLLOWS]-> (nMichael)
(nBridget) - [:FOLLOWS]->(nAlice)
(nMichael) - [:FOLLOWS]-> (nBridget) ;

g
&

o
SMOT1104=>

/

FOLLOWS—
5

=
&

e
<
0
N

)
<
%
5

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Now we can run Strongly Connected Components to see whether everybody is connected
to each other. Execute the following query.

CALL algo.scc.stream("User", "FOLLOWS")
YIELD nodeld, partition

MATCH (u:User) WHERE id(u) = nodeld
RETURN u.id AS name, partition

Results
e L

Alice 1

Bridget 1

Michael 1

Charles 0

Doug 2

Mark 2

Q Bridg:et
Charles

.« |
Alice

LN
Michael

LN
Mark

Doug

Visualization of Strongly Connected Components

We have three strongly connected components in our sample graph.

The first, and biggest, component has members Alice, Bridget, and Michael, while the
second component has Doug and Mark. Charles ends up in his own component because
there isn't an outgoing relationship from that node to any of the others.

55 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

The Weakly Connected Components, or Union Find, algorithm finds sets of connected
nodes in an undirected graph where each node is reachable from any other node in the
same set. It differs from the Strongly Connected Components algorithm (SCC) because it
only needs a path to exist between pairs of nodes in one direction, whereas SCC needs a
path to exist in both directions. As with SCC, Union Find is often used early in an analysis
to understand a graph's structure.

Bernard A. Galler and Michael J. Fischer first described this algorithm in 1964. The
components in a graph are computed using either the breadth-first search or depth-first
search algorithms.

- Testing whether a graph is connected is an essential pre-processing step for every
graph algorithm. Such tests are performed so quickly and easily that you should
always verify that your input graph is connected, even when you know it has to be.
Subtle, difficult-to-detect bugs often result when your algorithm is run only on one
component of a disconnected graph.

+ Union Find is also used to keep track of clusters of database records, as part
of the de-duplication process - an important task in master data management
applications. Read more in

+ Weakly Connected Components (WCC) is used to analyze citation networks as well.
One study uses WCC to work out how well-connected the network is, and then to see
whether the connectivity remains if "hub" or "authority" nodes are moved from the
graph. Read more in

Let's see the Union Find algorithm in action. The following Cypher statement creates a
graph of people and their friends.

MERGE (nAlice:User {id:"Alice"})
MERGE (nBridget:User {id:"Bridget"})
MERGE (nCharles:User {id:"Charles"})
MERGE (nDoug:User {id:"Doug"})

MERGE (nMark:User {id:"Mark"})

MERGE (nMichael:User {id:"Michael"})
MERGE (nAlice)-[:FRIEND]->(nBridget)
MERGE (nAlice)-[:FRIEND]->(nCharles)
MERGE (nMark)-[:FRIEND]->(nDoug)
MERGE (nMark)-[:FRIEND]-> (nMichael) ;

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8405
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8405
https://pdfs.semanticscholar.org/a8e0/5f803312032569688005acadaa4d4abf0136.pdf
https://pdfs.semanticscholar.org/a8e0/5f803312032569688005acadaa4d4abf0136.pdf

A Comprehensive Guide to Graph Algorithms in Neo4j

FRIEND—>

J
&
)

&

FRIEND— Br|dget

Graph Model

Now we run Union Find to find connected components. Execute the following query.

CALL algo.unionFind.stream("User", "FRIEND", {})
YIELD nodeld, setId

MATCH (u:User) WHERE id(u) = nodeId

RETURN u.id AS user, setId

Results
Cume Tl
C 0.6666666666666666
B 0.5714285714285714
D 0.5714285714285714
A 04
E 0.4
57 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

O

Dou
‘ Alice
Bridget ‘ Mark
Charles \
Michael

Visualization of Union Find

We have two distinct groups of users that have no link between them.

The first group contains Alice, Charles and Bridget, while the second group contains
Michael, Doug and Mark.

58 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Label Propagation

The Label Propagation algorithm (LPA) is a fast algorithm for finding communities in a
graph. It detects these communities using network structure alone as its guide and doesn't
require a predefined objective function or prior information about the communities.

One interesting feature of LPA is that you have the option of assigning preliminary labels
to narrow down the range of generated solutions. This means you can use it as a semi-
supervised way of finding communities where you handpick some initial communities.

LPAis a relatively new algorithm and was only proposed by Raghavan et al. in 2007, in
"Near linear time algorithm to detect community structures in large-scale networks." It
works by propagating labels throughout the network and forming communities based on
this process of label propagation.

The intuition behind the algorithm is that a single label can quickly become dominantin a
densely connected group of nodes, but it will have trouble crossing a sparsely connected
region. Labels will get trapped inside a densely connected group of nodes, and those
nodes that end up with the same label when the algorithm finishes are considered part of
the same community.

Initial State
Some nodes have labels
Pass 1
More labels added
Pass 2

Iterations continue until
there is convergence on
a solution, a set solution
range, or a set number
of iterations.

Label Propagation Algorithm

59

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/label-propagation/?ref=pdf-ebook-graph-algo
https://arxiv.org/pdf/0709.2938.pdf

The algorithm works as follows:

+ Every node is initialized with a unique label (an identifier).
* These labels propagate through the network.

+ At every iteration of propagation, each node updates its label to the one that the
maximum number of its neighbors belongs to. Ties are broken uniformly and
randomly.

+ LPA reaches convergence when each node has the majority label of its neighbors.

As labels propagate, densely connected groups of nodes quickly reach a consensus
on a unique label. At the end of the propagation, only a few labels will remain - most
will have disappeared. Nodes that have the same label at convergence are said to
belong to the same community.

Label Propagation has been used to assign polarity of tweets, as a part of semantic
analysis that uses seed labels from a classifier trained to detect positive and negative
ematicons in combination with the Twitter follower graph. For more information, see

Label Propagation has been used to estimate potentially dangerous combinations of
drugs to co-prescribe to a patient, based on the chemical similarity and side effect
profiles. The study is found in

Label Propagation has been used to infer features of utterances in a dialogue for a
machine learning model to track user intention with the help of a Wikidata knowledge
graph of concepts and their relations. For more information, see

In contrast with other algorithms, Label Propagation results in different
community structures when run multiple times on the same graph. The range of
solutions is narrowed if some nodes are given preliminary labels, while others are
unlabeled. Unlabeled nodes are more likely to adopt the preliminary labels.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://dl.acm.org/citation.cfm?id=2140465
https://dl.acm.org/citation.cfm?id=2140465
https://www.nature.com/articles/srep12339
https://www.nature.com/articles/srep12339
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.iwsds2017/papers/IWSDS2017_paper_12.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.iwsds2017/papers/IWSDS2017_paper_12.pdf

A Comprehensive Guide to Graph Algorithms in Neo4j

Label Propagation Example
Let's see the Label Propagation algorithm in action. The following Cypher statement

creates a Twitter-esque graph containing users and FOLLOWS relationships between them.

Graph Model

61

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

('\FOLLOWS

(nAlice:User {id:"Alice"})
(nBridget:User {id:"Bridget"})
(nCharles:User {id:"Charles"})
(nDoug:User {id:"Doug"})
(nMark:User {id:"Mark"})
(nMichael:User {id:"Michael"})

(nAlice)-[:FOLLOWS]-> (nBridget)
(nAlice)-[:FOLLOWS]->(nCharles)
(nMark) - [:FOLLOWS] —-> (nDoug)
(nBridget) - [:FOLLOWS] -> (nMichael)
(nDoug) - [: FOLLOWS] —> (nMark)
(nMichael) - [:FOLLOWS]->(nAlice)
(nAlice)-[:FOLLOWS]-> (nMichael)
(nBridget) - [:FOLLOWS]->(nAlice)
(nMichael) - [:FOLLOWS] -> (nBridget)
(nCharles) - [:FOLLOWS] -> (nDoug) ;

FoLLows— (LT

SMO1104—

e
%

FoLLOWS
Bridget
FOLLOWS

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Now we run LPA to find communities among the users. Execute the following query.

CALL algo.labelPropagation.stream("User", "FOLLOWS",
{direction: "OUTGOING", iterations: 10})

Results
[ome 0 ffemm]
Alice 5
Charles 4
Bridget 5
Michael 5
Doug 4
Mark 4

O

harles
Doug
Mark

(Alice

Brid et\

Michael

Visualization of Label Propagation

Our algorithm found two communities with three members each.

It appears that Michael, Bridget and Alice belong together, as do Doug and Mark. Only
Charles doesn't strongly fit into either side, but ends up with Doug and Mark.

62

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Louvain Modularity

The Louvain method of community detection is an algorithm for detecting communities
in networks. It maximizes a modularity score for each community, where the modularity
quantifies the quality of an assignment of nodes to communities by evaluating how much
more densely connected the nodes within a community are, compared to how connected
they would be in a random network.

The Louvain algorithm is one of the fastest modularity-based algorithms and works well
with large graphs. It also reveals a hierarchy of communities at different scales, which is
useful for understanding the global functioning of a network.

In order to understand the Louvain modularity algorithm, we must first look at modularity
in general.

Negative Modularity Single Community
M=0.12 M=0
Suboptimal Partition Optimal Partition
M=0.22 M=0.41
Modularity

Modularity is a measure of how well groups have been partitioned into clusters. It
compares the relationships in a cluster compared to what would be expected for a
random (or other baseline) number of connections.

63

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Pass 1

Step 0 Step 1 Step 2
Choose a start node and The start node joins the node Communities are aggregated to
calculate the change in with the highest modularity create super communities and the
modularity that would occur change. The process is repeated relationships between these super
if that node joins and forms for each node with the above nodes are weighted as a sum of
a community with each of its communities formed. previous links. (Self-loops represent

immediate neighbors. the previous relationships now

hidden in the super node.)

Pass 2

Step 1 Step 2

Steps 1 and 2 repeat in passes until there is no further increase in
modularity or a set number of iterations have occurred.

Louvain Modularity Algorithm

64

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

The was proposed in 2008. The method consists of repeated
application of two steps. The first step is a "greedy" assignment of nodes to communities,
favoring local optimizations of modularity. The second step is the definition of a new
coarse-grained network based on the communities found in the first step. These two
steps are repeated until no further modularity-increasing reassignments of communities
are possible.

+ The Louvain method has been proposed to provide recommendations for Reddit
users to find similar subreddits based on general user behavior. For more details, see

- The Louvain method has been used to extract topics from online social platforms,
such as Twitter and YouTube, based on the co-occurence graph of terms in
documents as a part of the topic modeling process. This process is described in

- The Louvain method has been used to investigate the human brain and find
hierarchical community structures within the brain’s functional network. The study
mentioned is

Although the Louvain method, and modularity optimization algorithms more
generally, have found wide applications across many domains, some problems with
these algorithms have been identified:

1. The resolution limit

For larger networks, the Louvain method doesn't stop with the "intuitive"
communities. Instead, there's a second pass through the community modification
and coarse-graining stages, in which several of the intuitive communities are
merged together. This is a general problem with modularity optimization algorithms;
they have trouble detecting small communities in large networks. It's a virtue of

the Louvain method that something close to the intuitive community structure is
available as an intermediate step in the process.

2. The degeneracy problem

There is typically an exponentially large (in network size) number of community
assignments with modularities close to the maximum. This can be a severe problem
because, in the presence of a large number of high modularity solutions, it's hard to
find the global maximum and difficult to determine if the global maximum is truly
more scientifically important than local maxima that achieve similar modularity.
Research shows that the different locally optimal community assignments have
different structural properties. For more information, see

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://arxiv.org/pdf/0803.0476.pdf
http://snap.stanford.edu/class/cs224w-2014/projects2014/cs224w-16-final.pdf
http://www.lbd.dcc.ufmg.br/colecoes/sbsi/2016/047.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784301/
https://arxiv.org/abs/0910.0165
https://arxiv.org/abs/0910.0165

A Comprehensive Guide to Graph Algorithms in Neo4j

Louvain Example

Let's see the Louvain algorithm in action. The following Cypher statement creates a graph

of users and friends.

Graph Model

66

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

(nAlice:User {id:"Alice"})
(nBridget:User {id:"Bridget"})
(nCharles:User {id:"Charles"})
(nDoug:User {id:"Doug"})
(nMark:User {id:"Mark"})
(nMichael:User {id:"Michael"})

(nAlice) - [:FRIEND]-> (nBridget)
(nAlice)-[:FRIEND]-> (nCharles)
(nMark) - [:FRIEND] -> (nDoug)
(nBridget) - [:FRIEND] -> (nMichael)
(nCharles)-[:FRIEND]-> (nMark)
(nAlice) - [:FRIEND]-> (nMichael)
(nCharles) - [:FRIEND] -> (nDoug) ;

7oA

%
S
3

FRig,
No Bridget

FRIEND—

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Now we run Louvain to find communities in the social network. Execute the following
query.

CALL algo.louvain.stream("User", "FRIEND", {})
YIELD nodeld, community

MATCH (user:User) WHERE id(user) = nodeld

RETURN user.id AS user, community
ORDER BY community;

Results
[ome 0 ffemm]
Alice 5
Bridget 5
Michael 5
Charles 4
Doug 4
Mark 4

®
Michael Q

1
Alice Doug
Charle\s\‘

Bridget
Mark

Visualization of Louvain

Our algorithm found two communities with three members each.

Mark, Doug and Charles are all friends with each other, as are Bridget, Alice and Michael.
Charles is the only one who has friends in both communities, but he has more in
community four so he fits better in that one.

67

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Triangle Count and Clustering Coefficient

Triangle Count is a community detection graph algorithm that is used to determine the
number of triangles passing through each node in the graph. A triangle is a set of three
nodes, where each node has a relationship to all other nodes.

Triangle counting gained popularity in social network analysis, where it is used to detect
communities and measure the cohesiveness of those communities. It is also used to
determine the stability of a graph and is often used as part of the computation of network
indices, such as the clustering coefficient.

There are two types of clustering coefficients:

Local clustering coefficient
The local clustering coefficient of a node is the likelihood that its neighbors are also
connected. The computation of this score involves triangle counting.

Global clustering coefficient
The global clustering coefficient is the normalized sum of those local clustering
coefficients.

The transitivity coefficient of a graph is sometimes used, which is three times the number
of triangles divided by the number of triples in the graph. For more information, see
"Einding, Counting and Listing all Triangles in Large Graphs, An Experimental Study."

When Should | Use Triangle Count and Clustering Coefficient?
+ Triangle Count and Clustering Coefficient have been shown to be useful as features
for classifying a given website as spam or non-spam content. This is described in
"Efficient Semi-streaming Algorithms for Local Triangle Counting in Massive Graphs."

+ Clustering Coefficient has been used to investigate the community structure of
FacebooK's social graph, where they found dense neighborhoods of users in an
otherwise sparse global graph. Find this study in "The Anatomy of the Facebook Social

Graph."

+ Clustering Coefficient has been proposed to help explore the thematic structure
of the Web and detect communities of pages with a common topic based on the
reciprocal links between them. For more information, see "Curvature of co-links
uncovers hidden thematic layers in the World Wide Web."

68

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/triangle-count/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/local-clustering-coefficient/?ref=pdf-ebook-graph-algo
http://i11www.iti.kit.edu/extra/publications/sw-fclt-05_t.pdf
http://chato.cl/papers/becchetti_2007_approximate_count_triangles.pdf
https://arxiv.org/pdf/1111.4503.pdf
https://arxiv.org/pdf/1111.4503.pdf
http://www.pnas.org/content/99/9/5825
http://www.pnas.org/content/99/9/5825

A Comprehensive Guide to Graph Algorithms in Neo4j

Triangles Example

Let's see how the Triangle Count and Clustering Coefficient algorithm works on a small
dataset. The following Cypher statement creates a graph with people and KNOWS

relationships between them.

Graph Model

69

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

(alice:Person{id:"Alice"})

(michael:Person{id:"Michael"})

(karin:Person{id:"Karin"})
(chris:Person{id:"Chris"})
(will:Person{id:"will"})
(mark:Person{id:"Mark"})

(michael) - [:KNOWS]-> (karin)
(michael) - [:KNOWS]->(chris)
(will) —=[:KNOWS]-> (michael)
(mark)—[:KNOWS] -> (michael)
(mark)-[:KNOWS]->(will)

(alice) - [:KNOWS]-> (michael)
(will) —=[:KNOWS]->(chris)

(chris) -[:KNOWS]-> (karin) ;

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

The following query finds all the KNOWS triangles between people in our graph.

CALL algo.triangle.stream("Person", "KNOWS")
YIELD nodeA,nodeB,nodeC

MATCH (a:Person) WHERE id(a) = nodeA
MATCH (b:Person) WHERE id(b) = nodeB
MATCH (c:Person) WHERE id(c) = nodeC

RETURN a.id AS nodeA, b.id AS nodeB, c.id AS node

Results
Will Michael Chris
Will Mark Michael
Michael Karin Chris

We can see that there are KNOWS triangles containing "Will, Michael and Chris", "Will, Mark and Michael", and "Michael, Karin and
Chris." This means that everybody in the triangle knows each other.

We work out the clustering coefficient of each person by running the following algorithm.

CALL algo.triangleCount.stream('Person', 'KNOWS')
YIELD nodeld, triangles, coefficient

MATCH (p:Person) WHERE id(p) = nodeId

RETURN p.id AS name, triangles, coefficient
ORDER BY coefficient DESC

Results
Came e ot
Karin 1 1
Mark 1 1
Chris 2 0.6666666666666666
will 2 0.6666666666666666
Michael 3 0.3
Alice 0 0

We learn that Michael is part of the most triangles, but it's Karin and Mark who are the best at introducing their friends - all of the
people who know them, know each other!

We've covered a lot of ground so far and learned about lots of different graph algorithms. In the next chapter, we'll take things a
step further and see how to glue everything together using a real-world dataset.

70 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 9
Graph Algorithms in Practice

In this section we'll learn how to apply graph algorithms in data-intensive applications. We
will be using data from Yelp's annual dataset challenge.

Yelp.com has been running the Yelp Dataset challenge since 2013, a competition that
encourages people to explore and research Yelp's open dataset. As of Round 10 of the
challenge, the dataset contained:

+ Almost 5 million reviews
+ Over 1.1 million users
+ Over 150,000 businesses

12 metropolitan areas

Since its launch, the dataset has become popular, with hundreds of academic papers
written about it. It has well-structured and highly interconnected data and is therefore a
realistic dataset with which to showcase Neo4j and graph algorithms.

Graph Model

The Yelp data is represented in a graph model as shown in the diagram below.
@ «—— WRITE

IN_CATEGORY —> | E:18= 010/

FRIENDS

\e/

(—IN_AREA—@(— IN_CITY:

Yelp Graph Model

g
z
o
l

Our graph contains User labeled nodes, which have a FRIENDS relationship with other
Users. Users also WRITE Reviews and tips about Businesses. All of the metadata
is stored as properties of nodes, except for Categories of the Businesses, which are
represented by separate nodes.

71 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://www.yelp.com/
https://www.yelp.com/dataset/challenge
https://scholar.google.com/scholar?q=citation%3A+Yelp+Dataset&btnG=&hl=en&as_sdt=0%2C5

A Comprehensive Guide to Graph Algorithms in Neo4j

Data Import

There are many different methods for importing data into Neo4j, including the import tool, LOAD CSV cormnmand
and Neo4j Drivers.

For the Yelp dataset we need to do a one-off import of a large amount of data so the import tool is the best choice. See the yelp-
graph-algorithms GitHub repository for more details.

Exploratory Data Analysis

Once we have the data loaded in Neo4j, we execute some exploratory queries to get a feel for it. We will be using the Awesome
Procedures on Cypher (APOC) library in this section. Please see the "“Installing APOC" section in Appendix B for more details.

The following queries return the cardinalities of node labels and relationship types.

CALL db.labels()

YIELD label

CALL apoc.cypher.run ("MATCH (: "+label+") RETURN count(*) as count", null)
YIELD value

RETURN label, value.count as count

ORDER BY label

Results

Area 54
Business 174567
Category 1293
City 1093
Country 17
Review 5261669
User 1326101

72 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/operations-manual/current/tools/import/?ref=pdf-ebook-graph-algo
https://neo4j.com/developer/guide-import-csv/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/developer-manual/current/drivers/?ref=pdf-ebook-graph-algo
https://github.com/mneedham/yelp-graph-algorithms
https://github.com/mneedham/yelp-graph-algorithms

A Comprehensive Guide to Graph Algorithms in Neo4j

CALL db.relationshipTypes ()

YIELD relationshipType

CALL apoc.cypher.run ("MATCH ()-[:" + ‘relationshipType ™ + "]1->()
RETURN count (*) as count", null)

YIELD value

RETURN relationshipType, value.count AS count

ORDER BY relationshipType

Results
FRIENDS 10645356
IN AREA 1154
IN CATEGORY 667527
IN CITY 174566
IN COUNTRY 54
REVIEWS 5261669
WROTE 5261669

These queries shouldn't reveal anything surprising but they are useful for checking that
the data has been imported correctly.

It's always fun reading hotel reviews, so we're going to focus on businesses in that sector.
We find out how many hotels there are by running the following query.

MATCH (category:Category {name: "Hotels"})
RETURN size((category)<-[:IN CATEGORY]-()) AS businesses

Results

2683
That's a decent number of hotels to explore.

How many reviews do we have to work with?

MATCH (:Review)—[:REVIEWS]—>(:Business)—[:IN_CATEGORY]—>(:Category
{name:"Hotels"})
RETURN count (*) AS count

Results

183759

Let's zoom in on some of the individual bits of data.

73 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Trip Planning

Imagine that we're planning a trip to Las Vegas and want to find somewhere to stay.

We might start by asking which are the most reviewed hotels and how well they've been rated.

MATCH (review:Review)-[:REVIEWS]-> (business:Business),
(business) - [:IN CATEGORY]->(:Category {name:"Hotels"}),
(business)-[:IN CITY]->(:City {name: "Las Vegas"})
WITH business, count (*) AS reviews, avg(review.stars) AS averageRating
ORDER BY reviews DESC

LIMIT 10
RETURN business.name AS business,
reviews,

apoc.math.round (averageRating,2) AS averageRating

Results

N S T
ARIA Resort & Casino 3794 3.51
The Cosmopolitan of Las Vegas 3772 3.87
Luxor Hotel and Casino Las Vegas 3623 2.63
MGM Grand Hotel 3445 2.99
The Venetian Las Vegas 3103 3.93
Flamingo Las Vegas Hotel & Casino 2942 2.48
Bellagio Hotel 2781 3.71
Mandalay Bay Resort & Casino 2688 3.27
Planet Hollywood Las Vegas Resort & Casino 2682 3.05
Monte Carlo Hotel And Casino 2506 2.64

These hotels have a lot of reviews, far more than anyone would be likely to read. We'd like to find the best reviews and make
them more prominent on our business page.

74 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Finding Influential Hotel Reviewers
One way we can do this is by ordering reviews based on the influence of the reviewer on Yelp.

We'll start by finding users who have reviewed more than five hotels. After that we'll find the social network between those
users and work out which users sit at the center of that network. This should reveal the most influential people. The FRIENDS
relationship is an example of a bidirectional relationship, meaning that if Person A is friends with Person B then Person B is also
friends with Person A. Neo4j stores a directed graph, but we have the option to ignore the direction when we query the graph.

We want to execute the PageRank algorithm over a projected graph of users that have reviewed hotels and then add a
hotelPageRank property to each of those users. This is the first example where we can't express the projected graph in terms
of node labels and relationship types. Instead we will write Cypher statements to project the required graph.

See the "Usage” section of Chapter 5 for a refresher on the different usage options.

The following query executes the PageRank algorithm.

CALL algo.pageRank (
"MATCH (u:User)-[:WROTE]->()-[:REVIEWS]->()-[:IN CATEGORY]->
(:Category {name: "Hotels"})
WITH u, count(*) AS reviews
WHERE reviews > 5
RETURN id(u) AS id",
"MATCH (ul:User)-[:WROTE]->()-[:REVIEWS]->()-[:IN CATEGORY]->
(:Category {name: "Hotels"})
MATCH (ul)-[:FRIENDS]->(u2)
WHERE id(ul) < id(u2)
RETURN id(ul) AS source, id(u2) AS target",
{graph: "cypher", write: true, direction: "both", writeProperty:
"hotelPageRank"}
)

We then write the following query to find the top reviewers.

MATCH (u:User)

WHERE u.hotelPageRank > 0

WITH u

ORDER BY u.hotelPageRank DESC

LIMIT 5

RETURN u.name AS name,
apoc.math.round (u.hotelPageRank,2) AS pageRank,
size((u)-[:WROTE]->()-[:REVIEWS]->()-[:IN CATEGORY]->

(:Category {name: "Hotels"})) AS hotelReviews,

size ((u)-[:WROTE]->()) AS totalReviews,
size ((u)-[:FRIENDS]-()) AS friends

Results
N e e R
Jason 17.93 7 60 5159
Jamie 14.59 8 41 688
Jeremy 11.57 6 28 6164
Lori 9.9 6 39 4518
Connie 7.98 7 51 5336

75 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

We could use those rankings on a hotel page when determining which reviews to show first. For example, if
we want to show reviews of Caesars Palace, we could execute the following query.

MATCH (b:Business {name: "Caesars Palace Las Vegas Hotel & Casino"})
MATCH (b)<-[:REVIEWS]-(review)<-[:WROTE]- (user)
RETURN user.name AS name,
apoc.math.round (user.hotelPageRank,2) AS pageRank,
review.stars AS stars
ORDER BY user.hotelPageRank DESC

LIMIT 5
Results
I S S
Jason 17.93 3
Amanda 7.28 4
J 6.88 4
Michelle 4.73 4
Pasquale 4,58 3

This information may also be useful for businesses that want to know when an influencer is staying in their
hotel.

Finding Similar Categories

The Yelp dataset contains more than 1,000 categories, and it seems likely that some of those categories are
similar to each other. That similarity is useful for making recommendations to users for other businesses that
they may be interested in.

We will build a weighted category similarity graph based on how businesses categorize themselves. For
example, if only one business categorizes itself under Hotels and Historical Tours, then we would
have a link between Hotels and Historical Tours with a weight of 1.

We don't actually have to create the similarity graph - we can run a community detection algorithm, such as
Label Propagation, over a projected similarity graph.

CALL algo.labelPropagation.stream (

"MATCH (c:Category) RETURN id(c) AS id",

"MATCH (cl:Category)<-[:IN CATEGORY]-()-[:IN_CATEGORY]-
>(c2:Category)

WHERE id(cl) < id(c2)

RETURN id(cl) AS source, id(c2) AS target, count(*) AS weight",

{graph: "cypher"})

YIELD nodelId, label
MATCH (c:Category) WHERE id(c) = nodeId
MERGE (sc:SuperCategory {name: "SuperCategory-" + label})
MERGE (c)-[:IN_SUPER CATEGORY]->(sc

76

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

The diagram below shows a sample of categories and super categories after we've run this query.

Shanghainese

K
s
&
§
N
&
£
$
S

Latin
American

J

NS5,
~Urep.
“Uitsog, P W

SuperCategory Bed &
Breakfast

W\

et
2 B

o

)
‘(5[/%
K

Private Jet

Charter

Z,
%,
® Tapas Bars
X
S
%

Noodles

Super Categories

We write the following query to find some of the similar categories to hotels.

MATCH (hotels:Category {name: "Hotels"}),
(hotels)-[:IN_SUPER CATEGORY]->()<-[:IN SUPER CATEGORY]-
(otherCategory)
RETURN otherCategory.name AS otherCategory
LIMIT 5

Results

otherCategory
Bed & Breakfast
Private Jet Charter
Ski Resorts

Car Rental

RV Parks
Motorcycle Rental
Bus Rental
Scooter Tours
Historical Tours

Trains

Not all of those categories are relevant for users in Las Vegas, so we need to write a more specific query to find the
most popular similar categories in this location.

77 neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

MATCH (hotels:Category {name: "Hotels"}),

(lasVegas:City {name: "Las Vegas"}),
(hotels)-[:IN SUPER CATEGORY]->()<-[:IN SUPER CATEGORY]- (otherCategory)
RETURN otherCategory.name AS otherCategory,
size ((otherCategory)<-[:IN CATEGORY]-()-[:IN CITY]->(lasVegas)) AS count
ORDER BY count DESC
LIMIT 10
Results
Event Planning & Services 1608
Venues & Event Spaces 228
Insurance 211
Tours 189
Transportation 176
Car Rental 160
Travel Services 96
Limos 84
Resorts 73
Airport Shuttles 52

We could then make a suggestion of one business with an above average rating in each of
those categories.

MATCH (hotels:Category {name: "Hotels"}),
(lasVegas:City {name: "Las Vegas"}),
(hotels)-[:IN SUPER CATEGORY]->()<-[:IN SUPER CATEGORY]- (otherCategory),
(otherCategory)<-[:IN CATEGORY]- (business)-[:IN CITY]->(lasVegas)
WITH otherCategory, count (*) AS count,
collect (business) AS businesses,
apoc.coll.avg(collect (business.averageStars)) AS categoryAverageStars
ORDER BY count DESC
LIMIT 10
WITH otherCategory,
[b in businesses where b.averageStars >= categoryAverageStars] AS businesses
RETURN otherCategory.name AS otherCategory,
[b in businesses | b.name] [toInteger (rand() * size(businesses))] AS
business

78 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Results
Covercoors ————es
Event Planning & Services Viva Las Vegastamps
Venues & Event Spaces VIP Golf Services
Insurance Desert Shores Insurance Services
Tours Annie Bananie Las Vegas Tours
Transportation Sinderella Coach
Car Rental Hertz Rent A Car
Travel Services MW Travel Vegas
Limos Vegas Limousine Service
Resorts Encore
Airport Shuttles Presidential Limousine

In this chapter, we've shown just a couple of ways that insights from graph algorithms
are used in a real-time workflow to make real-time recommendations. In our example we
made category and business recommendations but graph algorithms are applicable to
many other problems.

Graph algorithms can help you take your graph-powered application to the next level.

Conclusion

Graph analytics have value only if you have the skills to use them and if they can quickly
provide the insights you need. Graph algorithms are easy to use, fast to execute and
produce powerful results.

Graph algorithms are the powerhouse behind the analysis of real-world networks - from
identifying fraud rings and optimizing the location of public services to evaluating the
strength of a group and predicting the spread of disease or ideas.

In this ebook, you've learned about how graph algorithms help you make sense of
connected data. We covered the types of graph algorithms and offered specifics about
how to use each one. Still, we are keenly aware that we have only scratched the surface.
There is so much more to learn. Check out the Neo| Graph Data Science Library. If
you have any questions or need any help with any of the material in this ebook, send

us an email at devrel@neo4].com. We look forward to hearing how you are using graph
algorithms.

79

Learn More
Neo4j Graph Algorithms
Documentation

+ Awesome Procedures
on Cypher
+ Graph Algorithms Sandbox

+ Graph Algorithms
upyter Notebooks

+ Graph Algorithms Webinar

+ Graph Algorithms Overview
White Paper

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/graph-data-science-library/?ref=pdf-ebook-graph-algo
mailto:devrel%40neo4j.com?subject=
https://neo4j-contrib.github.io/neo4j-graph-algorithms/
https://neo4j-contrib.github.io/neo4j-graph-algorithms/
https://neo4j-contrib.github.io/neo4j-apoc-procedures
https://neo4j-contrib.github.io/neo4j-apoc-procedures
https://neo4j.com/sandbox-v2/?ref=pdf-ebook-graph-algo
https://github.com/neo4j-graph-analytics/graph-algorithms-notebooks
https://github.com/neo4j-graph-analytics/graph-algorithms-notebooks
https://www.youtube.com/watch?v=y10Bt7OkCRM
https://neo4j.com/whitepapers/graph-algorithms-optimized-neo4j/?ref=pdf-ebook-graph-algo
https://neo4j.com/whitepapers/graph-algorithms-optimized-neo4j/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Appendix A: Performance Testing

For PageRank, Union Find, Label Propagation and Strongly Connected Components, we have run preliminary tests on medium
and larger datasets that have been used in other publications.

The table contains database size and node and relationship counts. For each algorithm you see the runtime (in seconds) of the
first and second run.

Comparing them with other publications these runtimes look good, but of course the real confirmation comes from you running
the algorithms on your own datasets and hardware.

m

Pokec

DBPedia

Graphs500-23

Cit-patents

Twitter-2010

soc-LifeJournall

Friendster

15
7.9
02
49
63

11
5
4
42

66

117
129
17
1468
69
1806

46
19
13
349
30
611

Below is a log-scale showing the same data in one chart.

1,000

1

00

10

38
15
10
131
14
235

91
29
23
353
34
619

37
10
5
128

196

51
18
12
405
25
296

43
17
10
405
19
282

65
25
14
339
23
483

Pokec

DBPedia

Graphs500-23

cit-patents

Twitter 2010

soc-LifeJournall

Friendster

web-Google

Size rels LP1 LP2 SCC1 SCC2
(c1:)] (M) (s) (s) (s) (s)
7.3 2 31 10 7 24 6 12 9 12 7

41
13
5
189
13
257

M Size (GB)
M nodes (M)
M rels (M)
B PR1 (s)
H PR3 (s)
B UF1 (s)
W UF2 (s)
B LP1 (s)
W LP2(s)
W SCC1 (s)
W SCC2 (s)

80

neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Appendix B: Installing the Neo4j Graph Algorithms Library

Appendix B contains instructions for installing the tools and libraries referenced in this ebook.

Installing Neo4j Desktop

Download Neo4j Desktop from neo4j.com/download. After you've installed it, follow the instructions to create a project and
corresponding database.

Installing Graph Algorithms

Once you've installed Neo4j Desktop and created your first project, click on the "Manage" button for your database.

Database

Neo4dj 3.3.5

/¥ Manage > Start

You will see this screen (note that the plugins can only be installed when the database is not running).

Details Logs Terminal Settings Plugins Upgrade Administration

Version 3.3.56 Enterprise
Status STOPPED

81 neo4j.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
http://neo4j.com/download/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Click on the "Plugins" button and you will see this screen.

Click on the "Install" button for the graph algorithms plugin and wait for the plugin to be
installed. It may take a few seconds depending on your internet bandwidth. The database

Details Logs Terminal Settings Plugins Upgrade

APOC
3.3.02

The APOC library consists of many (about 300) procedures to
help with many different tasks in areas like data integration,
graph algorithms or data conversion.

L, Install

GraphQL
3.3.01

This is a GraphQL-Endpoint extension for Neod). Based on your
GraphQL schema, it translates GraphQL Queries and Mutations
into Cypher statements and executes them on Neodj. It offers
both an HTTP API, as well as, Neodj Cypher Procedures to
execute and manage your GraphQL API.

Learn more

L, Install

Administration

GRAPH ALGORITHMS
3320

The goal of this library is to provide efficiently implemented,
parallel versions of common graph algorithms for Neodj 3.x
exposed as Cypher procedures.

L, Install

will be restarted to allow the plugin to be picked up.

82

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Installing APOC

The APOC (Awesome Procedures on Cypher) library consists of procedures and functions
to help with many different tasks in areas such as data integration and data conversion.

Once you've installed Neo4j Desktop and created your first project, click on the "Manage"
button for your database.

You will see this screen.

Details Logs Terminal Settings Plugins Upgrade Administration

Version 3.3.5 Enterprise
Status STOPPED

83

neodj.com

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Click on the "Plugins" button and you will see this screen.

Details Logs Terminal Settings Plugins Upgrade

Administration

APOC
3.3.02

The APOC library consists of many (about 300) procedures to
help with many different tasks in areas like data integration,
graph algorithms or data conversion.

. Install

GRAPH ALGORITHMS
3320

The goal of this library is to provide efficiently implemented,
parallel versions of common graph algorithms for Neodj 3.x
exposed as Cypher procedures.

o+, Install

GraphQL
3.3.01

This is a GraphQL-Endpoint extension for Neod]. Based on your
GraphQL schema, it translates GraphQL Queries and Mutations
into Cypher statements and executes them on Neodj. It offers
both an HTTP API, as well as, Neodj Cypher Procedures to
execute and manage your GraphQL AP,

Learn more

|, Install

Click on the "Install" button for the APOC plugin and wait for the plugin to be installed.
It may take a few seconds depending on your internet bandwidth. The database will be
restarted to allow the plugin to be picked up.

Neo4j is the leader in graph database technology. As the world's most widely deployed graph database, we help Questions about Neo4j?
global brands - including Comcast, NASA, UBS, and Volvo Cars - to reveal and predict how people, processes and

systems are interrelated.

Using this relationships-first approach, applications built with Neo4j tackle connected data challenges such as
analytics and artificial intelligence, fraud detection, real-time recommendations, and knowledge graphs. Find out

more at neo4j.com.

© 2021 Neodj. All rights reserved.

Contact us around the
globe:
info@neo4j.com
neo4j.com/contact-us

neo4j.com

https://neo4j.com/case-studies/comcast/?ref=cs-pdf
https://neo4j.com/users/nasa/?ref=cs-pdf
https://neo4j.com/case-studies/ubs-case-study/?ref=cs-pdf
https://www.slideshare.net/neo4j/volvo-cars-build-a-car-with-graphs
https://neo4j.com/use-cases/graph-data-science-artificial-intelligence/?ref=cs-pdf
https://neo4j.com/use-cases/fraud-detection/?ref=cs-pdf
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=cs-pdf
https://neo4j.com/use-cases/knowledge-graph/?ref=cs-pdf
http://www.neo4j.com/?ref=cs-pdf
https://neo4j.com/?ref=pdf-white-paper-
mailto:info%40neo4j.com?subject=
https://neo4j.com/contact-us/?ref=pdf-ebook-graph-algo

	Part I:Connected Data and Graph Analysis
	Chapter 1Making Sense of Connected Data
	Chapter 2The Rise of Graph Analytics
	Chapter 3Neo4j Graph Analytics
	Part II:Graph Algorithms in Neo4j
	Chapter 4Graph Algorithm Concepts
	Chapter 5The Neo4j Graph Algorithms Library
	Chapter 6Pathfinding and Graph Search Algorithms
	Chapter 7Centrality Algorithms
	Chapter 8Community Detection Algorithms
	Chapter 9Graph Algorithms in Practice
	Conclusion
	Appendix A: Performance Testing
	Appendix B: Installing the Neo4j Graph Algorithms Library

