
The #1 Platform for Connected Data

neo4j.com

White Paper

A Comprehensive Guide to
Graph Algorithms in Neo4j
Mark Needham & Amy E. Hodler

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com1

Ebook

The #1 Platform for Connected Data

A Comprehensive Guide
to Graph Algorithms
Mark Needham, Developer Relations Engineer
Amy E. Hodler, Director, Graph Analytics and AI Programs

Preface
Connectivity is the single most pervasive characteristic of today’s networks and systems.

From protein interactions to social networks, from communication systems to power grids,
and from retail experiences to supply chains – networks with even a modest degree of
complexity are not random, which means connections are not evenly distributed nor static.
This is why simple statistical analysis alone fails to sufficiently describe – let alone predict
– behaviors within connected systems. Consequently, most big data analytics today do
not adequately model the connectedness of real-world systems and have fallen short in
extracting value from huge volumes of interrelated data.

As the world becomes increasingly interconnected and systems increasingly complex,
it’s imperative that we use technologies built to leverage relationships and their dynamic
characteristics. Not surprisingly, interest in graph data science has exploded because it
was explicitly developed to gain insights from connected data. Graph analytics reveal the
workings of intricate systems and networks at massive scales – not only for large labs but
for any organization. Graph algorithms are processes used to run calculations based on
mathematics specifically created for connected information.

We are passionate about the utility and importance of graph analytics as well as the joy of
uncovering the inner workings of complex scenarios. Until recently, adopting graph analytics
required significant expertise and determination, since tools and integrations were difficult
and few knew how to apply graph algorithms to their quandaries. It is our goal to help change
this. We wrote this ebook to help organizations better leverage graph analytics so they make
new discoveries and develop intelligent solutions faster.

While there are other graph algorithm libraries and solutions, we’ve chosen to focus on
the graph algorithms in the Neo4j platform. However, you'll find this guide helpful for
understanding more general graph concepts regardless of what graph technology you use.

TABLE OF CONTENTS

Part I: Connected Data and
Graph Analysis� 3

Making Sense of
Connected Data � 4

The Rise of Graph Analytics� 8

Neo4j Graph Analytics� 14

Part II: Graph Algorithms
in Neo4j� 17

Graph Algorithm Concepts� 18

The Neo4j Graph
Algorithms Library � 20

Pathfinding and
Graph Search Algorithms� 24

Centrality Algorithms� 34

Community Detection
Algorithms� 52

Graph Algorithms
in Practice� 71

Conclusion� 79

Appendix A:
Performance Testing� 80

Appendix B: Installing the
Neo4j Graph Algorithms
Library� 81

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/retail/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/supply-chain-management/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-ebook-graph-algo
https://neo4j.com/graph-data-science-library/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/?ref=pdf-ebook-graph-algo

neo4j.com2 neo4j.com2

A Comprehensive Guide to Graph Algorithms in Neo4j

How to Use This Ebook
This ebook is written in two parts. For product managers and solution owners, Part I provides
an overview of graph algorithms and their uses. In these chapters, the background of
graph analytics is used to illustrate basic concepts and their relevance to the modern data
landscape.

Part II, the bulk of this ebook, is written as a practical guide to getting started with graph
algorithms for engineers and data scientists who have some Neo4j experience. It serves
as a detailed reference for using graph algorithms. At the beginning of each category of
algorithms, there is a reference table to help you quickly jump to the relevant algorithm.

For each algorithm, you’ll find:

•	 An explanation of what the algorithm does

•	 Use cases for the algorithm and references to read more about them

•	 Walkthroughs with example code providing concrete ways to use the algorithm

In the reference section, you’ll find notes, tips and code.

"Graph analysis is
possibly the single
most effective
competitive
differentiator for
organizations
pursuing data-driven
operations and
decisions.”

– Gartner Research

Note: Details about the workings of the algorithm that you may want to know about.

! Tip: Details you should be aware of with regard to the algorithm, such as the types of
graphs it works best with or values that are not permitted.

Code examples, node names and relationships are shown in a code font,
Courier New.

If you have any questions or need any help with any of the material in this ebook, send us an
email at devrel@neo4j.com.

Acknowledgments
We’ve thoroughly enjoyed putting together the material for this ebook and would like to
thank all those who assisted. We’d especially like to thank Michael Hunger for his guidance
and Tomaz Bratanic for his keen research. Finally, we greatly appreciate Yelp for permitting
us to use its rich dataset for powerful examples and Tomer Elmalem for brainstorming with
us on ideas.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://www.gartner.com/doc/2852717/it-market-clock-database-management
mailto:devrel%40neo4j.com?subject=

neo4j.com3

A Comprehensive Guide to Graph Algorithms in Neo4j

Part I:
Connected Data and Graph Analysis

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com4 neo4j.com4

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 1
Making Sense of Connected Data

Connected Data Today
There are four to five “Vs” often used to help define big data (volume, velocity, variety, veracity
and sometimes value) and yet there’s almost always one powerful “V” missing: valence. In
chemistry, valence is the combining power of an element; in psychology, it is the intrinsic
attractiveness of an object; and in linguistics, it’s the number of elements a word combines.

Although valence has a specific meaning in certain disciplines, in almost all cases there is an
element of connection and behavior within a larger system. In the context of big data, valence
is the tendency of individual data to connect as well as the overall connectedness of datasets.
Some researchers measure the valence of a data collection as the ratio of connections to the
total number of possible connections. The more connections within your dataset, the higher
its valence.

Your data wants to connect, to form new data aggregations and subsets, and then connect
to more data and so forth. Moreover, data doesn't arbitrarily connect for its own sake; there's
significance behind every connection it makes. In turn, this means that the meaning behind
every connection is decipherable after the fact. Although this may sound like something
that’s mainly applicable in a biological context, most complex systems exhibit this tendency.
In fact, we can see this in our daily lives with a simple example of highly targeted purchase
recommendations based on the connections between our browsing history, shopping habits,
demographics, and even current location. Big data has valence – and it’s strong.

Scientists have observed the growth of networks and the relationships within them for some
time. Yet there is still much to understand and active work underway to further quantify and
uncover the dynamics behind this growth. What we do know is that valence increases over
time but not uniformly. Scientists have described preferential attachment (for example, the
rich get richer) as leading to power-law distributions and scale-free networks with hub and
spoke structures.

Preferential attachment means that the more connected
a node is, the more likely it is to receive new links.
Source: Wikipedia

The Latin root of
valence is the same
as value, valere, which
means to be strong,
powerful, influential or
healthy.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/whitepapers/return-on-connected-data/?ref=pdf-ebook-graph-algo
https://neo4j.com/whitepapers/return-on-connected-data/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-data-relationships-matter/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-data-relationships-matter/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Preferential_attachment
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model

neo4j.com5 neo4j.com5

A Comprehensive Guide to Graph Algorithms in Neo4j

Highly dense and lumpy data networks tend to develop, in effect growing both your big data
and its complexity. This is significant because densely yet unevenly connected data is very
difficult to unpack and explore with traditional analytics. In addition, more sophisticated
methods are required to model scenarios that make predictions about a network’s evolution
over time such as how transportation systems grow. These dynamics further complicate
monitoring for sudden changes and bursts, as well as discovering emergent properties. For
example, as density increases in a social group, you might see accelerated communication
that then leads to a tipping point of coordination and a subsequent coalition or, alternatively,
subgroup formation and polarization.

This data-begets-data cycle may sound intimidating, but the emergent behavior and patterns
of these connections reveal more about dynamics than you learn by studying individual
elements themselves. For example, you could study the movements of a single starling but
until you understood how these birds interact with each other in a larger group, you wouldn't
understand the dynamics of a flock of starlings in flight. In business you might be able to
make an accurate restaurant recommendation for an individual, but it’s a significant challenge
to estimate the best group activity for seven friends with different dietary preferences and
relationship statuses. Ironically, it’s this vigorous connectedness that uncovers the hidden
value within your data.

Economist Jeffrey Goldstein defined emergence as "the arising of novel and coherent
structures, patterns and properties during the process of self-organization in complex
systems.” That includes the common characteristics of:

•	 Radical novelty (features not previously observed in systems);

•	 Coherence or correlation (meaning integrated wholes that maintain themselves over
some period of time);

•	 A global or macro "level" (i.e., there is some property of "wholeness");

•	 Being the product of a dynamical process (it evolves); and

•	 An ostensive nature (it can be perceived). (Source: Wikipedia)

Economist Jeffrey
Goldstein defined
emergence as "the
arising of novel and
coherent structures,
patterns and
properties during
the process of self-
organization in
complex systems."

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Emergence

neo4j.com6 neo4j.com6

A Comprehensive Guide to Graph Algorithms in Neo4j

For today’s connected data, it’s a mistake to scrutinize data elements and aggregations for
insights using only simple statistical tools because they make data look uniform and they hide
evolving dynamics. Relationships between data are the linchpin of understanding real-world
behaviors within – and of – networks and systems.

Network Science & the Rise of Graph Models
Networks are a representation, a tool to understand complex systems and the complex
connections inherent in today’s data. For example, you can represent how a social system
works by thinking about interactions between pairs of people. By analyzing the structure of
this representation, we answer questions and make predictions about how the system works
or how individuals behave within it. In this sense, network science is a set of technical tools
applicable to nearly any domain, and graphs are the mathematical models used to perform
analysis.

Networks also act as a bridge for understanding how microscopic interactions and dynamics
lead to global or macroscopic regularities as well as correlate small scale clusters to a larger
scale element and shape projection. Networks bridge between the micro and the macro
because they represent exactly which things are interacting with each other. It's a common
assumption that the average of a system is sufficient because the results will even out.
However, that's not true. For example, in a social setting, some people interact heavily with
others while some only interact with a few. An averages approach to data completely ignores
the uneven distributions and locality within real-world networks.

Transportation networks illustrate the uneven distribution of relationships and groupings.
Source: Martin Grandjean

An extremely important effort in network science is figuring out how the structure of a
network shapes the dynamics of the whole system. Over the last 15 years we’ve learned
that for many complex systems, the network is important in shaping both what happens to
individuals within the network and how the whole system evolves.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-data-relationships-matter/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-data-relationships-matter/?ref=pdf-ebook-graph-algo
http://www.martingrandjean.ch/connected-world-air-traffic-network/

neo4j.com7

A Comprehensive Guide to Graph Algorithms in Neo4j

Graph analytics, based on the specific mathematics of graph theory,
examine the overall nature of networks and complex systems through their
connections. With this approach, we understand the structure of connected
systems and model their processes to reveal hard-to-find yet essential
information: propagation pathways, such as the route of diseases or network
failures; flow capacity and dynamics of resources, such as information or
electricity; or the overall robustness of a system. Understanding networks and
the connections within them offers immense potential for breakthroughs by
unpacking structures and revealing patterns used for science and business
innovations as well as for safeguarding against vulnerabilities, especially those
unforeseen within the labyrinth.

Propagation
Pathways

Flow &
Dynamics

Interactions
 & Resiliency

The Power of Graph Algorithms
Researchers have found common underlying principles and structures across a wide variety of networks and have figured out how to
apply existing, standard mathematical tools (i.e., graph theory) across different network domains.

But this raises questions: How do people who are not mathematicians conversant in network science apply graph analytics
appropriately? How can everyone learn from connected data across domains and use cases?

This is where graph algorithms come into play. In the simplest terms, graph algorithms are mathematical recipes based on graph
theory that analyze the relationships in connected data.

Even a single graph algorithm has many applications across multiple use cases. For example, the PageRank graph algorithm –
invented by Google founder Larry Page – is useful beyond organizing web search results. It’s also been used to study the role of
species in food webs, to research telomeres in the brain, and to model the influence of particular network components in just about
every industry.

In studying the brain, scientists found that the
lower the PageRank of a telomere, the shorter it
was – and there's a strong correlation between
short telomeres and cellular aging.

Graph algorithms play a powerful role in graph analytics, and the purpose of this ebook is to showcase that role. But first let’s step
back and look at the rise of graph analytics as a whole and its many applications in exploring connected data.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/graph-databases-for-beginners-wait-what-do-you-mean-by-graph/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/?ref=pdf-ebook-graph-algo

neo4j.com8 neo4j.com8

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 2
The Rise of Graph Analytics

The Roots of Graph Analytics
Graph analytics has a history dating back to 1736, when Leonhard Euler solved the “Seven
Bridges of Königsberg” problem. The problem asked whether it was possible to visit all
four areas of a city, connected by seven bridges, while only crossing each bridge once. It
wasn’t. With the insight that only the connections themselves were relevant, Euler set the
groundwork for graph theory and its mathematics.

Source: Wikipedia

But graph analytics did not catch on immediately. Two hundred years would pass before the
first graph textbook was published in 1936. In the late 1960s and 1970s, network science and
applied graph analytics really began to emerge.

In the last few years, there’s been an explosion of interest in and usage of graph
technologies. Demand is accelerating based on a need to better understand real-world
networks and forecast their behaviors, which is resulting in many new graph-based solutions.

Why Now? Forces Fueling the Rise in Graph Analytics
This growth in network science and graph analytics is the result of a combined shift in
technical abilities, new insights, and the realization that existing business intelligence systems
and simple statistics fail to provide a complete picture of real-world networks. Several forces
are driving the rise in graph analytics.

First of all, we’ve seen real-world applications of graph analytics and their impact on us all.
The power of connected data for business benefit has been demonstrated in disruptive
success stories such as Google, LinkedIn, Uber, and eBay, among many others.

At the same time, digitization and the growth in computing power (and connected
computing) have given us an unprecedented ability to collect, share and analyze massive
amounts of data. But despite the masses of data they have, organizations are frustrated with
the unfulfilled promises of big data and their inability to analyze it.

The majority of analytics used today handle specific, well-crafted questions efficiently but fall
short in helping us predict the behavior of real systems, groups and networks. Most networks
defy averages and respond nonlinearly to changes. As a result, more businesses are turning
to graph analytics, which are built for connected data and responsive to dynamic changes.

"The tools of graph
theory can be utilized
in order to analyze
the networks and
obtain a better
understanding of their
overall construction.
This approach
has led to several
groundbreaking
discoveries on the
nature of networks,
crossing fields of
research from biology,
to social science and
technology.”

– Albert-László Barabási
Director, Center for Complex Network

Research, Northeastern University

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-ebook-graph-algo
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-ebook-graph-algo

neo4j.com9 neo4j.com9

A Comprehensive Guide to Graph Algorithms in Neo4j

In addition, there’s been a recognition of how graphs enhance machine learning and provide
a decision-making framework for artificial intelligence. From data cleansing for machine
learning to feature extraction in model development to knowledge graphs that provide rich
context for AI, graph technology is enhancing AI solutions. This is described in more detail
later in this chapter.

Bringing Together Analytics & Transactions
Historically, the worlds of analytics (OLAP) and transactions (OLTP) have been siloed
despite their interdependence (analytics drives smarter transactions, which creates new
opportunities for analysis), which is especially true with connected data.

This line has been blurred in recent years and modern data-intensive applications combine
real-time transactional queries with less time-sensitive analytics queries. The merging
of analytics and transactions enables continual analysis to become ingrained in regular
operations. As data is gathered – from point-of-sale (POS) systems, from manufacturing
equipment, from IoT devices, or from wherever – analytics at the moment and location
support an application’s ability to make real-time recommendations and decisions. This
blending of analytics and transactions was observed several years ago, and terms to describe
this blurring and integration include “Transalytics” and Hybrid Transactional and Analytical
Processing (HTAP).

“[HTAP] could potentially redefine the way some business processes
are executed, as real-time advanced analytics (for example, planning,
forecasting and what-if analysis) becomes an integral part of the
process itself, rather than a separate activity performed after the
fact. This would enable new forms of real-time business-driven
decision-making process. Ultimately, HTAP will become a key enabling
architecture for intelligent business operations.”

– Gartner

Graph algorithms provide the means to understand, model and predict complicated
dynamics such as the flow of resources or information, the pathways through which
contagions or network failures spread, and the influences on and resiliency of groups. Neo4j
brings together analytics and transactional operations in a native graph platform, helping not
only uncover the inner nature of real-world systems for new discoveries, but also enabling
faster development and deployment of graph-based solutions with more closely integrated
processing for transactions and analytics.

Analytics

Enrichment,
Discovery & Design

Operational
Activities

Transactions

"We need to combine
transactional and
analytic systems into
transalytic systems
and stop thinking
about these as two
separate systems.
2018 is going to be
the year we’ll see
major corporations
collapse these two
systems together,
so that you have
simplified architecture
and can move at the
pace of business.”

– Bill Powell,
Director of Enterprise Architecture,

Automotive Resources International (ARI)

According to Gartner’s
Magic Quadrant
survey, the biggest
reason for using the
Neo4j Graph Platform
"is to drive innovation.”

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/graph-data-science-artificial-intelligence/?ref=pdf-ebook-graph-algo
https://www.gartner.com/imagesrv/media-products/pdf/Kx/KX-1-3CZ44RH.pdf
http://www.fleetmanagementweekly.com/qa-bill-powell/
http://www.fleetmanagementweekly.com/qa-bill-powell/
http://www.fleetmanagementweekly.com/qa-bill-powell/

neo4j.com10 neo4j.com10

A Comprehensive Guide to Graph Algorithms in Neo4j

Use Cases for Graph Transactions & Analytics
Today’s most pressing data challenges center around connections, not just tabulating
discrete data. Graph analytics accelerate breakthroughs across industries with more
intelligent solutions.

eBay uses graphs to deliver real-time, personalized user experiences and recommendations.
Cybersecurity and fraud systems correlate network, social and IoT data to uncover patterns.
More accurate modeling and decisioning for a range of dynamic networks drives use cases
from subsecond packaging of financial commodities and routing logistics to IT service
assurance to predicting the spread of epidemics. Graph technologies help businesses with
many practical use cases across industries and domains, a few of which are highlighted in the
sections that follow.

Real-Time Fraud Detection

Traditional fraud prevention measures focus on discrete data points such as specific
account balances, money transfers, transaction streams, individuals, devices or IP addresses.
However, today’s sophisticated fraudsters escape detection by forming fraud rings comprised
of stolen and synthetic identities. To uncover such fraud rings, it is essential to look beyond
individual data points to the connections that link them. Connections are key to identifying
and stopping fraud rings and their ever-shifting patterns of activities. Graph analytics enable
us to find these patterns and shows us that indeed, fraud has a shape.

Real-Time Recommendations

Graph-powered recommendation engines help companies personalize products, content
and services by contextualizing a multitude of connections in real time. Making relevant
recommendations in real time requires the ability to correlate product, customer, historic
preferences and attributes, inventory, supplier, logistics and even social sentiment data.
Moreover, a real-time recommendation engine requires the ability to instantly capture any
new interests shown during the customer’s current visit – something that batch processing
can’t accomplish.

360° View of Data

As businesses become more customer centric, it has never been more urgent to tap the
connections in your data to make timely operational decisions. This requires a technology
to unify your master data, including customer, product, supplier and logistics information to
power the next generation of ecommerce, supply chain and logistics applications.

Organizations gain transformative real-time business insights from relationships in
master data when storing and modeling data as a graph. This translates to highlighting
time- and cost-saving queries around data ownership, customer experience and support,
organizational hierarchies, human capital management, and supply chain transparency.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/case-studies/ebay/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/fraud-detection/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/fraud-detection/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/fraud-detection/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/master-data-management/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/master-data-management/?ref=pdf-ebook-graph-algo

neo4j.com11 neo4j.com11

A Comprehensive Guide to Graph Algorithms in Neo4j

A flexible graph database model organizes and connects all of an organization's master data
to provide a live, real-time 360° view of customers.

Streamline Regulatory Compliance

Graph technology offers an effective and efficient way to comply with sweeping regulations like
the EU’s General Data Protection Regulation (GDPR), which requires that businesses connect
all of the data that they have about their customers and prospects. Organizations manage
enterprise risk by providing both the user-facing toolkit that allows individuals to curate their
own data records and the data lineage proof points to demonstrate compliance to authorities.

Management & Monitoring
of Complex Networks

Graph platforms are inherently suitable for making sense of complex interdependencies
central to managing networks and IT infrastructure. This is especially important in a time of
increasing automation and containerization across both cloud and on-premises data centers.
Graphs keep track of these interdependencies and ensure that an accurate representation of
operations is available at all times, no matter how dynamic the network and IT environment.

Identity & Access Management

To verify an accurate identity, the system needs to traverse through a highly interconnected
dataset that is continually growing in size and complexity as employees, partners and
customers enter and leave the system. Users, roles, products and permissions are not only
growing in number but also in matrixed relationships where standard “tree” hierarchies are
less relevant. Traditional systems no longer deliver real-time query performance required
by two-factor authentication systems, resulting in long wait times for users. Using a graph
database for identity and access management enables you to quickly and effectively track
users, assets, devices, relationships and authorizations in this dynamic environment.

Social Applications or Features

Social media networks are already graphs, so there’s no point converting a graph into tables
and then back again by building a social network on an RDBMS. Having a data model that
directly matches your domain model helps you better understand your data, communicate
more effectively and avoid needless work. A graph database such as Neo4j enables you to
easily leverage social connections or infer relationships based on user activity to power your
social network application or add social features to internal applications.

These are just a few of the use cases that are fueled by graph technology. Next we’ll look at
how graphs are supporting an emerging category of algorithms and applications based on AI.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/privacy-risk-compliance/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/privacy-risk-compliance/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/gdpr-compliance/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/network-and-it-operations/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/network-and-it-operations/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/identity-and-access-management/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/identity-and-access-management/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/identity-and-access-management/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/social-network/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/social-network/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/social-network/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/?ref=pdf-ebook-graph-algo

neo4j.com12

A Comprehensive Guide to Graph Algorithms in Neo4j

Graph Technology & AI Applications
Graph technologies are the scaffolding for building intelligent applications, enabling more accurate predictions and faster
decisions. In fact, graphs are underpinning a wide variety of artificial intelligence (AI) use cases.

Use Case Icons for:
Real-Time Fraud Detection
Real-time Recommendations
360 view of data
Streamline Regulatory Compliance
Management and Monitoring of Complex Networks
Identity and Access Management
Social Applications or Features

Graph-Accelerated AI Development
& Model Enhancement
Faster, more accurate development

Knowledge Graphs
Provide rich context for AI

AI Visibility
Human-friendly graph visualization

Connected AI System of Record
Maintain a source of truth of AI composites

Graph Execution of AI
& Decision Tracking
For real-time execution and
decisioning lineage

Global Graph Analtyics
Graph algorithms to percolate global
structures and patterns that then provide
graph-driven theories

Knowledge Graphs
Andrew Ng, a preeminent thought leader in the field, includes knowledge graphs as one
of the five main areas of AI. Knowledge graphs represent knowledge in a form usable by
machines.

Graph analysis surfaces relationships and provides richer and deeper context for prescriptive
analytics and AI applications like TextRank (a PageRank derivative) alongside natural language
processing (NLP) and natural language understanding (NLU) technologies. For example,
in the case of a shopping chatbot, a knowledge graph representation helps an application
intelligently get from text to meaning by providing the context in which the word is used
(such as the word “bat” in sports versus zoology).

Machine Learning Model Enhancement & Accelerated AI
Graphs are used to feed machine learning models and find new features to use for training,
subsequently speeding up AI decisions. Graph centrality algorithms such as PageRank
identify influential features to feed more accurate machine learning models and measurable
predictive lift. Graph analysis computes Boolean (yes/no) answers in real time and
continuously provides them as a tensor for AI recalculation and scoring.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/use-cases/graph-data-science-artificial-intelligence/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Andrew_Ng
https://neo4j.com/use-cases/knowledge-graph/?ref=pdf-ebook-graph-algo

neo4j.com13 neo4j.com13

A Comprehensive Guide to Graph Algorithms in Neo4j

Graph Execution of AI & Decision Tracking
An operational graph – replacing a rules engine to run AI – is a natural, next step for
intelligent applications. As coding AI systems in graphs becomes a norm, it will enable the
tracking of AI decisions. This kind of decision tree lineage is essential for adoption and
maintenance of AI logic in critical applications.

Global Graph Analytics for Theory Development
Graph analytics lift out global structures and reveal patterns in your data – without you
requiring any prior knowledge of the system. For example, community detection and
other algorithms are used to organize groups, suggest hierarchies, and predict missing
or vulnerable relationships. In this way, you are essentially using graph-driven theory
development that infers micro and macro behaviors.

AI Visibility
The adoption of AI in part depends largely on the ability to trust the results. Human-friendly
graph visualizations display or explain machine learning processes that are often never
exposed within ML’s “black box.” These visualizations serve as an abstraction to accelerate
data scientists’ work and to provide a visual record of how a system’s logic has changed over
time. Visualizations help explain and build confidence in and comfort with AI solutions.

System of Record for AI Connections
Graphs serve as a source of truth for all your related AI components to create a pipeline for
iterative tasks. They automate the sourcing and capture of related AI components so that
data scientists focus on analysis and more easily share frameworks.

Artificial Intelligence (AI)
A process where a computer
solves a task in a way that
mimics human behavior.
Today, narrow AI – when a
machine is trained to do
one particular task – is
becoming more widely
used, from virtual
assistants to self-driving
cars to automatically
tagging your friends
in your photos on
Facebook.

Machine Learning (ML)
Algorithms that allow
computers to learn from
examples without being
explicitly programmed.

Deep Learning (DL)
A subset of ML that uses
deep artificial neural
networks as models and
does not require feature
engineering.

Artificial Intelligence

Machine Learning

Deep Learning

What Makes a Machine Intelligent?
While AI is the headliner, there are actually subsets of the technology

that can be applied to solving human problems in different ways.

Source: Curt Hopkins

"The major areas of
artificial intelligence
are speech, NLP,
computer vision,
machine learning,
[and] knowledge
graph.”

– Andrew Ng

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://community.hpe.com/t5/Behind-the-scenes-Labs/Labs-Deep-Learning-Cookbook-headlines-the-launch-of-HPE-s-AI/ba-p/6981300#.Wx_pbVMvx-U

neo4j.com14 neo4j.com14

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 3
Neo4j Graph Analytics
At a fundamental level, a native graph platform is required to make it easy to express
relationships across many types of data elements. To succeed with connected data
applications, you need to traverse these connections at speed, regardless of how many hops
your query takes.

A graph platform must also offer a variety of skill-specific tools for business users, solution
developers and data scientists alike. Each user group has different needs to visualize
connectedness, explore query results and update information.

A graph platform like Neo4j offers an efficient means for data scientists and solutions teams
to move through the stages of discovery and design.

First, when exploring a concept, teams look for broad patterns and structures best served
by global analysis. They need the ability to easily call upon packaged procedures and
algorithms. Organizations want tools to identify communities, bottlenecks, influence points
and pathways. In addition, a supported library of algorithms helps ensure that results are
consistent by reducing variability introduced by many individual procedures.

In the next phase of solution modeling, a streamlined process becomes extremely important
as teams must test a hypothesis and develop prototypes. And the iterative, continuous
nature of the above workflow heightens the need for extremely efficient tools with fast
feedback loops.

Teams will be using various data sources and tools, so a common, human-friendly way to
express connections and leverage popular tools is essential.

“In fact, the rapid rise
of graph technologies
may signal that data
connectedness is
indeed a separate
paradigm from the
model consolidation
happening across the
rest of the NoSQL
landscape.”

– Frost & Sullivan

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/product/?ref=pdf-ebook-graph-algo

neo4j.com15 neo4j.com15

A Comprehensive Guide to Graph Algorithms in Neo4j

Native Graph Database

Analytics
Integration

Reveal groups, influences and paths

Connections-First
Query Language

Robust
Procedures

Never lose relationships Declarative and easy to read

Extensive, trusted
code resource

Streamline
workflows

Optimized Algorithms

ANALYTICS

Neo4j offers a growing, open library of graph algorithms that are optimized for fast results.
These algorithms reveal the hidden patterns and structures in your connected data around
community detection, centrality and pathfinding with a core set of tested and supported
algorithms.

Centrality Community
Detection

Pathfinding

Finds the shortest
path or evaluates route
availability and quality

Evaluates how a
group is clustered
or partitioned

Determines the
importance of distinct
nodes in the network

Graph algorithm types

Neo4j graph algorithms are simple to apply so data scientists, solution developers and
operational teams can all use the same graph platform.

Neo4j graph algorithms are efficient so you analyze billions of relationships and get results
in seconds to minutes, or in a few hours for more complicated queries that process large
amounts of connected data.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/graph-data-science-library/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo

neo4j.com16 neo4j.com16

A Comprehensive Guide to Graph Algorithms in Neo4j

The following table offers a sampling of problems and the specific graph algorithms that have
been used to solve them.

Challenges & Graph Algorithms That Have Been Used to Solve Them1

Challenge Algorithm Algorithm Type

Figure out traffic load capacity and plan
distribution or logistics in an urban area

All Pairs Shortest Path Pathfinding

Create a low-cost tour of a travel
destination

Minimum Weight
Spanning Tree

Pathfinding

Identify the most influential machine
learning features for extraction and
model updates

PageRank Centrality

Separate the fraudsters from the
legitimate users in an online auction

Weighted Degree
Centrality

Centrality

Identify the bridge points that connect
separate groups

Betweenness Centrality Centrality

Determine the delivery ETA for a
package

Closeness Centrality Centrality

Find potential duplicate records Union Find Community Detection

Figure out dangerous interactions
between prescription drugs

Label Propagation Community Detection

Research structures in the brain Louvain Modularity Community Detection

1.	 This list offers inspiration about the types of problems that graph algorithms have solved. Inclusion on this list does not imply that the
work in question was done using Neo4j.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/all-pairs-shortest-path/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/minimum-weight-spanning-tree/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/minimum-weight-spanning-tree/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/degree-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/degree-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/betweenness-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/closeness-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/wcc/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/label-propagation/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/https://neo4j.com/docs/graph-data-science/current/algorithms/closeness-centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo

neo4j.com17

A Comprehensive Guide to Graph Algorithms in Neo4j

Part II:
Graph Algorithms in Neo4j

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com18 neo4j.com18

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 4
Graph Algorithm Concepts

Traversal
The most fundamental graph task is to visit nodes and relationships in a methodical way;
this is called traversing a graph. Traversal means moving from one item to another using
predecessor and successor operations in a sorted order.

Although this sounds simple, because the sorted order is logical, the next hop is determined
by a node’s logical predecessor or successor and not by its physical nearness. Complexity
arises as values assigned to not only nodes but relationships may be factored in. For
example, in an unsorted graph, a node’s predecessor would hold the largest value that is
smaller than the current node’s value and its successor would be the node with the smallest
value that is larger.

Fundamental Traversal Algorithms
There are two fundamental graph traversal algorithms: breadth-first search (BFS) and depth-
first search (DFS).

1

2

6 7

11 129 10

5 8

3 4

1

2

6 9

10 114 5

3 12

7 8

Breadth-first search Depth-first search

The main difference between the algorithms is the order in which they explore nodes in the
graph. Breadth-first search traverses a graph by exploring a node’s neighbors first before
considering neighbors of those neighbors, whereas depth-first search will explore as far
down a path as possible, always visiting new neighbors where possible.

While they are not often used directly, these algorithms form an integral part of other graph
algorithms:

•	 Depth-first search is used by the Strongly Connected Components algorithms.

•	 Breadth-first search is used by the Shortest Path, Closeness Centrality and Connected
Components algorithms.

“Graphs are one
of the unifying
themes of computer
science – an abstract
representation
that describes
the organization
of transportation
systems, human
interactions, and
telecommunication
networks. That
so many different
structures can be
modeled using a
single formalism is a
source of great power
to the educated
programmer.”

– Frost & Sullivan

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/dfs/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/bfs/?ref=pdf-ebook-graph-algo

neo4j.com19 neo4j.com19

A Comprehensive Guide to Graph Algorithms in Neo4j

It’s sometimes not obvious which algorithm is being used by other graph algorithms. For
example, Neo4j’s Shortest Path algorithm uses a fast bidirectional breadth-first search as
long as any predicates can be evaluated while searching for the path.

Graph Properties
There are several basic properties of graphs that will inform your choice of how you traverse
a graph and the algorithms you use.

Undirected Directed Acyclic

Sparse DenseWeighted

2 8

3

Unweighted

Cyclic

Undirected vs. Directed. In an undirected graph, there is no direction to the relationships
between nodes. For example, highways between cities are traveled in both directions. In a
directed graph, relationships have one specific direction. For example, within cities, some
roads are one-way streets. For some analyses, you may also want to ignore direction, for
example in friendships where you want to assume the relationship is mutual. We’ll also see
how this is relevant to Community Detection algorithms, especially Weakly and Strongly
Connected Components.

Cyclic vs. Acyclic. In graph theory, cycles are paths through relationships and nodes where
you walk from and back to a particular node. There are many types of cycles within graphs,
but cycles require consideration when using algorithms that may cause infinite loops, like
PageRank, for example. An acyclic graph has no cycles; a tree structure is a common type of
connected and acyclic (and undirected) graph.

Weighted vs. Unweighted. Weighted graphs assign values (weights) to either the nodes or
their relationships; one example is the cost or time to travel a segment or the priority of a node.
The shortest path through an unweighted graph is quickly found with a breadth-first search as it
will always be the path with the fewest number of relationships. Weighted graphs are commonly
used in pathfinding algorithms and require consideration for calculating additional values.

Sparse vs. Dense. Graphs with a large number of relationships compared to nodes are
called dense. Although not strictly defined, sparse graphs are loosely linear in the number of
relationships to nodes, whereas in a clearly dense graph the number of relationships would
typically be the square of the nodes. Most graphs tend toward sparseness, especially where
physical elements, such as pipe sizes, come into play. Care should be taken when preparing
your graph data for community detection algorithms: On graphs that are extremely dense
you’ll find overly clustered, meaningless communities; and at the other end of the spectrum,
an extremely sparse graph may find no communities at all.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/shortest-path/?ref=pdf-ebook-graph-algo

neo4j.com20 neo4j.com20

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 5
The Neo4j Graph Data Science Library
The Neo4j Graph Data Science Library is used on your connected data to gain new insights
more easily within Neo4j. These graph algorithms improve results from your graph data, for
example by focusing on particular communities or favoring popular entities.

We developed this library as part of our effort to make it easier to use Neo4j for a wider
variety of applications. These algorithms have been tuned to be as efficient as possible in
regards to resource utilization as well as streamlined for management and debugging.

They are available as user-defined procedures called as part of Cypher statements running
on top of Neo4j.

Here is an architecture diagram.

1, 2

4

Algorithm
Datastructures

Graph API

3

1.	Load data in parallel from Neo4j

2.	Store in efficient data structures

3.	Run graph algorithm in parallel using the Graph API

4.	Write data back in parallel

If you want to try out the examples in the rest of the book, you’ll need to first install the graph
algorithms library. Please see the “Installing Graph Algorithms” section in Appendix B.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/graph-data-science-library/?ref=pdf-ebook-graph-algo

neo4j.com21 neo4j.com21

A Comprehensive Guide to Graph Algorithms in Neo4j

Usage
These algorithms are exposed as Neo4j procedures. They are called directly using Cypher in
your Neo4j Browser, from cypher-shell or from your client code.

For most algorithms, there are two procedures:

•	 algo.<name> – This procedure writes results back to the graph as node-properties,
and reports statistics.

•	 algo.<name>.stream – This procedure returns a stream of data. For example, node-
ids and computed values.

For large graphs, the streaming procedure might return millions, or even billions, of results.
In this case it may be more convenient to store the results of the algorithm, and then use
them with later queries.

This is one of the use cases for a handy feature called graph projection. Graph projection
places a logical subgraph into a graph algorithm when your original graph has the wrong
shape or granularity for that specific algorithm. For example, if you’re looking to understand
the relationship between drug results for men versus women but your graph is not
partitioned for this, you’ll be able to temporarily project a subgraph to quickly run your
algorithm upon and move on to the next step.

We project the graph we want to run algorithms on with either label and relationship-type
projection, or Cypher projection.

Neo4j stored graph Projected graph

Label and relationship-type
Execute algorithm

Cypher projection

The projected graph model is separate from Neo4j’s stored graph model to enable fast
caching for the topology of the graph, containing only relevant nodes, relationships and
weights. During projection of a directed subgraph, only one relationship directed in and
one relationship directed out is allowed between a pair of nodes. During the projection of
an undirected subgraph, two relationships between a pair of nodes is allowed (there is no
direction).

Label & Relationship-Type Projection
We project the subgraph we want to run the algorithm on by using the label parameter to
describe nodes, and relationship-type to describe relationships.

The general call syntax is:

CALL algo.<name>("NodeLabel", "RelationshipType", {config})

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/cypher-graph-query-language/?ref=pdf-ebook-graph-algo

neo4j.com22

A Comprehensive Guide to Graph Algorithms in Neo4j

Cypher Projection
If label and relationship-type projection is not selective enough to describe our subgraph to run the
algorithm on, we use Cypher statements to project subsets of our graph. Use a node-statement
instead of the label parameter and a relationship-statement instead of the relationship-type, and use
graph:"cypher" in the config.

Relationships described in the relationship-statement will only be projected if both source and target
nodes are described in the node-statement. Relationships that don’t have both source and target nodes
described in the node-statement will be ignored.

We also return a property value or weight (according to our config) in addition to the ids from these
statements.

Cypher projection enables us to be more expressive in describing the subgraph that we want to analyze,
but it might take longer to project the graph with more complex Cypher queries.

The general call syntax is:

CALL algo.<name>(
 "MATCH (n) RETURN id(n) AS id",
 "MATCH (n)-->(m) RETURN id(n) AS source, id(m) AS target",
 {graph: "cypher"})

Huge Graph Projection
The default label and relationship-type projection has a limitation of two billion nodes and two billion
relationships, so if our projected graph is bigger than this, we need to use a huge graph projection. This
is enabled by setting graph:"huge" in the config.

The general call syntax is:

CALL algo.<name>("NodeLabel", "RelationshipType", {graph: "huge"})

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com23 neo4j.com23

A Comprehensive Guide to Graph Algorithms in Neo4j

Algorithm Types
For transactions and operational decisions, you need real-time graph analysis to provide a
local view of relationships between specific data items and take action. To make discoveries
about the overall nature of networks and model the behavior of complex systems, you need
graph algorithms that provide a broader view of patterns and structures across all data and
relationships.

The following table is helpful for working out the appropriate algorithm for your use case.

Algorithm Type Graph Problem Examples

Pathfinding & Search

Find the optimal path or
evaluate route availability
and quality

•	 Find the quickest route
to travel from A to B

•	 Telephone call routing

Centrality

Determine the importance of
distinct nodes in the networks

•	 Determine social media
influencers

•	 Find likely attack targets
in communication and
transportation networks

Community Detection

Evaluate how a group is
clustered or partitioned

•	 Segment customers

•	 Find potential members
of a fraud ring

The next three chapters provide a reference for these three types of algorithms. They can be
treated as a reference manual for the algorithms currently supported by the Neo4j Graph
Platform.

If you want to try out the examples in these chapters, you’ll need to install the Graph
Algorithms library. Please see the “Installing Graph Algorithms” section in Appendix B.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo

neo4j.com24

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 6
Pathfinding and Graph Search Algorithms
Pathfinding and graph search algorithms start at a node and expand relationships until the destination
has been reached. Pathfinding algorithms do this while trying to find the cheapest path in terms of
number of hops or weight whereas search algorithms will find a path that might not be the shortest.

Algorithm Type What It Does Example Uses

Shortest Path Calculates the shortest weighted path between a pair of
nodes.

Shortest Path is used for finding directions between
physical locations, such as driving directions. It’s also used
to find the degrees of separations between people in social
networks as well as their mutual connections.

Single Source
Shortest Path

Calculates a path between a node and all other nodes
whose summed value (weight of relationships such as cost,
distance, time or capacity) to all other nodes is minimal.

Single Source Shortest Path is faster than Shortest Path and
is used for the same types of problems.

It’s also essential in logical routing such as telephone call
routing (e.g., lowest cost routing).

All Pairs
Shortest Path

Calculates a shortest path forest (group) containing all
shortest paths between all nodes in the graph.

Commonly used for understanding alternate routing when
the shortest route is blocked or becomes suboptimal.

All Pairs Shortest Path is used to evaluate alternate routes
for situations such as a freeway backup or network capacity.

It’s also key in logical routing to offer multiple paths, for
example, call routing alternatives in case of a failure.

Minimum Weight
Spanning Tree

Calculates the paths along a connected tree structure with
the smallest value (weight of the relationship such as cost,
time or capacity) associated with visiting all nodes in the
tree. It’s also employed to approximate some problems with
unknown compute times such as the traveling salesman
problem and randomized or iterative rounding.

Minimum Weight Spanning Tree is widely used for network
designs: least cost logical or physical routing such as laying
cable, fastest garbage collection routes, capacity for water
systems, efficient circuit designs and much more.

It also has real-time applications with rolling optimizations
such as processes in a chemical refinery or driving route
corrections.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/pathfinding/?ref=pdf-ebook-graph-algo
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem

neo4j.com25 neo4j.com25

A Comprehensive Guide to Graph Algorithms in Neo4j

Shortest Path
The Shortest Path algorithm calculates the shortest (weighted) path between a pair of nodes.
In this category, Dijkstra’s algorithm is the most well known. It is a real-time graph algorithm,
and is used as part of the normal user flow in a web or mobile application.

Pathfinding has a long history and is considered to be one of the classical graph problems; it
has been researched as far back as the 19th century. It gained prominence in the early 1950s
in the context of alternate routing, that is, finding the second shortest route if the shortest
route is blocked.

Edsger Dijkstra came up with his algorithm in 1956 while trying to show off the new ARMAC
computers. He needed to find a problem and a solution that people not familiar with
computing would be able to understand, and he designed what is now known as Dijkstra’s
algorithm. He later implemented it for a slightly simplified transportation map of 64 cities in
the Netherlands.

When Should I Use Shortest Path?
•	 Finding directions between physical locations. This is the most common usage, and web

mapping tools such as Google Maps use the shortest path algorithm, or a variant of it, to
provide driving directions.

•	 Social networks use the algorithm to find the degrees of separation between people. For
example, when you view someone’s profile on LinkedIn, it will indicate how many people
separate you in the connections graph, as well as listing your mutual connections.

TIP: Dijkstra does not support negative weights. The algorithm assumes that adding
a relationship to a path can never make a path shorter — an invariant that would be
violated with negative weights.

!

Shortest Path Example
Let’s calculate Shortest Path on a small dataset.

The following Cypher statement creates a sample graph containing locations and connections
between them.

MERGE (a:Loc {name:"A"}
MERGE (b:Loc {name:"B"}
MERGE (c:Loc {name:"C"}
MERGE (d:Loc {name:"D"}
MERGE (e:Loc {name:"E"}
MERGE (f:Loc {name:"F"}

MERGE (a)-[:ROAD {cost:50}]->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]->(e)
MERGE (d)-[:ROAD {cost:80}]->(f)
MERGE (e)-[:ROAD {cost:40}]->(f);

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com26 neo4j.com26

A Comprehensive Guide to Graph Algorithms in Neo4j

ROAD

ROAD

ROAD

RO
AD

ROAD

ROAD
ROAD

ROAD

RO
AD

E

F

B

C

A

D

40
80

4030

80

50

100

40

50

Graph Model

Now we can run the Shortest Path algorithm to find the shortest path between A and F.
Execute the following query.

MATCH (start:Loc{name:"A"}), (end:Loc{name:"F"})
CALL algo.shortestPath.stream(start, end, "cost")
YIELD nodeId, cost
MATCH (other:Loc) WHERE id(other) = nodeId
RETURN other.name AS name, cost

Results

Name Cost

A 0

C 50

D 90

E 120

F 160

The quickest route takes us from A to F, via C, D, and
E, at a total cost of 160:

•	 First, we go from A to C, at a cost of 50.

•	 Then, we go from C to D, for an additional 40.

•	 Then, from D to E, for an additional 30.

•	 Finally, from E to F, for a further 40.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/shortest-path/?ref=pdf-ebook-graph-algo

neo4j.com27 neo4j.com27

A Comprehensive Guide to Graph Algorithms in Neo4j

Single Source Shortest Path
The Single Source Shortest Path (SSSP) algorithm calculates the shortest (weighted) path
from a node to all other nodes in the graph.

SSSP came into prominence at the same time as the Shortest Path algorithm and Dijkstra’s
algorithm acts as an implementation for both problems.

Neo4j implements a variation of SSSP, the delta-stepping algorithm. The delta-stepping
algorithm outperforms Dijkstra’s and efficiently works in sequential and parallel settings for
many types of graphs.

When Should I Use Single Source Shortest Path?
Open Shortest Path First is a routing protocol for IP networks. It uses Dijkstra’s algorithm
to help detect changes in topology, such as link failures, and come up with a new routing
structure in seconds.

TIP: Delta-stepping does not support negative weights. The algorithm assumes that
adding a relationship to a path never makes a path shorter – an invariant that would be
violated with negative weights.

!

Single Source Shortest Path Example
Let’s calculate Single Source Shortest Path on a small dataset.

The following Cypher statement creates a sample graph containing locations and connections
between them.

MERGE (a:Loc {name:"A"})
MERGE (b:Loc {name:"B"})
MERGE (c:Loc {name:"C"})
MERGE (d:Loc {name:"D"})
MERGE (e:Loc {name:"E"})
MERGE (f:Loc {name:"F"})

MERGE (a)-[:ROAD {cost:50}]->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]->(e)
MERGE (d)-[:ROAD {cost:80}]->(f)
MERGE (e)-[:ROAD {cost:40}]->(f);

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/single-source-shortest-path/?ref=pdf-ebook-graph-algo
https://arxiv.org/pdf/1604.02113v1.pdf
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://routing-bits.com/2009/08/06/ospf-convergence/
https://routing-bits.com/2009/08/06/ospf-convergence/

neo4j.com28 neo4j.com28

A Comprehensive Guide to Graph Algorithms in Neo4j

ROAD

ROAD

ROAD

RO
AD

ROAD

ROAD
ROAD

ROAD

RO
AD

E

F

B

C

A

D

40
80

4030

80

50

100

40

50

Graph Model

Now we can run the Single Source Shortest Path algorithm to find the shortest path between
A and all other nodes. Execute the following query.

MATCH (n:Loc {name:"A"})
CALL algo.shortestPath.deltaStepping.stream(n, "cost", 3.0
YIELD nodeId, distance

MATCH (destination) WHERE id(destination) = nodeId

RETURN destination.name AS destination, distance

Results

Name Cost

A 0

B 50

C 50

D 90

E 120

F 160

The above table shows the cost of going from A to each of the other nodes, including itself at
a cost of 0.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com29 neo4j.com29

A Comprehensive Guide to Graph Algorithms in Neo4j

All Pairs Shortest Path
The All Pairs Shortest Path (APSP) algorithm calculates the shortest (weighted) path between
all pairs of nodes. This algorithm has optimizations that make it quicker than calling the Single
Source Shortest Path algorithm for every pair of nodes in the graph.

Some pairs of nodes might not be reachable from each other, so no shortest path exists
between these pairs. In this scenario, the algorithm returns infinity value as a result between
these pairs of nodes.

When Should I Use All Pairs Shortest Path?
•	 The All Pairs Shortest Path algorithm is used in urban service system problems, such as

the location of urban facilities or the distribution or delivery of goods. One example of
this is determining the traffic load expected on different segments of a transportation
grid. For more information, see Urban Operations Research.

•	 All Pairs Shortest Path is used as part of the REWIRE data center design algorithm, which
finds a network with maximum bandwidth and minimal latency. There are more details
about this approach in the following academic paper: "REWIRE: An Optimization-based
Framework for Data Center Network Design."

All Pairs Shortest Path Example
Let’s calculate All Pairs Shortest Path on a small dataset.

The following Cypher statement creates a sample graph containing locations and connections
between them.

MERGE (a:Loc {name:"A"})
MERGE (b:Loc {name:"B"})
MERGE (c:Loc {name:"C"})
MERGE (d:Loc {name:"D"})
MERGE (e:Loc {name:"E"})
MERGE (f:Loc {name:"F"})

MERGE (a)-[:ROAD {cost:50}]->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]->(e)
MERGE (d)-[:ROAD {cost:80}]->(f)
MERGE (e)-[:ROAD {cost:40}]->(f);

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/all-pairs-shortest-path/?ref=pdf-ebook-graph-algo
http://web.mit.edu/urban_or_book/www/book/
https://cs.uwaterloo.ca/research/tr/2011/CS-2011-21.pdf
https://cs.uwaterloo.ca/research/tr/2011/CS-2011-21.pdf

neo4j.com30

A Comprehensive Guide to Graph Algorithms in Neo4j

ROAD

ROAD

ROAD

RO
AD

ROAD

ROAD
ROAD

ROAD

RO
AD

E

F

40
80

4030

80

50

100

40

50B

C

A

D

Graph Model

Now we run the All Pairs Shortest Path algorithm to find the shortest path between every pair of nodes. Execute the following query.

CALL algo.allShortestPaths.stream("cost",{nodeQuery:"Loc",defaultValue:1.0})
YIELD sourceNodeId, targetNodeId, distance
WITH sourceNodeId, targetNodeId, distance
WHERE algo.isFinite(distance) = true

MATCH (source:Loc) WHERE id(source) = sourceNodeId
MATCH (target:Loc) WHERE id(target) = targetNodeId
WITH source, target, distance WHERE source <> target

RETURN source.name AS source, target.name AS target, distance
ORDER BY distance DESC
LIMIT 10

Results

Name Target Cost

A F 100

C F 90

B F 90

A E 80

C E 70

B E 80

A B 50

D F 50

A C 50

A D 50

This query returned the top
10 pairs of nodes that are the
furthest away from each other.
F and E appear to be the most
distant from the others.

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com31

A Comprehensive Guide to Graph Algorithms in Neo4j

Minimum Weight Spanning Tree
The Minimum Weight Spanning Tree starts from a given node, and
finds all its reachable nodes and the set of relationships that connect
the nodes together with the minimum possible weight. Prim’s
algorithm is one of the simplest and best-known Minimum Weight
Spanning Tree algorithms. The K-Means variant of this algorithm can
be used to detect clusters in the graph.

The first known algorithm for finding a minimum weight spanning
tree was developed by the Czech scientist Otakar Borůvka in 1926
while trying to design an efficient electricity network for Moravia.
Prim’s algorithm was invented by Jarnik in 1930 and rediscovered
by Prim in 1957. It is similar to Dijkstra’s Shortest Path algorithm,
but rather than minimizing the total length of a path ending at each
relationship, it minimizes the length of each relationship individually.
Unlike Dijkstra’s, Prim’s tolerates negative-weight relationships.

NOTE: The algorithm operates as follows:

•	 Start with a tree containing only one node
(and no relationships).

•	 Select the minimal-weight relationship coming from
that node and add it to our tree.

•	 Repeatedly choose a minimal-weight relationship that
joins any node in the tree to one that is not in the tree,
adding the new relationship and node to our tree.

•	 When there are no more nodes to add, the tree we
have built is a minimum spanning tree.

When Should I Use Minimum Weight Spanning Tree?
•	 Minimum Weight Spanning Tree was applied to analyze airline and sea connections of Papua New Guinea and minimize the travel

cost of exploring the country. It could be used to help design low-cost tours that visit many destinations across a country. The
research mentioned is found here: "An Application of Minimum Spanning Trees to Travel Planning."

•	 Minimum Weight Spanning Tree has been used to analyze and visualize correlations in a network of currencies based on the
correlation between currency returns. This is described in "Minimum Spanning Tree Application in the Currency Market."

•	 Exhaustive clinical research has shown Minimum Weight Spanning Tree to be useful in tracing the history of infection
transmission in an outbreak. For more information, see "Use of the Minimum Spanning Tree Model for Molecular Epidemiological
Investigation of a Nosocomial Outbreak of Hepatitis C Virus Infection."

TIP: The Minimum Weight Spanning Tree algorithm only gives meaningful results when run on a graph where the relationships
have different weights. If the graph has no weights, or all relationships have the same weight, then any spanning tree is a
minimum spanning tree.

!

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/minimum-weight-spanning-tree/?ref=pdf-ebook-graph-algo
http://www.dwu.ac.pg/en/images/Research_Journal/2010_Vol_12/1_Fitina_et_al_spanning_trees_for_travel_planning.pdf
https://www.nbs.sk/_img/Documents/_PUBLIK_NBS_FSR/Biatec/Rok2013/07-2013/05_biatec13-7_resovsky_EN.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC516344/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC516344/

neo4j.com32 neo4j.com32

A Comprehensive Guide to Graph Algorithms in Neo4j

Minimum Weight Spanning Tree Example
Let’s see the Minimum Weight Spanning Tree algorithm in action. The following Cypher
statement creates a graph containing places and links between them.

MERGE (a:Place {id:"A"})
MERGE (b:Place {id:"B"})
MERGE (c:Place {id:"C"})
MERGE (d:Place {id:"D"})
MERGE (e:Place {id:"E"})
MERGE (f:Place {id:"F"})
MERGE (g:Place {id:"G"})

MERGE (d)-[:LINK {cost:4}]->(b)
MERGE (d)-[:LINK {cost:6}]->(e)
MERGE (b)-[:LINK {cost:1}]->(a)
MERGE (b)-[:LINK {cost:3}]->(c)
MERGE (a)-[:LINK {cost:2}]->(c)
MERGE (c)-[:LINK {cost:5}]->(e)
MERGE (f)-[:LINK {cost:1}]->(g);

A

B

C

D
EF

G

1

6

3

2

1

5

4

LINK

LI
N

K

LI
N

K

LINK

LINK

LINKLI
N

K

Graph Model

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com33

A Comprehensive Guide to Graph Algorithms in Neo4j

We run the algorithm to find the Minimum Weight Spanning Tree starting from D by executing the following query.

MATCH (n:Place {id:"D"})
CALL algo.spanningTree.minimum("Place", "LINK", "cost", id(n),
 {write:true, writeProperty:"MINST"})
YIELD loadMillis, computeMillis, writeMillis, effectiveNodeCount
RETURN loadMillis, computeMillis, writeMillis, effectiveNodeCount;

This procedure creates MINST relationships representing the minimum spanning tree. We then run the following query to find all
pairs of nodes and the associated cost of the relationships between them.

MATCH path = (n:Place {id:"D"})-[:MINST*]-()
WITH relationships(path) AS rels
UNWIND rels AS rel
WITH DISTINCT rel AS rel
RETURN startNode(rel).id AS source, endNode(rel).id AS destination, rel.cost AS cost

Results

Source Destination Cost

D B 4

B A 1

A C 2

C E 5

The Minimum Weight Spanning Tree excludes the relationship with cost 6 from D to E, and the one with cost 3 from B to C. Nodes F
and G aren’t included because they’re unreachable from D.

There are also variations of the algorithm that find the maximum weight spanning tree or k-spanning tree.

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com34

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 7
Centrality Algorithms
Centrality algorithms are used to find the most influential nodes in a graph.
Many of these algorithms were invented in the field of social network analysis.

Algorithm Type What It Does Example Uses

PageRank Estimates a current node’s importance from its linked
neighbors and then again from their neighbors. A node’s
rank is derived from the number and quality of its transitive
links to estimate influence. Although popularized by Google,
it’s widely recognized as a way of detecting influential nodes
in any network.

PageRank is used to estimate importance and influence.
It’s used to suggest Twitter accounts to follow and for
general sentiment analysis. PageRank is also used in
machine learning to identify the most influential features
for extraction as well as ranking text for entity relevance in
natural language processing.

In biology, it’s been used to identify which species
extinctions within a food web would lead to the biggest
chain-reaction of species death.

Degree Centrality Measures the number of relationships a node has. It’s
broken into indegree (flowing in) and outdegree (flowing
out) where relationships are directed.

Degree Centrality looks at immediate connectedness for
uses such as evaluating the near-term risk of a person
catching a virus or the probability of a person hearing a
given piece of information.

In social studies, indegree of a node is used to estimate
popularity and outdegree of a node is used for
gregariousness..

Betweenness
Centrality

Measures the number of shortest paths that pass through a
node. Nodes that most frequently lie on shortest paths have
higher betweenness centrality scores and are the bridges
between different clusters. It is often associated with the
control over the flow of resources and information.

Betweenness Centrality applies to a wide range of
problems in network science and it pinpoints bottlenecks
or vulnerabilities in communication and transportation
networks.

In genomics, it helps researchers understand the control
certain genes have in protein networks for improvements
such as better drug disease targeting.

Betweenness Centrality has also been used to evaluate
information flows among multiplayer online gamers in
addition to analyzing expertise sharing in communities of
physicians.

Closeness
Centrality

Measures how central a node is within its cluster. Nodes
with the shortest paths to all other nodes are assumed to
be able to reach the entire group the fastest.

Closeness Centrality is applicable in a number of resource,
communication and behavioral analyses, especially when
interaction speed is significant.

It has been used in identifying the best location of new
public services for maximum accessibility.

In social analysis, it helps find people with the ideal social
network location for faster dissemination of information.

TIP: Several of the centrality algorithms calculate shortest paths between every pair of nodes and can therefore run for a long
time. This works well for small- to medium-sized graphs but can be prohibitive for large graphs. Some algorithms (for example,
Betweenness Centrality) have approximating versions that are used to address longer runtimes or larger graphs.

!

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/centrality/?ref=pdf-ebook-graph-algo

neo4j.com35

A Comprehensive Guide to Graph Algorithms in Neo4j

PageRank
PageRank is an algorithm that measures the transitive, or directional, influence of nodes. All other centrality algorithms we discuss
measure the direct influence of a node, whereas PageRank considers the influence of your neighbors and their neighbors. For
example, having a few influential friends could raise your PageRank more than just having a lot of low-influence friends.

PageRank is computed by either iteratively distributing one node’s rank (originally based on degree) over its neighbors or by randomly
traversing the graph and counting the frequency of hitting each node during these walks.

0.33

0.33 0.33

Pass 0

Pass 1

Pass 2

Pass 3

Pass n

Step 1
Node Value = 1/n (n = Total # of Nodes)

Step 2
Link Value = Node Value / # of Its Out-Links

0.33

0.33 0.33

0.170.17

0.33

0.33

0.33

0.50 0.17

Step 1
Node Value = Sum of Prior In-Link Values

0.33

0.50 0.17

Step 2
Link Value = Node Value / # of Its Out-Links

0.170.17

0.17

0.50

0.50

0.33 0.17

0.250.25

0.17

0.33

0.33

0.42 0.25

0.170.17

0.25

0.42

0.4

0.4 0.2

0.20.4

0.2

0.2

Iterations continue until
there is convergence on
a solution, a set solution
range, or a set number
of iterations.

(Neo4j uses the latter.)

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/?ref=pdf-ebook-graph-algo

neo4j.com36 neo4j.com36

A Comprehensive Guide to Graph Algorithms in Neo4j

PageRank is named after Google co-founder Larry Page and is used to rank websites in
Google’s search results. It counts the number, and quality, of links to a page, which determines
an estimation of how important the page is. The underlying assumption is that pages of
importance are more likely to receive a higher volume of links from other influential pages.

NOTE: PageRank is defined in the original Google paper as follows:

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

where,

•	 we assume that a page A has pages T1 to Tn which point to it (i.e., are citations).

•	 d is a damping factor which is set between 0 and 1. It is usually set to 0.85.

•	 C(A) is defined as the number of links going out of page A.

When Should I Use PageRank?
PageRank can be applied across a wide range of domains. The following are some notable
use cases:

•	 Personalized PageRank is used by Twitter to present users with recommendations of
other accounts that they may wish to follow. The algorithm is run over a graph that
contains shared interests and common connections. Their approach is described in
more detail in "WTF: The Who to Follow Service at Twitter."

•	 PageRank has been used to rank public spaces or streets, predicting traffic flow and
human movement in these areas. The algorithm is run over a graph that contains
intersections connected by roads, where the PageRank score reflects the tendency of
people to park, or end their journey, on each street. This is described in more detail in
"Self-organized Natural Roads for Predicting Traffic Flow: A Sensitivity Study."

•	 PageRank is also used as part of an anomaly or fraud detection system in the healthcare
and insurance industries. It helps find doctors or providers that are behaving in an
unusual manner and then feeds the score into a machine learning algorithm.

There are many more use cases for PageRank described in David Gleich’s paper, "PageRank
Beyond the Web."

TIP: There are some things to be aware of when using the PageRank algorithm:

•	 If there are no links from within a group of pages to outside of the group, then the
group is considered a spider trap.

•	 Rank sink occurs when a network of pages forms an infinite cycle.

•	 Dead-ends occur when pages have no out-links. If a page contains a link to a dead-
end page, the link is known as a dangling link.

If you see unexpected results from running the algorithm, it is worth doing some
exploratory analysis of the graph to see if any of these problems are the cause. You can
read The Google PageRank Algorithm and How It Works to learn more.

!

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://web.stanford.edu/~rezab/papers/wtf_overview.pdf
https://arxiv.org/pdf/0804.1630.pdf
https://arxiv.org/pdf/1407.5107.pdf
https://arxiv.org/pdf/1407.5107.pdf
http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm

neo4j.com37 neo4j.com37

A Comprehensive Guide to Graph Algorithms in Neo4j

PageRank Example
Let’s calculate PageRank on a small dataset. The following Cypher statement creates a sample
graph of web pages and links between them.

MERGE (home:Page {name:"Home"})
MERGE (about:Page {name:"About"})
MERGE (product:Page {name:"Product"})
MERGE (links:Page {name:"Links"})
MERGE (a:Page {name:"Site A"})
MERGE (b:Page {name:"Site B"})
MERGE (c:Page {name:"Site C"})
MERGE (d:Page {name:"Site D"})

MERGE (home)-[:LINKS]->(about)
MERGE (about)-[:LINKS]->(home)
MERGE (product)-[:LINKS]->(home)
MERGE (home)-[:LINKS]->(product)
MERGE (links)-[:LINKS]->(home)
MERGE (home)-[:LINKS]->(links)
MERGE (links)-[:LINKS]->(a)
MERGE (a)-[:LINKS]->(home)
MERGE (links)-[:LINKS]->(b)
MERGE (b)-[:LINKS]->(home)
MERGE (links)-[:LINKS]->(c)
MERGE (c)-[:LINKS]->(home)
MERGE (links)-[:LINKS]->(d)
MERGE (d)-[:LINKS]->(home

LINKSLINKS

About

LIN
KS

LINKS

Site B

LI
N

KS

LINKS

Site D

LI
NKS

LIN
KS

LINKS

Site C

Site A

LINKS

LIN
KS

LIN
KS

LINKS

LINKS

Product

Home

Links

Graph Model

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com38 neo4j.com38

A Comprehensive Guide to Graph Algorithms in Neo4j

Now we run the PageRank algorithm to calculate the most influential pages. Execute the
following query.

CALL algo.pageRank.stream("Page", "LINKS",
{iterations:20})
YIELD nodeId, score

MATCH (node) WHERE id(node) = nodeId

RETURN node.name AS page,score
ORDER BY score DESC

Results

Name PageRank

Home 3.232

Product 1.059

Links 1.059

About 1.059

Site A 0.328

Site B 0.328

Site C 0.328

Site D 0.328

Product

Site C

Site D

About

Links

Site A

Home

Site B

Visualization of PageRank

As we might expect, the Home page has the highest PageRank because it has incoming links
from all other pages. Also, it's not only the number of incoming links that is important, but
also the importance of the pages behind those links.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com39 neo4j.com39

A Comprehensive Guide to Graph Algorithms in Neo4j

Degree Centrality
Degree Centrality is the simplest of all the centrality algorithms. It measures the number of
incoming and outgoing relationships from a node.

The algorithm helps us find popular nodes in a graph.

Degree Centrality was proposed by Linton C. Freeman in his 1979 paper, "Centrality in Social
Networks Conceptual Clarification." While the algorithm is usually used to find the popularity of
individual nodes, it is often used as part of a global analysis where we calculate the minimum
degree, maximum degree, mean degree, and standard deviation across the whole graph.

When Should I Use Degree Centrality?
•	 Degree Centrality is an important component of any attempt to analyze influence by

looking at the number of incoming and outgoing relationships, such as connections
of people on a social network. For example, in BrandWatch’s most influential men
and women on Twitter 2017, the top five people in each category have over 40 million
followers each.

•	 Weighted Degree Centrality has been used to help separate fraudsters from legitimate
users of an online auction. The weighted centrality for fraudsters is significantly higher
because they tend to collude with each other to artificially increase the price of items.
Read more in "Two Step graph-based semi-supervised Learning for Online Auction Fraud
Detection."

Degree Centrality Example
Let’s see how Degree Centrality works on a small dataset. The following Cypher statement
creates a Twitter-esque graph of users and followers.

MERGE (nAlice:User {id:"Alice"})
MERGE (nBridget:User {id:"Bridget"})
MERGE (nCharles:User {id:"Charles"})
MERGE (nDoug:User {id:"Doug"})
MERGE (nMark:User {id:"Mark"})
MERGE (nMichael:User {id:"Michael"})

MERGE (nAlice)-[:FOLLOWS]->(nDoug)
MERGE (nAlice)-[:FOLLOWS]->(nBridget)
MERGE (nAlice)-[:FOLLOWS]->(nCharles)
MERGE (nMark)-[:FOLLOWS]->(nDoug)
MERGE (nMark)-[:FOLLOWS]->(nMichael)
MERGE (nBridget)-[:FOLLOWS]->(nDoug)
MERGE (nCharles)-[:FOLLOWS]->(nDoug)
MERGE (nMichael)-[:FOLLOWS]->(nDoug)

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/degree-centrality/?ref=pdf-ebook-graph-algo
http://leonidzhukov.net/hse/2014/socialnetworks/papers/freeman79-centrality.pdf
http://leonidzhukov.net/hse/2014/socialnetworks/papers/freeman79-centrality.pdf
https://www.brandwatch.com/blog/react-influential-men-and-women-2017/
https://www.brandwatch.com/blog/react-influential-men-and-women-2017/
https://link.springer.com/chapter/10.1007/978-3-319-23461-8_11
https://link.springer.com/chapter/10.1007/978-3-319-23461-8_11

neo4j.com40 neo4j.com40

A Comprehensive Guide to Graph Algorithms in Neo4j

FOLLOWS

FO
LL

OW
S

FOLLOWS

FOLLOWSFOLLOWS

FOLLOWS FOLLOWS

FO
LLO

W
S

Doug

Alice

Charles

Michael

Mark

Bridget

Graph Model

The following query calculates the number of people that each user follows and is followed by.

MATCH (u:User)
RETURN u.id AS name,
 size((u)-[:FOLLOWS]->()) AS follows,
 size((u)<-[:FOLLOWS]-()) AS followers

Results

Name Following Followers

Alice 3 0

Bridget 1 1

Charles 1 1

Doug 0 5

Mark 2 0

Michael 1 1

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com41 neo4j.com41

A Comprehensive Guide to Graph Algorithms in Neo4j

Mark

Charles

Michael

Bridget

Doug

Alice

Visualization of Degree Centrality

Doug is the most popular user in our imaginary Twitter graph with five followers; all other users
follow him but he doesn’t follow anybody back. In the real Twitter network, celebrities have high
follower counts but tend to follow few people. We could therefore consider Doug a celebrity!

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com42 neo4j.com42

A Comprehensive Guide to Graph Algorithms in Neo4j

Betweenness Centrality
Betweenness Centrality is a way of detecting the amount of influence a node has over the
flow of information in a graph. It is often used to find nodes that serve as a bridge from one
part of a graph to another.

In the following example, Alice is the main connection in the graph.

Doug

Michael

Mark

Alice

Charles

Bridget

MANAGE

M
AN

AG
E

M
AN

AG
E

MANAGE
MANAGE

Alice

If Alice is removed, all connections in the graph would be cut off. This makes Alice important,
because she ensures that no nodes are isolated.

The Betweenness Centrality algorithm calculates the shortest (weighted) path between every
pair of nodes in a connected graph, using the breadth-first search algorithm. Each node
receives a score, based on the number of these shortest paths that pass through the node.
Nodes that most frequently lie on these shortest paths will have a higher betweenness
centrality score.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/betweenness-centrality/?ref=pdf-ebook-graph-algo

neo4j.com43 neo4j.com43

A Comprehensive Guide to Graph Algorithms in Neo4j

The algorithm was given its first formal definition by Linton Freeman in his 1971 paper, "A Set
of Measures of Centrality Based on Betweenness." It was considered to be one of the three
distinct intuitive conceptions of centrality.

The algorithm operates as follows:

Betweenness Centrality

•	 First, find all shortest paths

•	 Then, for each node, divide the number of shortest paths
that go through that node by the total number of shortest
paths in the graph

•	 The higher scores, red node and then yellow node, have the
highest betweenness centrality

1.5

0

0

0 0

9

6.5

When Should I Use Betweenness Centrality?
•	 Betweenness Centrality is used to research the network flow in a package delivery

process or in a telecommunications network. These networks are characterized by traffic
that has a known target and takes the shortest path possible. This, and other scenarios,
are described by Stephen P. Borgatti in "Centrality and network flow."

•	 Betweenness Centrality is used to identify influencers in legitimate or criminal
organizations. Studies show that influencers in organizations are not necessarily
in management positions, but instead are found in brokerage positions of the
organizational network. Removal of such influencers could seriously destabilize the
organization. More details are found in "Brokerage qualifications in ringing operations"
by Carlo Morselli and Julie Roy.

•	 Betweenness Centrality is also used to help microbloggers spread their reach on Twitter,
with a recommendation engine that targets influencers that they should interact with in
the future. This approach is described in "Making Recommendations in a Microblog to
Improve the Impact of a Focal User."

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
http://moreno.ss.uci.edu/23.pdf
http://moreno.ss.uci.edu/23.pdf
http://www.analytictech.com/borgatti/papers/centflow.pdf
http://archives.cerium.ca/IMG/pdf/Morselli_and_Roy_2008_.pdf
ftp://ftp.umiacs.umd.edu/incoming/louiqa/PUB2012/RecMB.pdf
ftp://ftp.umiacs.umd.edu/incoming/louiqa/PUB2012/RecMB.pdf

neo4j.com44 neo4j.com44

A Comprehensive Guide to Graph Algorithms in Neo4j

TIP:

•	 Betweenness Centrality makes the assumption that all communication between
nodes happens along the shortest path and with the same frequency, which isn’t
always the case in real life. Therefore, it doesn’t give us a perfect view of the most
influential nodes in a graph, but rather a good representation. Newman explains this
in more detail on page 186 of Networks: An Introduction.

•	 For large graphs, exact centrality computation isn’t practical. The fastest known
algorithm for exactly computing betweenness of all the nodes requires at least O(nm)
time for unweighted graphs, where n is the number of nodes and m is the number of
relationships. Instead, we use an approximation algorithm that works with a subset
of nodes.

!

Betweenness Centrality Example
Let’s see how Betweenness Centrality works on a small dataset. The following Cypher
statement creates an organizational hierarchy.

MERGE (nAlice:User {id:"Alice"})
MERGE (nBridget:User {id:"Bridget"})
MERGE (nCharles:User {id:"Charles"})
MERGE (nDoug:User {id:"Doug"})
MERGE (nMark:User {id:"Mark"})
MERGE (nMichael:User {id:"Michael"})

MERGE (nAlice)-[:MANAGES]->(nBridget)
MERGE (nAlice)-[:MANAGES]->(nCharles)
MERGE (nAlice)-[:MANAGES]->(nDoug)
MERGE (nMark)-[:MANAGES]->(nAlice)
MERGE (nCharles)-[:MANAGES]->(nMichael);

MANAGES

MANAGES

MANAGES MANAGES

MANAGES

Doug

Alice

Charles

Michael

Mark

Bridget

Graph Model

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://global.oup.com/academic/product/networks-9780199206650?cc=us&lang=en&

neo4j.com45

A Comprehensive Guide to Graph Algorithms in Neo4j

The following query executes the Betweenness Centrality algorithm.

CALL algo.betweenness.stream("User", "MANAGES", {direction:"out"})
YIELD nodeId, centrality

MATCH (user:User) WHERE id(user) = nodeId

RETURN user.id AS user,centrality
ORDER BY centrality DESC;

Results

Name Centrality Weight

Alice 4

Charles 2

Bridget 0

Michael 0

Doug 0

Mark 0

Charles Mark

Doug

Bridget

Michael
Mark

Alice

Visualization of Betweenness Centrality

Alice is the main broker in this network, and Charles is a minor broker. The others don’t have any influence,
because all the shortest paths between pairs of people go via Alice or Charles.

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com46

A Comprehensive Guide to Graph Algorithms in Neo4j

Approximation of Betweenness Centrality
As mentioned above, calculating the exact betweenness centrality on large graphs can be very time
consuming. Therefore, you might choose to use an approximation algorithm that runs much quicker and still
provides useful information.

The RA-Brandes algorithm is the best-known algorithm for calculating an approximate score for betweenness
centrality. Rather than calculating the shortest path between every pair of nodes, the RA-Brandes algorithm
considers only a subset of nodes. Two common strategies for selecting the subset of nodes are:

Random
Nodes are selected uniformly, at random, with defined probability of selection. The default probability is
log10(N) / e^2. If the probability is 1, then the algorithm works the same way as the normal Betweenness
Centrality algorithm, where all nodes are loaded.

Degree
First, the mean degree of the nodes is calculated, and then only the nodes whose degree is higher than the
mean are visited (i.e., only dense nodes are visited).

As a further optimization, you limit the depth used by the Shortest Path algorithm.

Approximation of Betweenness Centrality Example
Let’s see how Approximation of Betweenness Centrality works on the same dataset that we used for the
Betweenness Centrality algorithm.

The following query executes the Approximation of Betweenness Centrality algorithm.

CALL algo.betweenness.sampled.stream("User", "MANAGES",
 {strategy:"random", probability:1.0, maxDepth:1, direction: "out"})

YIELD nodeId, centrality

MATCH (user) WHERE id(user) = nodeId
RETURN user.id AS user,centrality
ORDER BY centrality DESC;

Results

Name Centrality Weight

Alice 3

Charles 1

Bridget 0

Michael 0

Doug 0

Mark 0

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com47 neo4j.com47

A Comprehensive Guide to Graph Algorithms in Neo4j

Charles Mark

Doug

Bridget

Michael
Mark

Alice

MarkMark

Visualization of Approximation of Betweenness Centrality

Alice is still the main broker in the network, and Charles is a minor broker, although their
centrality score has dropped as the algorithm only considers relationships at a depth of 1.
The others don’t have any influence, because all the shortest paths between pairs of people
go via Alice or Charles.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com48 neo4j.com48

A Comprehensive Guide to Graph Algorithms in Neo4j

Closeness Centrality
Closeness Centrality is a way of detecting nodes that are able to spread information
efficiently through a graph.

The closeness centrality of a node measures its average farness (inverse distance) to all other
nodes. Nodes with a high closeness score have the shortest distances to all other nodes.

For each node, the Closeness Centrality algorithm calculates the sum of its distances to
all other nodes, based on calculating the shortest paths between all pairs of nodes. The
resulting sum is then inverted to determine the closeness centrality score for that node.

NOTE: The raw closeness centrality of a node is calculated using the formula:

raw closeness centrality(node) = 1 / sum(distance from node to
all other nodes)

It is more common to normalize this score so that it represents the average length of
the shortest paths rather than their sum. This adjustment allows comparisons of the
closeness centrality of nodes of graphs of different sizes.

The formula for normalized closeness centrality is as follows:

normalized closeness centrality(node) = (number of nodes - 1) /
sum(distance from node to all other node

When Should I Use Closeness Centrality?
•	 Closeness centrality is used to research organizational networks where individuals

with high closeness centrality are in a favorable position to control and acquire vital
information and resources within the organization. One such study is "Mapping
Networks of Terrorist Cells" by Valdis E. Krebs.

•	 Closeness centrality is also interpreted as an estimated time of arrival through
telecommunications or package delivery networks where content flows through shortest
paths to a predefined target. It is also used in networks where information spreads
through all shortest paths simultaneously, such as infections spreading through a local
community. Find more details in "Centrality and Network Flow" by Stephen P. Borgatti.

•	 Closeness centrality helps estimate the importance of words in a document, based on a
graph-based keyphrase extraction process. This process is described by Florian Boudin
in "A Comparison of Centrality Measures for Graph-Based Keyphrase Extraction."

NOTE:

Academically, closeness centrality works best on connected graphs. If we use the original
formula on an unconnected graph, we end up with an infinite distance between two nodes
in separate connected components. This means that we’ll end up with an infinite closeness
centrality score when we sum up all the distances from that node. In practice, a variation
on the original formula is used so that we don’t run into these issues.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/closeness-centrality/?ref=pdf-ebook-graph-algo
http://www.orgnet.com/MappingTerroristNetworks.pdf
http://www.orgnet.com/MappingTerroristNetworks.pdf
http://www.analytictech.com/borgatti/papers/centflow.pdf
https://www.aclweb.org/anthology/I/I13/I13-1102.pdf

neo4j.com49 neo4j.com49

A Comprehensive Guide to Graph Algorithms in Neo4j

Closeness Centrality Example
Let’s see how Closeness Centrality works on a small dataset. The following Cypher statement
creates a graph with nodes and links between them.

MERGE (a:Node{id:"A"})
MERGE (b:Node{id:"B"})
MERGE (c:Node{id:"C"})
MERGE (d:Node{id:"D"})
MERGE (e:Node{id:"E"})

MERGE (a)-[:LINK]->(b)
MERGE (b)-[:LINK]->(a)
MERGE (b)-[:LINK]->(c)
MERGE (c)-[:LINK]->(b)
MERGE (c)-[:LINK]->(d)
MERGE (d)-[:LINK]->(c)
MERGE (d)-[:LINK]->(e)
MERGE (e)-[:LINK]->(d);

LINK

LINK LINK

LINK

LINK

LINK

LINKLINK

E D

C

B

A

Graph Model

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com50 neo4j.com50

A Comprehensive Guide to Graph Algorithms in Neo4j

The following query executes the Closeness Centrality algorithm:

CALL algo.closeness.stream("Node", "LINK")
YIELD nodeId, centrality

MATCH (n:Node) WHERE id(n) = nodeId

RETURN n.id AS node, centrality
ORDER BY centrality DESC
LIMIT 20;

Results

Name Centrality Weight

C 0.6666666666666666

B 0.5714285714285714

D 0.5714285714285714

A 0.4

E 0.4

D C

A

E B

Visualization of Closeness Centrality

C is the best connected node in this graph, although B and D aren’t far behind. A and E don’t
have close ties to many other nodes, so their scores are lower. Any node that has a direct
connection to all other nodes would score 1.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com51 neo4j.com51

A Comprehensive Guide to Graph Algorithms in Neo4j

Harmonic Centrality
Harmonic Centrality (also known as valued centrality) is a variant of Closeness Centrality that
was invented to solve the problem the original formula had when dealing with unconnected
graphs. As with many of the centrality algorithms, it originates from the field of social network
analysis.

Harmonic centrality was proposed by Marchiori and Latora in "Harmony in the Small World"
while trying to come up with a sensible notion of "average shortest path."

They suggested a different way of calculating the average distance to that used in the
Closeness Centrality algorithm. Rather than summing the distances of a node to all other
nodes, the Harmonic Centrality algorithm sums the inverse of those distances. This enables it
to deal with infinite values.

NOTE:

The raw harmonic centrality for a node is calculated using the following formula:

raw harmonic centrality(node) = sum(1 / distance from node to
every other node excluding itself)

As with Closeness Centrality we also calculate a normalized harmonic centrality with the
following formula:

normalized harmonic centrality(node) = sum(1 / distance from node
to every other node excluding itself) / (number of nodes - 1)

In this formula, ∞ values are handled cleanly.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/harmonic-centrality/?ref=pdf-ebook-graph-algo
https://arxiv.org/pdf/cond-mat/0008357.pdf

neo4j.com52

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 8
Community Detection Algorithms
A fairly common feature of complex graphs is that they consist of sets of nodes that interact more with
one another than with nodes outside the set. Social networks, for instance, might consist of tightly knit
communities of friends with rarer friendship ties between different communities. The idea that community
structures might be a defining characteristic of complex systems was first proposed by H.A. Simon in 1962.

When using community detection algorithms, we need to be conscious of the density of the relationships in the subgraphs on which
we’re running the algorithm. If it’s very dense and all nodes are connected to each other, we may end up with all nodes congregating in
one cluster. On the other hand if it’s too sparse and few nodes are connected, then we may end up with each node in its own cluster.

Algorithm Type What It Does Example Uses

Strongly Connected
Components

Locates groups of nodes where each node is reachable
from every other node in the same group following the
direction of relationships. It’s often applied from a depth-
first search.

Strongly Connected Components is often used to enable
running other algorithms independently on an identified
cluster. As a preprocessing step for directed graphs, it
helps quickly identify disconnected groups.

In retail recommendations, it helps identify groups
with strong affinities that are then used for suggesting
commonly preferred items to those within a given group
who have not yet purchased one of the items.

Weakly Connected
Components
(Union Find)

Finds groups of nodes where each node is reachable
from any other node in the same group, regardless of the
direction of relationships. It provides near constant-time
(independent of input size) operations to add new groups,
merge existing groups and determine whether two nodes
are in the same group.

Weakly Connected Components is often used in
conjunction with other algorithms, especially for high-
performance grouping. As a preprocessing step for
undirected graphs, it helps quickly identify disconnected
groups.

Label Propagation Spreads labels based on neighborhood majorities as a
means of inferring clusters. This extremely fast graph
partitioning requires little prior information and is widely
used in large-scale networks for community detection.
It’s a key method for understanding the organization of a
graph and is often a primary step in other analysis.

Label Propagation has diverse applications from
understanding consensus formation in social communities
to identifying sets of proteins that are involved together in
a process (functional modules) for biochemical networks.

It’s also used in semi- and unsupervised machine learning
as an initial preprocessing step.

Louvain Modularity Measures the quality (i.e., presumed accuracy) of a
community grouping by comparing its relationship density
to a suitably defined random network. It’s often used
to evaluate the organization of complex networks, in
particular, community hierarchies. It’s also useful for initial
data preprocessing in unsupervised machine learning.

Louvain is used to evaluate social structures in Twitter,
LinkedIn and YouTube. It's also used in fraud analytics to
evaluate whether a group has just a few bad behaviors or
is acting as a fraud ring that would be indicated by a higher
relationship density than average.

Louvain revealed a six-level customer hierarchy in a
Belgian telecom network.

Triangle Count and
Average Clustering
Coefficient

Measures how many nodes have triangles and the degree
to which nodes tend to cluster together. The average
clustering coefficient is 1 when there is a clique, and
0 when there are no connections. For the clustering
coefficient to be meaningful, it should be significantly
higher than a version of the network where all of the
relationships have been shuffled randomly.

The Average Clustering Coefficient is often used to
estimate whether a network might exhibit “small-world”
behaviors that are based on tightly knit clusters. It’s also a
factor for cluster stability and resiliency.

Epidemiologists have used the Average Clustering
Coefficient to help predict various infection rates for
different communities.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/community/?ref=pdf-ebook-graph-algo

neo4j.com53 neo4j.com53

A Comprehensive Guide to Graph Algorithms in Neo4j

Strongly Connected Components
The Strongly Connected Components (SCC) algorithm finds sets of connected nodes in a
directed graph where each node is reachable in both directions from any other node in
the same set. It is often used early in a graph analysis process to give us an idea of how our
graph is structured.

SCC is one of the earliest graph algorithms, and the first linear-time algorithm was described
by Tarjan in 1972. Decomposing a directed graph into its strongly connected components is
a classic application of the depth-first search algorithm.

When Should I Use Strongly Connected Components?
•	 In the analysis of powerful transnational corporations, SCC is used to find the set of

firms in which every member directly owns and/or indirectly owns shares in every other
member. Although it has benefits, such as reducing transaction costs and increasing
trust, this type of structure weakens market competition. Read more in "The Network of
Global Corporate Control."

•	 SCC has been used to compute the connectivity of different network configurations when
measuring routing performance in multihop wireless networks. Read more in "Routing
performance in the presence of unidirectional links in multihop wireless networks."

•	 Strongly Connected Components algorithms are often used as a first step in many graph
algorithms that work only on strongly connected graphs. In social networks, a group of
people are generally strongly connected (for example, students of a class or any other
common place). Many people in these groups generally like some common pages or
play common games. The SCC algorithms are used to find such groups and suggest the
commonly liked pages or games to the people in the group who have not yet liked those
pages or games.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/strongly-connected-components/?ref=pdf-ebook-graph-algo
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0025995&type=printable
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0025995&type=printable
https://dl.acm.org/citation.cfm?id=513803
https://dl.acm.org/citation.cfm?id=513803

neo4j.com54 neo4j.com54

A Comprehensive Guide to Graph Algorithms in Neo4j

Strongly Connected Components Example
Let’s see the Strongly Connected Components algorithm in action. The following Cypher
statement creates a Twitter-esque graph containing users and FOLLOWS relationships
between them.

MERGE (nAlice:User {id:"Alice"})
MERGE (nBridget:User {id:"Bridget"})
MERGE (nCharles:User {id:"Charles"})
MERGE (nDoug:User {id:"Doug"})
MERGE (nMark:User {id:"Mark"})
MERGE (nMichael:User {id:"Michael"})

MERGE (nAlice)-[:FOLLOWS]->(nBridget)
MERGE (nAlice)-[:FOLLOWS]->(nCharles)
MERGE (nMark)-[:FOLLOWS]->(nDoug)
MERGE (nMark)-[:FOLLOWS]->(nMichael)
MERGE (nBridget)-[:FOLLOWS]->(nMichael)
MERGE (nDoug)-[:FOLLOWS]->(nMark)
MERGE (nMichael)-[:FOLLOWS]->(nAlice)
MERGE (nAlice)-[:FOLLOWS]->(nMichael)
MERGE (nBridget)-[:FOLLOWS]->(nAlice)
MERGE (nMichael)-[:FOLLOWS]->(nBridget);

FOLLOW

Doug
Alice

Charles

Mark

Bridget

Michael

FOLLOWS

FOLLOWS

FOLLOWS

FO
LL

O
W

S

FO
LL

O
W

S

FO
LLO

W
S

FOLLOWS

FOLLOWS

FOLLOWS

FOLLOWS

Graph Model

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com55 neo4j.com55

A Comprehensive Guide to Graph Algorithms in Neo4j

Now we can run Strongly Connected Components to see whether everybody is connected to
each other. Execute the following query.

CALL algo.scc.stream("User","FOLLOWS")
YIELD nodeId, partition
MATCH (u:User) WHERE id(u) = nodeId
RETURN u.id AS name, partition

Results

Name Partition

Alice 1

Bridget 1

Michael 1

Charles 0

Doug 2

Mark 2

Doug

Charles
Alice

Bridget

Michael

Mark

Visualization of Strongly Connected Components

We have three strongly connected components in our sample graph.

The first, and biggest, component has members Alice, Bridget, and Michael, while the second
component has Doug and Mark. Charles ends up in his own component because there isn’t
an outgoing relationship from that node to any of the others.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com56 neo4j.com56

A Comprehensive Guide to Graph Algorithms in Neo4j

Weakly Connected Components (Union Find)
The Weakly Connected Components, or Union Find, algorithm finds sets of connected nodes
in an undirected graph where each node is reachable from any other node in the same set.
It differs from the Strongly Connected Components algorithm (SCC) because it only needs a
path to exist between pairs of nodes in one direction, whereas SCC needs a path to exist in
both directions. As with SCC, Union Find is often used early in an analysis to understand a
graph’s structure.

Bernard A. Galler and Michael J. Fischer first described this algorithm in 1964. The
components in a graph are computed using either the breadth-first search or depth-first
search algorithms.

When Should I Use Union Find?
•	 Testing whether a graph is connected is an essential pre-processing step for every graph

algorithm. Such tests are performed so quickly and easily that you should always verify
that your input graph is connected, even when you know it has to be. Subtle, difficult-
to-detect bugs often result when your algorithm is run only on one component of a
disconnected graph.

•	 Union Find is also used to keep track of clusters of database records, as part of the
de-duplication process – an important task in master data management applications.
Read more in "An Efficient Domain-Independent Algorithm for Detecting Approximately
Duplicate Database Records."

•	 Weakly Connected Components (WCC) is used to analyze citation networks as well.
One study uses WCC to work out how well-connected the network is, and then to see
whether the connectivity remains if "hub" or "authority" nodes are moved from the
graph. Read more in "Characterizing and Mining Citation Graph of Computer Science
Literature."

Union Find Example
Let’s see the Union Find algorithm in action. The following Cypher statement creates a graph
of people and their friends.

MERGE (nAlice:User {id:"Alice"})
MERGE (nBridget:User {id:"Bridget"})
MERGE (nCharles:User {id:"Charles"})
MERGE (nDoug:User {id:"Doug"})
MERGE (nMark:User {id:"Mark"})
MERGE (nMichael:User {id:"Michael"})

MERGE (nAlice)-[:FRIEND]->(nBridget)
MERGE (nAlice)-[:FRIEND]->(nCharles)
MERGE (nMark)-[:FRIEND]->(nDoug)
MERGE (nMark)-[:FRIEND]->(nMichael);

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8405
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8405
https://pdfs.semanticscholar.org/a8e0/5f803312032569688005acadaa4d4abf0136.pdf
https://pdfs.semanticscholar.org/a8e0/5f803312032569688005acadaa4d4abf0136.pdf

neo4j.com57 neo4j.com57

A Comprehensive Guide to Graph Algorithms in Neo4j

Doug

Charles

MichaelMark

Alice Bridget

FRIEND

FRIEND

FR
IEN

D

FR
IE

ND

Graph Model

Now we run Union Find to find connected components. Execute the following query.

CALL algo.unionFind.stream("User", "FRIEND", {})
YIELD nodeId,setId

MATCH (u:User) WHERE id(u) = nodeId

RETURN u.id AS user, setId

Results

Name Centrality Weight

C 0.6666666666666666

B 0.5714285714285714

D 0.5714285714285714

A 0.4

E 0.4

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com58 neo4j.com58

A Comprehensive Guide to Graph Algorithms in Neo4j

Michael

Charles

Bridget

Doug

Mark

Alice

Visualization of Union Find

We have two distinct groups of users that have no link between them.

The first group contains Alice, Charles and Bridget, while the second group contains Michael,
Doug and Mark.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com59 neo4j.com59

A Comprehensive Guide to Graph Algorithms in Neo4j

Label Propagation
The Label Propagation algorithm (LPA) is a fast algorithm for finding communities in a graph.
It detects these communities using network structure alone as its guide and doesn’t require a
predefined objective function or prior information about the communities.

One interesting feature of LPA is that you have the option of assigning preliminary labels
to narrow down the range of generated solutions. This means you can use it as a semi-
supervised way of finding communities where you handpick some initial communities.

LPA is a relatively new algorithm and was only proposed by Raghavan et al. in 2007, in "Near
linear time algorithm to detect community structures in large-scale networks." It works by
propagating labels throughout the network and forming communities based on this process
of label propagation.

The intuition behind the algorithm is that a single label can quickly become dominant in a
densely connected group of nodes, but it will have trouble crossing a sparsely connected
region. Labels will get trapped inside a densely connected group of nodes, and those nodes
that end up with the same label when the algorithm finishes are considered part of the same
community.

Initial State

Pass 1

Pass 2

Iterations continue until
there is convergence on
a solution, a set solution
range, or a set number
of iterations.

More labels added

Some nodes have labels

Label Propagation Algorithm

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/label-propagation/?ref=pdf-ebook-graph-algo
https://arxiv.org/pdf/0709.2938.pdf
https://arxiv.org/pdf/0709.2938.pdf

neo4j.com60 neo4j.com60

A Comprehensive Guide to Graph Algorithms in Neo4j

NOTE: The algorithm works as follows:

•	 Every node is initialized with a unique label (an identifier).

•	 These labels propagate through the network.

•	 At every iteration of propagation, each node updates its label to the one that the
maximum number of its neighbors belongs to. Ties are broken uniformly and
randomly.

•	 LPA reaches convergence when each node has the majority label of its neighbors.

As labels propagate, densely connected groups of nodes quickly reach a consensus on
a unique label. At the end of the propagation, only a few labels will remain – most will
have disappeared. Nodes that have the same label at convergence are said to belong to
the same community.

When Should I Use Label Propagation?
•	 Label Propagation has been used to assign polarity of tweets, as a part of semantic

analysis that uses seed labels from a classifier trained to detect positive and negative
emoticons in combination with the Twitter follower graph. For more information, see
"Twitter polarity classification with label propagation over lexical links and the follower
graph."

•	 Label Propagation has been used to estimate potentially dangerous combinations of
drugs to co-prescribe to a patient, based on the chemical similarity and side effect
profiles. The study is found in "Label Propagation Prediction of Drug-Drug Interactions
Based on Clinical Side Effects."

•	 Label Propagation has been used to infer features of utterances in a dialogue for a
machine learning model to track user intention with the help of a Wikidata knowledge
graph of concepts and their relations. For more information, see "Feature Inference
Based on Label Propagation on Wikidata Graph for DST."

TIP: In contrast with other algorithms, Label Propagation results in different community
structures when run multiple times on the same graph. The range of solutions is
narrowed if some nodes are given preliminary labels, while others are unlabeled.
Unlabeled nodes are more likely to adopt the preliminary labels.

!

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://dl.acm.org/citation.cfm?id=2140465
https://dl.acm.org/citation.cfm?id=2140465
https://www.nature.com/articles/srep12339
https://www.nature.com/articles/srep12339
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.iwsds2017/papers/IWSDS2017_paper_12.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.iwsds2017/papers/IWSDS2017_paper_12.pdf

neo4j.com61 neo4j.com61

A Comprehensive Guide to Graph Algorithms in Neo4j

Label Propagation Example
Let’s see the Label Propagation algorithm in action. The following Cypher statement creates a
Twitter-esque graph containing users and FOLLOWS relationships between them.

MERGE (nAlice:User {id:"Alice"})
MERGE (nBridget:User {id:"Bridget"})
MERGE (nCharles:User {id:"Charles"})
MERGE (nDoug:User {id:"Doug"})
MERGE (nMark:User {id:"Mark"})
MERGE (nMichael:User {id:"Michael"})

MERGE (nAlice)-[:FOLLOWS]->(nBridget)
MERGE (nAlice)-[:FOLLOWS]->(nCharles)
MERGE (nMark)-[:FOLLOWS]->(nDoug)
MERGE (nBridget)-[:FOLLOWS]->(nMichael)
MERGE (nDoug)-[:FOLLOWS]->(nMark)
MERGE (nMichael)-[:FOLLOWS]->(nAlice)
MERGE (nAlice)-[:FOLLOWS]->(nMichael)
MERGE (nBridget)-[:FOLLOWS]->(nAlice)
MERGE (nMichael)-[:FOLLOWS]->(nBridget)
MERGE (nCharles)-[:FOLLOWS]->(nDoug);

Charles

FO
LLO

W
S

FOLLOWS

FOLLOWSFOLLOWS

FOLLOWS

Bridget

Michael

Alice

FOLLOWS

FO
LL

O
W

S
FO

LL
O

W
S

FOLLOWS

FOLLOWS Doug

Mark

Graph Model

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com62 neo4j.com62

A Comprehensive Guide to Graph Algorithms in Neo4j

Now we run LPA to find communities among the users. Execute the following query.

CALL algo.labelPropagation.stream("User", "FOLLOWS",
 {direction: "OUTGOING", iterations: 10})

Results

Name Partition

Alice 5

Charles 4

Bridget 5

Michael 5

Doug 4

Mark 4

Michael

Mark
Doug

Charles

Bridget

Alice

Visualization of Label Propagation

Our algorithm found two communities with three members each.

It appears that Michael, Bridget and Alice belong together, as do Doug and Mark. Only
Charles doesn’t strongly fit into either side, but ends up with Doug and Mark.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com63 neo4j.com63

A Comprehensive Guide to Graph Algorithms in Neo4j

Louvain Modularity
The Louvain method of community detection is an algorithm for detecting communities
in networks. It maximizes a modularity score for each community, where the modularity
quantifies the quality of an assignment of nodes to communities by evaluating how much
more densely connected the nodes within a community are, compared to how connected
they would be in a random network.

The Louvain algorithm is one of the fastest modularity-based algorithms and works well with
large graphs. It also reveals a hierarchy of communities at different scales, which is useful for
understanding the global functioning of a network.

In order to understand the Louvain modularity algorithm, we must first look at modularity in
general.

Negative Modularity
M=0.12

Single Community
M=0

Suboptimal Partition
M=0.22

Optimal Partition
M=0.41

Modularity

Modularity is a measure of how well groups have been partitioned into clusters. It compares
the relationships in a cluster compared to what would be expected for a random (or other
baseline) number of connections.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/?ref=pdf-ebook-graph-algo

neo4j.com64 neo4j.com64

A Comprehensive Guide to Graph Algorithms in Neo4j

Pass 1

Pass 2

Step 0 Step 1

Step 1 Step 2

Step 2

4

14

14
3

2

4

11

1

4

14

14
3

2

4

11

1 223
26

Choose a start node and
calculate the change in
modularity that would occur
if that node joins and forms
a community with each of its
immediate neighbors.

Communities are aggregated
to create super communities
and the relationships between
these super nodes are
weighted as a sum of previous
links. (Self-loops represent the
previous relationships now
hidden in the super node.)

Steps 1 and 2 repeat in passes until there is no further increase
in modularity or a set number of iterations have occurred.

The start node joins the node
with the highest modularity
change. The process is repeated
for each node with the above
communities formed.

Louvain Modularity Algorithm

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com65 neo4j.com65

A Comprehensive Guide to Graph Algorithms in Neo4j

The Louvain algorithm was proposed in 2008. The method consists of repeated application
of two steps. The first step is a "greedy" assignment of nodes to communities, favoring
local optimizations of modularity. The second step is the definition of a new coarse-grained
network based on the communities found in the first step. These two steps are repeated
until no further modularity-increasing reassignments of communities are possible.

When Should I Use Louvain?
•	 The Louvain method has been proposed to provide recommendations for Reddit

users to find similar subreddits based on general user behavior. For more details, see
"Subreddit Recommendations within Reddit Communities."

•	 The Louvain method has been used to extract topics from online social platforms, such
as Twitter and YouTube, based on the co-occurence graph of terms in documents as a
part of the topic modeling process. This process is described in "Topic Modeling based
on Louvain method in Online Social Networks."

•	 The Louvain method has been used to investigate the human brain and find hierarchical
community structures within the brain’s functional network. The study mentioned is
"Hierarchical Modularity in Human Brain Functional Networks."

TIP: Although the Louvain method, and modularity optimization algorithms more
generally, have found wide applications across many domains, some problems with
these algorithms have been identified:

1. The resolution limit

For larger networks, the Louvain method doesn’t stop with the "intuitive" communities.
Instead, there’s a second pass through the community modification and coarse-graining
stages, in which several of the intuitive communities are merged together. This is a
general problem with modularity optimization algorithms; they have trouble detecting
small communities in large networks. It’s a virtue of the Louvain method that something
close to the intuitive community structure is available as an intermediate step in the
process.

2. The degeneracy problem

There is typically an exponentially large (in network size) number of community
assignments with modularities close to the maximum. This can be a severe problem
because, in the presence of a large number of high modularity solutions, it’s hard to
find the global maximum and difficult to determine if the global maximum is truly more
scientifically important than local maxima that achieve similar modularity. Research
shows that the different locally optimal community assignments have different
structural properties. For more information, see "The performance of modularity
maximization in practical contexts."

!

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://arxiv.org/pdf/0803.0476.pdf
http://snap.stanford.edu/class/cs224w-2014/projects2014/cs224w-16-final.pdf
http://www.lbd.dcc.ufmg.br/colecoes/sbsi/2016/047.pdf
http://www.lbd.dcc.ufmg.br/colecoes/sbsi/2016/047.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784301/
https://arxiv.org/abs/0910.0165
https://arxiv.org/abs/0910.0165

neo4j.com66 neo4j.com66

A Comprehensive Guide to Graph Algorithms in Neo4j

Louvain Example
Let’s see the Louvain algorithm in action. The following Cypher statement creates a graph of
users and friends.

MERGE (nAlice:User {id:"Alice"})
MERGE (nBridget:User {id:"Bridget"})
MERGE (nCharles:User {id:"Charles"})
MERGE (nDoug:User {id:"Doug"})
MERGE (nMark:User {id:"Mark"})
MERGE (nMichael:User {id:"Michael"})

MERGE (nAlice)-[:FRIEND]->(nBridget)
MERGE (nAlice)-[:FRIEND]->(nCharles)
MERGE (nMark)-[:FRIEND]->(nDoug)
MERGE (nBridget)-[:FRIEND]->(nMichael)
MERGE (nCharles)-[:FRIEND]->(nMark)
MERGE (nAlice)-[:FRIEND]->(nMichael)
MERGE (nCharles)-[:FRIEND]->(nDoug);

Doug

Alice

Charles

Michael

Mark

Bridget

FRIEND

FRIEND
FRIEND

FR
IE

N
D

FRIEN
D

FRIEND FR
IE

N
D

Graph Model

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com67 neo4j.com67

A Comprehensive Guide to Graph Algorithms in Neo4j

Now we run Louvain to find communities in the social network. Execute the following query.

CALL algo.louvain.stream("User", "FRIEND", {})
YIELD nodeId, community

MATCH (user:User) WHERE id(user) = nodeId

RETURN user.id AS user, community
ORDER BY community;

Results

Name Partition

Alice 5

Bridget 5

Michael 5

Charles 4

Doug 4

Mark 4

Mark

Doug
Charles

Bridget

Alice

Michael

Visualization of Louvain

Our algorithm found two communities with three members each.

Mark, Doug and Charles are all friends with each other, as are Bridget, Alice and Michael.
Charles is the only one who has friends in both communities, but he has more in community
four so he fits better in that one.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com68 neo4j.com68

A Comprehensive Guide to Graph Algorithms in Neo4j

Triangle Count and Clustering Coefficient
Triangle Count is a community detection graph algorithm that is used to determine the
number of triangles passing through each node in the graph. A triangle is a set of three
nodes, where each node has a relationship to all other nodes.

Triangle counting gained popularity in social network analysis, where it is used to detect
communities and measure the cohesiveness of those communities. It is also used to
determine the stability of a graph and is often used as part of the computation of network
indices, such as the clustering coefficient.

There are two types of clustering coefficients:

Local clustering coefficient
The local clustering coefficient of a node is the likelihood that its neighbors are also
connected. The computation of this score involves triangle counting.

Global clustering coefficient
The global clustering coefficient is the normalized sum of those local clustering coefficients.

The transitivity coefficient of a graph is sometimes used, which is three times the number of
triangles divided by the number of triples in the graph. For more information, see "Finding,
Counting and Listing all Triangles in Large Graphs, An Experimental Study."

When Should I Use Triangle Count and Clustering Coefficient?
•	 Triangle Count and Clustering Coefficient have been shown to be useful as features for

classifying a given website as spam or non-spam content. This is described in "Efficient
Semi-streaming Algorithms for Local Triangle Counting in Massive Graphs."

•	 Clustering Coefficient has been used to investigate the community structure of
Facebook’s social graph, where they found dense neighborhoods of users in an otherwise
sparse global graph. Find this study in "The Anatomy of the Facebook Social Graph."

•	 Clustering Coefficient has been proposed to help explore the thematic structure of the
Web and detect communities of pages with a common topic based on the reciprocal
links between them. For more information, see "Curvature of co-links uncovers hidden
thematic layers in the World Wide Web."

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/triangle-count/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/graph-data-science/current/algorithms/local-clustering-coefficient/?ref=pdf-ebook-graph-algo
http://i11www.iti.kit.edu/extra/publications/sw-fclt-05_t.pdf
http://i11www.iti.kit.edu/extra/publications/sw-fclt-05_t.pdf
http://chato.cl/papers/becchetti_2007_approximate_count_triangles.pdf
http://chato.cl/papers/becchetti_2007_approximate_count_triangles.pdf
https://arxiv.org/pdf/1111.4503.pdf
http://www.pnas.org/content/99/9/5825
http://www.pnas.org/content/99/9/5825

neo4j.com69 neo4j.com69

A Comprehensive Guide to Graph Algorithms in Neo4j

Triangles Example
Let’s see how the Triangle Count and Clustering Coefficient algorithm works on a small
dataset. The following Cypher statement creates a graph with people and KNOWS
relationships between them.

MERGE (alice:Person{id:"Alice"})
MERGE (michael:Person{id:"Michael"})
MERGE (karin:Person{id:"Karin"})
MERGE (chris:Person{id:"Chris"})
MERGE (will:Person{id:"Will"})
MERGE (mark:Person{id:"Mark"})

MERGE (michael)-[:KNOWS]->(karin)
MERGE (michael)-[:KNOWS]->(chris)
MERGE (will)-[:KNOWS]->(michael)
MERGE (mark)-[:KNOWS]->(michael)
MERGE (mark)-[:KNOWS]->(will)
MERGE (alice)-[:KNOWS]->(michael)
MERGE (will)-[:KNOWS]->(chris)
MERGE (chris)-[:KNOWS]->(karin);

Michael

Mark

Alice

Will

Chris

Karin

KNOWS

KNOW
S

KN
O

W
S

KNOWS

KN
O

W
S

KNOW
S

KNOWS

KNOWS

Graph Model

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com70

A Comprehensive Guide to Graph Algorithms in Neo4j

The following query finds all the KNOWS triangles between people in our graph.

CALL algo.triangle.stream("Person","KNOWS")
YIELD nodeA,nodeB,nodeC

MATCH (a:Person) WHERE id(a) = nodeA
MATCH (b:Person) WHERE id(b) = nodeB
MATCH (c:Person) WHERE id(c) = nodeC

RETURN a.id AS nodeA, b.id AS nodeB, c.id AS node

Results

NodeA NodeB NodeC

Will Michael Chris

Will Mark Michael

Michael Karin Chris

We can see that there are KNOWS triangles containing "Will, Michael and Chris", "Will, Mark and Michael", and "Michael, Karin and
Chris." This means that everybody in the triangle knows each other.

We work out the clustering coefficient of each person by running the following algorithm.

CALL algo.triangleCount.stream('Person', 'KNOWS')
YIELD nodeId, triangles, coefficient

MATCH (p:Person) WHERE id(p) = nodeId

RETURN p.id AS name, triangles, coefficient
ORDER BY coefficient DESC

Results

Name Triangles Coefficient

Karin 1 1

Mark 1 1

Chris 2 0.6666666666666666

Will 2 0.6666666666666666

Michael 3 0.3

Alice 0 0

We learn that Michael is part of the most triangles, but it’s Karin and Mark who are the best at introducing their friends – all of the
people who know them, know each other!

We’ve covered a lot of ground so far and learned about lots of different graph algorithms. In the next chapter, we’ll take things a step
further and see how to glue everything together using a real-world dataset.

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com71 neo4j.com71

A Comprehensive Guide to Graph Algorithms in Neo4j

Chapter 9
Graph Algorithms in Practice
In this section we’ll learn how to apply graph algorithms in data-intensive applications. We will
be using data from Yelp’s annual dataset challenge.

Yelp.com has been running the Yelp Dataset challenge since 2013, a competition that
encourages people to explore and research Yelp’s open dataset. As of Round 10 of the
challenge, the dataset contained:

•	 Almost 5 million reviews

•	 Over 1.1 million users

•	 Over 150,000 businesses

•	 12 metropolitan areas

Since its launch, the dataset has become popular, with hundreds of academic papers written
about it. It has well-structured and highly interconnected data and is therefore a realistic
dataset with which to showcase Neo4j and graph algorithms.

Graph Model
The Yelp data is represented in a graph model as shown in the diagram below.

WRITE

IN_CITYIN_AREA IN_CATEGORY

IN
_C

OUNTRY

FR
IE

N
D

S

Review User

CategoryBusinessCityArea

Country

RE
VI

EW
S

Yelp Graph Model

Our graph contains User labeled nodes, which have a FRIENDS relationship with other
Users. Users also WRITE Reviews and tips about Businesses. All of the metadata
is stored as properties of nodes, except for Categories of the Businesses, which are
represented by separate nodes.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://www.yelp.com/
https://www.yelp.com/dataset/challenge
https://scholar.google.com/scholar?q=citation%3A+Yelp+Dataset&btnG=&hl=en&as_sdt=0%2C5

neo4j.com72

A Comprehensive Guide to Graph Algorithms in Neo4j

Data Import
There are many different methods for importing data into Neo4j, including the import tool, LOAD CSV command
and Neo4j Drivers.

For the Yelp dataset we need to do a one-off import of a large amount of data so the import tool is the best choice.
See the yelp-graph-algorithms GitHub repository for more details.

Exploratory Data Analysis
Once we have the data loaded in Neo4j, we execute some exploratory queries to get a feel for it. We will be using the
Awesome Procedures on Cypher (APOC) library in this section. Please see the “Installing APOC” section in Appendix B
for more details.

The following queries return the cardinalities of node labels and relationship types.

CALL db.labels()
YIELD label
CALL apoc.cypher.run("MATCH (:`"+label+"`) RETURN count(*) as count", null)
YIELD value
RETURN label, value.count as count
ORDER BY label

Results

Label Count

Area 54

Business 174567

Category 1293

City 1093

Country 17

Review 5261669

User 1326101

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/operations-manual/current/tools/import/?ref=pdf-ebook-graph-algo
https://neo4j.com/developer/guide-import-csv/?ref=pdf-ebook-graph-algo
https://neo4j.com/docs/developer-manual/current/drivers/?ref=pdf-ebook-graph-algo
https://github.com/mneedham/yelp-graph-algorithms

neo4j.com73

A Comprehensive Guide to Graph Algorithms in Neo4j

CALL db.relationshipTypes()
YIELD relationshipType
CALL apoc.cypher.run("MATCH ()-[:" + `relationshipType` + "]->()
 RETURN count(*) as count", null)
YIELD value
RETURN relationshipType, value.count AS count
ORDER BY relationshipType

Results

Label Count

FRIENDS 10645356

IN_AREA 1154

IN_CATEGORY 667527

IN_CITY 174566

IN_COUNTRY 54

REVIEWS 5261669

WROTE 5261669

These queries shouldn’t reveal anything surprising but they are useful for checking that the
data has been imported correctly.

It’s always fun reading hotel reviews, so we’re going to focus on businesses in that sector. We
find out how many hotels there are by running the following query.

MATCH (category:Category {name: "Hotels"})
RETURN size((category)<-[:IN_CATEGORY]-()) AS businesses

Results

Hotels

2683

That’s a decent number of hotels to explore.

How many reviews do we have to work with?

MATCH (:Review)-[:REVIEWS]->(:Business)-[:IN_CATEGORY]->(:Category {name:"Hotels"})
RETURN count(*) AS count

Results

Count

183759

Let’s zoom in on some of the individual bits of data.

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com74

A Comprehensive Guide to Graph Algorithms in Neo4j

Trip Planning
Imagine that we’re planning a trip to Las Vegas and want to find somewhere to stay.

We might start by asking which are the most reviewed hotels and how well they’ve been rated.

MATCH (review:Review)-[:REVIEWS]->(business:Business),
 (business)-[:IN_CATEGORY]->(:Category {name:"Hotels"}),
 (business)-[:IN_CITY]->(:City {name: "Las Vegas"})
WITH business, count(*) AS reviews, avg(review.stars) AS averageRating
ORDER BY reviews DESC
LIMIT 10
RETURN business.name AS business,
 reviews,
 apoc.math.round(averageRating,2) AS averageRating

Results

Hotel Reviews Average Rating

ARIA Resort & Casino 3794 3.51

The Cosmopolitan of Las Vegas 3772 3.87

Luxor Hotel and Casino Las Vegas 3623 2.63

MGM Grand Hotel 3445 2.99

The Venetian Las Vegas 3103 3.93

Flamingo Las Vegas Hotel & Casino 2942 2.48

Bellagio Hotel 2781 3.71

Mandalay Bay Resort & Casino 2688 3.27

Planet Hollywood Las Vegas Resort & Casino 2682 3.05

Monte Carlo Hotel And Casino 2506 2.64

These hotels have a lot of reviews, far more than anyone would be likely to read. We’d like to find the best
reviews and make them more prominent on our business page.

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com75

A Comprehensive Guide to Graph Algorithms in Neo4j

Finding Influential Hotel Reviewers
One way we can do this is by ordering reviews based on the influence of the reviewer on Yelp.

We’ll start by finding users who have reviewed more than five hotels. After that we’ll find the social network between those users and
work out which users sit at the center of that network. This should reveal the most influential people. The FRIENDS relationship is an
example of a bidirectional relationship, meaning that if Person A is friends with Person B then Person B is also friends with Person A.
Neo4j stores a directed graph, but we have the option to ignore the direction when we query the graph.

We want to execute the PageRank algorithm over a projected graph of users that have reviewed hotels and then add a
hotelPageRank property to each of those users. This is the first example where we can’t express the projected graph in terms of
node labels and relationship types. Instead we will write Cypher statements to project the required graph.

See the “Usage” section of Chapter 5 for a refresher on the different usage options.

The following query executes the PageRank algorithm.

CALL algo.pageRank(
 "MATCH (u:User)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: "Hotels"})
 WITH u, count(*) AS reviews
 WHERE reviews > 5
 RETURN id(u) AS id",
 "MATCH (u1:User)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: "Hotels"})
 MATCH (u1)-[:FRIENDS]->(u2)
 WHERE id(u1) < id(u2)
 RETURN id(u1) AS source, id(u2) AS target",
 {graph: "cypher", write: true, direction: "both", writeProperty: "hotelPageRank"}
)

We then write the following query to find the top reviewers.

MATCH (u:User)
WHERE u.hotelPageRank > 0
WITH u
ORDER BY u.hotelPageRank DESC
LIMIT 5
RETURN u.name AS name,
 apoc.math.round(u.hotelPageRank,2) AS pageRank,
 size((u)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: "Hotels"})) AS hotelReviews,
 size((u)-[:WROTE]->()) AS totalReviews,
 size((u)-[:FRIENDS]-()) AS friends

Results

name pageRank hotelReviews totalReview Friends

Jason 17.93 7 60 5159

Jamie 14.59 8 41 688

Jeremy 11.57 6 28 6164

Lori 9.9 6 39 4518

Connie 7.98 7 51 5336

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com76

A Comprehensive Guide to Graph Algorithms in Neo4j

We could use those rankings on a hotel page when determining which reviews to show first. For example, if we
want to show reviews of Caesars Palace, we could execute the following query.

MATCH (b:Business {name: "Caesars Palace Las Vegas Hotel & Casino"})
MATCH (b)<-[:REVIEWS]-(review)<-[:WROTE]-(user)
RETURN user.name AS name,
 apoc.math.round(user.hotelPageRank,2) AS pageRank,
 review.stars AS stars
ORDER BY user.hotelPageRank DESC
LIMIT 5

Results

name pageRank stars

Jason 17.93 3

Amanda 7.28 4

J 6.88 4

Michelle 4.73 4

Pasquale 4.58 3

This information may also be useful for businesses that want to know when an influencer is staying in their hotel.

Finding Similar Categories
The Yelp dataset contains more than 1,000 categories, and it seems likely that some of those categories are
similar to each other. That similarity is useful for making recommendations to users for other businesses that
they may be interested in.

We will build a weighted category similarity graph based on how businesses categorize themselves. For example,
if only one business categorizes itself under Hotels and Historical Tours, then we would have a link
between Hotels and Historical Tours with a weight of 1.

We don’t actually have to create the similarity graph – we can run a community detection algorithm, such as Label
Propagation, over a projected similarity graph.

CALL algo.labelPropagation.stream(
 "MATCH (c:Category) RETURN id(c) AS id",
 "MATCH (c1:Category)<-[:IN_CATEGORY]-()-[:IN_CATEGORY]->(c2:Category)
 WHERE id(c1) < id(c2)
 RETURN id(c1) AS source, id(c2) AS target, count(*) AS weight",
 {graph: "cypher"})
YIELD nodeId, label
MATCH (c:Category) WHERE id(c) = nodeId
MERGE (sc:SuperCategory {name: "SuperCategory-" + label})
MERGE (c)-[:IN_SUPER_CATEGORY]->(sc

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com77

A Comprehensive Guide to Graph Algorithms in Neo4j

The diagram below shows a sample of categories and super categories after we’ve run this query.

SuperCategory
SuperCategory

IN
_S

UP
ER

_C
AT

EG
OR

Y

IN_SUPER_CATEGORY

IN_SUPER_CATEGORYIN_SUPER_CATEGORY

IN_SU
PER

_C
ATE

GORY

IN_SUPER_CATEGORY

Tapas Bars

Schnitzel

Filipino
Latin

American

Noodles

Shanghainese

Bed &
Breakfast

Private Jet
Charter

Ski Resorts
Car rentals

RV ParksHotels

IN_SUPER_CATEGORY

IN_SUPER_CATEGORYIN_SUPER_CATEGORY
IN_SU

PER
_C

ATE
GORY

IN_SUPER_CATEGORY

IN_SUPER_CATEGORY

Super Categories

We write the following query to find some of the similar categories to hotels.

MATCH (hotels:Category {name: "Hotels"}),
 (hotels)-[:IN_SUPER_CATEGORY]->()<-[:IN_SUPER_CATEGORY]-(otherCategory)
RETURN otherCategory.name AS otherCategory
LIMIT 5

Results

otherCategory

Bed & Breakfast

Private Jet Charter

Ski Resorts

Car Rental

RV Parks

Motorcycle Rental

Bus Rental

Scooter Tours

Historical Tours

Trains

Not all of those categories are relevant for users in Las Vegas, so we need to write a more specific query to find the most
popular similar categories in this location.

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com78

A Comprehensive Guide to Graph Algorithms in Neo4j

MATCH (hotels:Category {name: "Hotels"}),
 (lasVegas:City {name: "Las Vegas"}),
 (hotels)-[:IN_SUPER_CATEGORY]->()<-[:IN_SUPER_CATEGORY]-(otherCategory)
RETURN otherCategory.name AS otherCategory,
 size((otherCategory)<-[:IN_CATEGORY]-()-[:IN_CITY]->(lasVegas)) AS count
ORDER BY count DESC
LIMIT 10

Results

otherCategory count

Event Planning & Services 1608

Venues & Event Spaces 228

Insurance 211

Tours 189

Transportation 176

Car Rental 160

Travel Services 96

Limos 84

Resorts 73

Airport Shuttles 52

We could then make a suggestion of one business with an above average rating in each of
those categories.

MATCH (hotels:Category {name: "Hotels"}),
 (lasVegas:City {name: "Las Vegas"}),
 (hotels)-[:IN_SUPER_CATEGORY]->()<-[:IN_SUPER_CATEGORY]-(otherCategory),
 (otherCategory)<-[:IN_CATEGORY]-(business)-[:IN_CITY]->(lasVegas)
WITH otherCategory, count(*) AS count,
 collect(business) AS businesses,
 apoc.coll.avg(collect(business.averageStars)) AS categoryAverageStars
ORDER BY count DESC
LIMIT 10
WITH otherCategory,
 [b in businesses where b.averageStars >= categoryAverageStars] AS businesses
RETURN otherCategory.name AS otherCategory,
 [b in businesses | b.name][toInteger(rand() * size(businesses))] AS business

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com79 neo4j.com79

A Comprehensive Guide to Graph Algorithms in Neo4j

Results

otherCategory business

Event Planning & Services Viva Las Vegastamps

Venues & Event Spaces VIP Golf Services

Insurance Desert Shores Insurance Services

Tours Annie Bananie Las Vegas Tours

Transportation Sinderella Coach

Car Rental Hertz Rent A Car

Travel Services MW Travel Vegas

Limos Vegas Limousine Service

Resorts Encore

Airport Shuttles Presidential Limousine

In this chapter, we’ve shown just a couple of ways that insights from graph algorithms are
used in a real-time workflow to make real-time recommendations. In our example we made
category and business recommendations but graph algorithms are applicable to many other
problems.

Graph algorithms can help you take your graph-powered application to the next level.

Conclusion
Graph analytics have value only if you have the skills to use them and if they can quickly
provide the insights you need. Graph algorithms are easy to use, fast to execute and produce
powerful results.

Graph algorithms are the powerhouse behind the analysis of real-world networks – from
identifying fraud rings and optimizing the location of public services to evaluating the
strength of a group and predicting the spread of disease or ideas.

In this ebook, you’ve learned about how graph algorithms help you make sense of connected
data. We covered the types of graph algorithms and offered specifics about how to use each
one. Still, we are keenly aware that we have only scratched the surface. There is so much
more to learn. Check out the Neo4j Graph Data Science Library. If you have any questions or
need any help with any of the material in this ebook, send us an email at devrel@neo4j.com.
We look forward to hearing how you are using graph algorithms.

Learn More
•	 Neo4j Graph Algorithms

Documentation

•	 Awesome Procedures
on Cypher

•	 Graph Algorithms Sandbox

•	 Graph Algorithms
Jupyter Notebooks

•	 Graph Algorithms Webinar

•	 Graph Algorithms Overview
White Paper

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/graph-data-science-library/?ref=pdf-ebook-graph-algo
mailto:devrel%40neo4j.com?subject=
https://neo4j-contrib.github.io/neo4j-graph-algorithms/
https://neo4j-contrib.github.io/neo4j-graph-algorithms/
https://neo4j-contrib.github.io/neo4j-apoc-procedures
https://neo4j-contrib.github.io/neo4j-apoc-procedures
https://neo4j.com/sandbox-v2/?ref=pdf-ebook-graph-algo
https://github.com/neo4j-graph-analytics/graph-algorithms-notebooks
https://github.com/neo4j-graph-analytics/graph-algorithms-notebooks
https://www.youtube.com/watch?v=y10Bt7OkCRM
https://neo4j.com/whitepapers/graph-algorithms-optimized-neo4j/?ref=pdf-ebook-graph-algo
https://neo4j.com/whitepapers/graph-algorithms-optimized-neo4j/?ref=pdf-ebook-graph-algo

neo4j.com80

A Comprehensive Guide to Graph Algorithms in Neo4j

Appendix A: Performance Testing
For PageRank, Union Find, Label Propagation and Strongly Connected Components, we have run preliminary tests on medium and
larger datasets that have been used in other publications.

The table contains database size and node and relationship counts. For each algorithm you see the runtime (in seconds) of the first
and second run.

Comparing them with other publications these runtimes look good, but of course the real confirmation comes from you running the
algorithms on your own datasets and hardware.

Graph Size
(GB)

nodes
(M)

rels
(M)

PR1
(s)

PR20
(s)

UF1
(s)

UF2
(s)

LP1
(s)

LP2
(s)

SCC1
(s)

SCC2
(s)

Pokec 7.3 2 31 10 7 24 6 12 9 12 7

DBPedia 15 11 117 46 38 91 37 51 43 65 41

Graphs500-23 7.9 5 129 19 15 29 10 18 17 25 13

cit-patents 0.2 4 17 13 10 23 5 12 10 14 5

Twitter-2010 49 42 1468 349 131 353 128 405 405 339 189

soc-LifeJournal1 6.3 5 69 30 14 34 11 25 19 23 13

Friendster 62 66 1806 611 235 619 196 296 282 483 257

Below is a log-scale showing the same data in one chart.

Size (GB)
nodes (M)
rels (M)
PR1 (s)
PR3 (s)
UF1 (s)
UF2 (s)
LP1 (s)
LP2 (s)
SCC1 (s)
SCC2 (s)

Pokec Graphs500-23 cit-patents Twitter 2010 soc-LifeJournal1 Friendster web-GoogleDBPedia

1,000

100

10

1

https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com81

A Comprehensive Guide to Graph Algorithms in Neo4j

Appendix B: Installing the Neo4j Graph Algorithms Library
Appendix B contains instructions for installing the tools and libraries referenced in this ebook.

Installing Neo4j Desktop
Download Neo4j Desktop from neo4j.com/download. After you’ve installed it, follow the instructions to create a project and
corresponding database.

Installing Graph Algorithms
Once you’ve installed Neo4j Desktop and created your first project, click on the "Manage" button for your database.

You will see this screen (note that the plugins can only be installed when the database is not running).

https://neo4j.com/?ref=pdf-ebook-graph-algo
http://neo4j.com/download/?ref=pdf-ebook-graph-algo

neo4j.com82 neo4j.com82

A Comprehensive Guide to Graph Algorithms in Neo4j

Click on the "Plugins" button and you will see this screen.

Click on the "Install" button for the graph algorithms plugin and wait for the plugin to be
installed. It may take a few seconds depending on your internet bandwidth. The database will
be restarted to allow the plugin to be picked up.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

neo4j.com83 neo4j.com83

A Comprehensive Guide to Graph Algorithms in Neo4j

Installing APOC
The APOC (Awesome Procedures on Cypher) library consists of procedures and functions to
help with many different tasks in areas such as data integration and data conversion.

Once you’ve installed Neo4j Desktop and created your first project, click on the "Manage"
button for your database.

You will see this screen.

https://neo4j.com/?ref=pdf-ebook-graph-algo
https://neo4j.com/?ref=pdf-ebook-graph-algo

A Comprehensive Guide to Graph Algorithms in Neo4j

Neo4j is the leader in graph database technology. As the world’s most widely deployed graph database, we help
global brands – including Comcast, NASA, UBS, and Volvo Cars – to reveal and predict how people, processes and
systems are interrelated.

Using this relationships-first approach, applications built with Neo4j tackle connected data challenges such as
analytics and artificial intelligence, fraud detection, real-time recommendations, and knowledge graphs. Find out
more at neo4j.com.

© 2021 Neo4j. All rights reserved. neo4j.com

Questions about Neo4j?

Contact us around the globe:
info@neo4j.com
neo4j.com/contact-us

Click on the "Plugins" button and you will see this screen.

Click on the "Install" button for the APOC plugin and wait for the plugin to be installed. It may
take a few seconds depending on your internet bandwidth. The database will be restarted to
allow the plugin to be picked up.

https://neo4j.com/case-studies/comcast/?ref=cs-pdf
https://neo4j.com/users/nasa/?ref=cs-pdf
https://neo4j.com/case-studies/ubs-case-study/?ref=cs-pdf
https://www.slideshare.net/neo4j/volvo-cars-build-a-car-with-graphs
https://neo4j.com/use-cases/graph-data-science-artificial-intelligence/?ref=cs-pdf
https://neo4j.com/use-cases/fraud-detection/?ref=cs-pdf
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=cs-pdf
https://neo4j.com/use-cases/knowledge-graph/?ref=cs-pdf
http://www.neo4j.com/?ref=cs-pdf
https://neo4j.com/?ref=pdf-white-paper-
mailto:info%40neo4j.com?subject=
https://neo4j.com/contact-us/?ref=pdf-ebook-graph-algo

	Part I:Connected Data and Graph Analysis
	Chapter 1Making Sense of Connected Data
	Chapter 2The Rise of Graph Analytics
	Chapter 3Neo4j Graph Analytics
	Part II:Graph Algorithms in Neo4j
	Chapter 4Graph Algorithm Concepts
	Chapter 5The Neo4j Graph Algorithms Library
	Chapter 6Pathfinding and Graph Search Algorithms
	Chapter 7Centrality Algorithms
	Chapter 8Community Detection Algorithms
	Chapter 9Graph Algorithms in Practice
	Conclusion
	Appendix A: Performance Testing
	Appendix B: Installing the Neo4j Graph Algorithms Library

