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the meaning depends on a sales addendum from 
three weeks earlier. Or maybe they ask a support 
question that only makes sense in the context of 
their infrastructure and license tier. The information 
is there, but it’s scattered across multiple documents, 
formats, and timelines. Chunk-based retrieval can’t 
bridge that gap.

Traditional RAG doesn’t have shared context 
across documents. That’s because it doesn’t track 
relationships. It doesn’t know which concepts are 
upstream, downstream, dependent, or mutually 
exclusive. It doesn’t distinguish between definitions, 
instructions, timelines, policies, or decision logic. 

The bottom line: Traditional RAG treats all chunks 
as equal, flat, unstructured blobs of text.

Even more problematic is that the system has 
no mental model for your business. It cannot 
understand what a “customer” is in your world. 
Or how a support ticket relates to a contract. Or 
what a system diagram implies about downstream 
integrations. The mental model that represents the 
structure behind your content is absent in RAG.

Without it, RAG can’t reason. It can only retrieve, and 
that isn’t enough. 

You already know what your RAG system should 
be able to do. It’s the kind of reasoning your team 
does every day without thinking. Consider this: If 
a customer reaches out to your support team, the 
employee will listen to the customer’s concern, 
look up their account and tech stack, check 
previous service requests, etc. When answering the 
customer’s question, the employee brings context. 
They may answer differently if the person is a new 
customer vs. a long-term customer.

You want your RAG application to do what humans 
do naturally: use context to inform its answer. As 
examples, you might want the RAG system to:

• Answer a support question and understand  
the user’s tech stack, contract level,  
and product version. 

• Explain a contract term — and know what the 
sales path looked like, who signed off, and 
which systems were impacted.

PART I: The Problem With 
Current RAG

Why chunk-based RAG hits a ceiling — and why 
developers need more context to answer well

You’ve built a retrieval-augmented generation (RAG) 
system. You embedded the docs, connected the 
vector store, wrapped a prompt around the output, 
and deployed it. For a minute, it felt like you cracked 
the code. The model was grounded in your own data, 
giving answers that sounded smarter than base GPT.

Then reality hit.

The system works — but only under the most 
forgiving conditions. The moment you ask a question 
that spans documents, relies on implicit context, or 
touches anything complex or structured, the cracks 
start to show. Answers get vague. Sometimes they’re 
just plain wrong. Or worse, the system confidently 
quotes the right chunk — but misses the point entirely.

Your RAG system isn’t broken. It’s just blind.

RAG retrieves semantically  
similar text, but it doesn’t know how 

the pieces fit together. 

It has no map of your domain. No memory of what 
matters. It’s like hiring a new developer and giving 
them a stack of index cards with code snippets from 
your repo. They can parrot back functions, maybe 
even modify them, but they don’t understand the 
architecture. They don’t know the “why,” only the “what.”

That’s the ceiling of traditional RAG. And that’s what 
this book is here to fix.

Here’s the core issue: RAG retrieves based on 
similarity, not understanding.

You give it a query, it vectorizes that query, and 
fetches the top-k similar chunks. That’s fine if the 
answer you need lives entirely within isolated chunks. 
But most real-world questions don’t work that way.

Let’s say a user asks about a contract clause, but 
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• Interpret a customer review and place it in 
context with purchase history, usage data, and 
net promoter score (NPS).

These shouldn’t feel like advanced use cases — 
they’re basic context. They’re what you, as a human 
developer, bring into every decision without even 
realizing it. And that’s the problem: Your RAG 
system has none of that. Sure, it has some document 
metadata available, but no user metadata, no 
business logic, no connected data — just isolated 
chunks in a vector store. But RAG can’t use what it 
can’t see. So until you give it structure — until you 
teach it relationships, timelines, ownership, and 
dependencies — it will keep retrieving the right 
words for the wrong reasons.

This isn’t a whitepaper. It’s a build-it-yourself playbook.

We’re going to walk you through:

• Ingesting documents and turning them into a 
knowledge graph

• Structuring real-world context from messy 
PDFs, CSVs, and APIs

• Building retrievers that combine vector search 
and graph traversal

• Using text-to-query generation to run dynamic 
Cypher queries (a query language for graphs) 
and pull precise information and calculations 
from your data

And we’re going to do it with code. No fluff. Just the 
stack, the logic, and the patterns that actually work. 
If you’ve built RAG, and you know it’s not enough, 
then this is the guide to take you further.

PART II: What Makes It 
GraphRAG – Structure, Logic, 
and Meaning

To understand GraphRAG, let’s explore its 
foundational components — RAG and knowledge 
graphs — and why they work so well together.

What Is RAG?
Let’s start with the well-known problems of large 
language models (LLMs), which power chatbots 

such as ChatGPT, Gemini, and Claude. When a 
user’s prompt goes directly to the LLM, it generates 
a response based on its training data. Due to the 
probabilistic nature of response generation, LLMs 
often produce responses that lack accuracy and 
nuance and don’t draw on knowledge specific to your 
business. In addition, the LLM in question may have 
limited explainability, which limits its adoption in 
enterprise settings. 

RAG addresses these challenges by intercepting 
a user’s prompt, querying external data, usually a 
vector store, and passing relevant documents back 
to the LLM. Adding retrieval to the LLM enables the 
application to answer questions with knowledge 
from a specific dataset. This simple technique 
suddenly makes it possible to build applications for a 
variety of use cases. As examples: 

• Knowledge assistants can tap into company-
specific information for accurate, contextual 
responses.

• Recommendation systems can incorporate 
real-time data for more personalized 
suggestions.

• Search APIs can deliver more nuanced and 
context-aware results.

RAG consists of three key components:

• An LLM that serves as the generator
• A knowledge base or database that stores the 

information to be retrieved
• A retrieval mechanism to find relevant 

information from the knowledge base, based 
on the input query

Figure 1. Querying a knowledge graph with an LLM
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The quality of a RAG response depends heavily on 
the database type the information is retrieved from. 
If you use a vector store (as in traditional RAG), the 
process goes like this: The user query is turned into 
a vector, which is then used to retrieve semantically 
similar text chunks from a vector database. While 
retrieval based on semantic similarity can work 
across multiple documents, it often falls short when 
questions require understanding implicit context or 
relationships that span those documents. Traditional 
RAG treats each chunk in isolation, as it lacks a 
holistic view of the domain.

Retrieval based on semantic similarity can only get 
you so far. And this is where GraphRAG comes in. 
GraphRAG gives the LLM a mental model of your 
domain so that it can answer questions by drawing on 
the correct context.

What Is GraphRAG?
In GraphRAG, the knowledge base used for retrieval 
is a knowledge graph. A knowledge graph organizes 
facts as connected entities and relationships, 
which helps the system understand how pieces of 
information relate to each other. 

The knowledge graph becomes a mental map of your 
domain, providing the LLM with information about 
dependencies, sequences, hierarchies, and meaning. 
This makes GraphRAG especially effective at 
answering complex, multi-step questions that require 
reasoning across multiple sources. 

Imagine that a customer calls to request support 
regarding a recent purchase. Customer Service uses 
an internal chatbot to troubleshoot the request.  
A traditional system built on vector-only RAG  
would retrieve a product name from the customer 
support ticket:

Service Ticket Service Ticket Text Embedding

234381 My new JavaCo coffee 
maker isn’t working.

[.234, .789, .123……]

But that’s all the RAG system would surface. 

A GraphRAG system, on the other hand, would 
show not only this service ticket text but also the 

customer’s purchase history, known issues with that 
product version, related documentation, and prior 
support conversations. 

Figure 2. Order issue flow

A knowledge graph holds all related information 
together across both structured and unstructured 
data. A RAG system built on a knowledge graph  — 
or GraphRAG — excels at generating context-aware 
responses. 

The main reasons to implement a GraphRAG solution 
include:

1. Context-Aware Responses

Unlike traditional RAG, which retrieves isolated 
chunks of text based on similarity, GraphRAG 
retrieves facts in context. Since the knowledge 
graph explicitly encodes relationships, 
GraphRAG returns relevant information, as 
well as related information. This structured 
retrieval ensures that application outputs are 
comprehensive, reducing hallucinations and 
leading to more accurate, reliable outputs and 
improving real-world applicability.

2. Traceability and Explainability 

LLMs and even standard RAG approaches 
operate as black boxes, making it difficult 
to know why and how a certain answer was 
generated. GraphRAG increases transparency 
by structuring retrieval paths through the 
knowledge graph. The knowledge graph 
will show the sources and relationships that 
contributed to a response. This makes it 
easier to audit results, build trust, and meet 
compliance needs. 

https://neo4j.com/blog/genai/what-is-knowledge-graph/
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3. Access to Structured and Unstructured Data

GraphRAG overcomes a key limitation 
of vector-only RAG by integrating both 
structured and unstructured data. It integrates 
information like whole databases, ontologies, 
documents, and real-time streams into a single 
knowledge graph. Richer data means superior 
AI responses.

How GraphRAG Works 

GraphRAG works by using a knowledge graph to 
retrieve and connect relevant information. It starts 
with a search — vector, full-text, spatial, or others — 
to find entry points in the graph, then follows related 
nodes and relationships to gather more context. 
The system considers the user’s task and filters 
and ranks the results before passing them to the 
generation phase.

Think of GraphRAG as a RAG architecture built on a 
knowledge graph. Using a knowledge graph affects 
the way you design the entire solution. There are two 
main steps to creating a GraphRAG application:

1. Preparing a knowledge graph for GraphRAG

• Documents and unstructured text ingestion
• Structured data source import

2. Implementing GraphRAG retrieval patterns

Figure 3. Implementing GraphRAG retrieval patterns flow

The rest of this book walks you through these two 
critical steps.

Prepare a Knowledge Graph 
for GraphRAG

Effective retrieval in GraphRAG starts with a well-
structured knowledge graph. The data needs to be 
structured to model the business domain as it relates 
to the documents. That means having a clear data 
model that defines both the content you’re working 
with and how it is connected.

There are two aspects to consider when you’re 
modeling a knowledge graph for AI workflows: 

1. The relationships between documents — or 
how your content is organized and related:

• How chunks connect to source documents
• How sections of a book or catalog  

are structured
• How content is grouped or nested

2. Business entities and logic:

• The core entities (i.e., Customers,  
Products, Companies)

• How these entities relate to each other
• The structure and relationships that already 

exist in your current databases, schemas, or 
business logic

These two layers — the document structure and the 
business domain — work together to give GraphRAG 
its power. GraphRAG is retrieving documents in 
the context of your business. Consider a customer 
review in context of their purchase history or a user’s 
question in context of their technical stack.

The first step is to determine where you can access 
that business domain and how to connect it to 
your documents. It might be well defined in your 
structured data (databases, business hierarchies, 
etc.) or it may be hidden inside your unstructured 
content (i.e., contract terms, product features). A 
knowledge graph brings it all together, connecting 
the dots so your LLM retrieves not just semantic 
similarity but also relevant facts.
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Ground With Unstructured 
and Structured Data 

If you’ve worked with RAG systems, you’re already 
familiar with vector databases and unstructured 
content — PDFs, contracts, reports. But the most 
important  context for your data rarely lives in a 
single format. In fact, most of the time you’ll want 
to use more than just unstructured data. Structured 
data like CRM exports, product catalogs, and 
relational databases often contains crucial grounding 
information for the answers your users need. 

To build systems that retrieve the right answer at 
the right time, you need to connect two worlds: 
unstructured and structured. That’s where 
knowledge graphs come in. By linking unstructured 
chunks to structured business entities and 
relationships, you create a semantic network that 
makes retrieval smarter, safer, and more transparent. 
So, where do you start? With your documents or your 
structured schema?

Technically, you can begin from either side. But in 
practice, most teams start with unstructured data 
because that’s where the buried context usually lives. 
Think financial disclosures, legal contracts, emails, 
and support tickets. These contain implicit business 
logic, risk factors, and decision-making signals that 
don’t show up in structured rows and columns.

But here’s the catch: Structure isn’t binary. It’s a 
continuum.

Figure 4. Structured and unstructured data continuum

At one end, you’ve got relational databases and clean 
CSV, where entities and relationships are explicitly 
defined. At the other end, you’ve got raw text: 
meaning buried in natural language. In between? 
A complex middle: XML files, JSON logs, form 
submissions, and mixed-format documents with both 
tables and prose. 

As you think about your own dataset, ask yourself 
these questions: Where does the context for 
your application actually live? And where on the 
structure continuum does it fall? These questions 
matter because they will help you determine the 
tools you should use to build the knowledge graph. 
For this guide, you’ll use:

• Neo4j Data Importer (Neo4j Aura Platform) for 
structured data

• Knowledge Graph Builder Pipeline (Neo4j 
GraphRAG Python Package) for extracting 
implicit relationships from natural language

If you find that your dataset has more complex data 
structures, you can consider adding tools to your 
workflow. This is an ever-evolving field, and many are 
working on building tools for these scenarios. A few 
to consider:

Took Description Resource

Unstructured.io Extracts structured data 
(tables, lists, key-value pairs) 
from unstructured documents 
like PDFs, HTML, and email

Neo4j 
Integration 
Guide

Boundary’s 
Annotation 
Modeling 
Language 
(BAML)

Declarative language for 
extracting structured data 
from unstructured sources, 
demonstrated with Neo4j

BAML 
to Neo4j 
Tutorial by 
Jason Koo

pdfplumber Parses tables and text from 
PDF files, ideal for extracting 
structured data from 
documents

GitHub 
Repository

LangChain Framework for developing 
applications powered by 
language models, with 
support for Neo4j integration

Neo4j 
Integration 

https://docs.unstructured.io/ingestion/destination-connectors/neo4j
https://docs.unstructured.io/ingestion/destination-connectors/neo4j
https://docs.unstructured.io/ingestion/destination-connectors/neo4j
https://neo4j.com/blog/developer/unstructured-structured-baml-neo4j/
https://neo4j.com/blog/developer/unstructured-structured-baml-neo4j/
https://neo4j.com/blog/developer/unstructured-structured-baml-neo4j/
https://neo4j.com/blog/developer/unstructured-structured-baml-neo4j/
https://github.com/jsvine/pdfplumber
https://github.com/jsvine/pdfplumber
https://neo4j.com/labs/genai-ecosystem/langchain/
https://neo4j.com/labs/genai-ecosystem/langchain/


The Developer’s Guide to GraphRAG

9

For this exercise, you’ll start with unstructured 
financial documents. Using an LLM-powered pipeline 
to extract entities like Company and Risk Factor, 
you’ll look for relationships such as FACES_RISK 
to build a knowledge graph in Neo4j. This process 
mirrors what many teams face: extracting meaning 
from dense reports, contracts, or disclosures. 

You’ll then use Neo4j’s Data Importer to load 
structured datasets — the kind of CSVs or database 
connectors most companies already have — further 
enriching the graph with known entities and 
relationships. 

Finally, you’ll test retrieval strategies, from vector 
search to graph-enhanced queries, to dynamic 
Cypher generation with Text2Cypher. The same 
process can be applied to your own PDFs, internal 
databases, and business domain to build a 
semantic layer over enterprise knowledge, making 
it accessible to GenAI systems with precision, 
transparency, and context.

PART III: Constructing  
the Graph

Create a Neo4j Database
Begin by choosing a Neo4j database solution that 
fits your needs. Options include a free instance 
of AuraDB or a free trial of AuraDB Professional. 
Neo4j is also available on all the major cloud partner 
marketplaces. When you navigate to https://console.
neo4j.io and log in, you’ll see the following screen, 
inviting you to create your first instance.

Tip: Download your AuraDB credentials (URI,  
username, password) immediately after creating 
the instance. They will not be available for 
download later. Store them securely, as you’ll need 
them to connect your application to Neo4j.

Figure 5. Create your first instance screen

You then have three choices of instances to  
choose from:

• AuraDB Free, a small database (2 GB) that will 
always be free, though it will be deleted after 
30 days of no activity.

• AuraDB Professional offers up to 128 GB of 
memory and a free 14-day trial.

• AuraDB Business Critical is the most robust 
and offers up to 512 GB of memory and pay-as-
you-go billing.

Figure 6. New instance tiers

If you’re just getting started, you’ll do well with 
AuraDB Free or AuraDB Professional trial.

https://console.neo4j.io
https://console.neo4j.io
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Be sure to download the credentials when you set up 
the database because they won’t be available later on.

Figure 7. Credential download and continue screen

Ingest Unstructured Data 

As you begin to build your knowledge graph, you 
can use the Neo4j GraphRAG Python library. This 
package offers specialized functionalities that 
streamline and enhance the process of building a 
knowledge graph from unstructured data, such as PDFs. 
Capabilities include document chunking, embedding 
generation, and knowledge graph construction.

pip install neo4j-graphrag

Figure 8. Document flow

Key Features of Neo4j GraphRAG Package
• Knowledge Graph Construction Pipeline: 

Automates the extraction of entities and 
relationships from unstructured text and 
structures them into a Neo4j graph.

• Vector Indexing and Retrieval: Facilitates the 
creation of vector indices for efficient semantic 
search within the graph.

• Integration with LLMs: Seamlessly integrates 
with LLMs for tasks like entity extraction and 
relation identification.

• Document Chunking and Storage: The 
package uses the SimpleKGPipeline class 
to automate chunking and storage. This 
class handles the parsing of documents, the 
chunking of text, and storage of chunks as 
nodes in Neo4j.

from neo4j import GraphDatabase

from neo4j_graphrag.experimental.pipeline.kg_
builder import SimpleKGPipeline

from neo4j_graphrag.llm import OpenAILLM

from neo4j_graphrag.embeddings import 
OpenAIEmbeddings

from neo4j_graphrag.generation.prompts import 
ERExtractionTemplate

from dotenv import load_dotenv

import os, time, asyncio, glob, csv

• neo4j: Official Python driver for interacting 
with a Neo4j database.

• GraphDatabase: Connects to Neo4j to 
interact with the graph database.

• SimpleKGPipeline: Automates chunking, 
entity recognition, and storage in Neo4j.

• OpenAILLM: Integrates GPT-4 for text-based 
processing and knowledge extraction.

• OpenAIEmbeddings: Handles vector 
embeddings to enable semantic search in 
Neo4j.

• ERExtractionTemplate: Supplies prompt 
templates for entity-relation extraction.

The LLM does the thinking by extracting meaningful 
concepts from text. The embedder turns the text into 
vectors, which lets your system perform semantic 
search later.

Neo4j Connection
You’ll use GraphDatabase from the Neo4j Python 
driver to connect to Neo4j Graph Database.

driver = GraphDatabase.driver(NEO4J_URI, 
auth=(NEO4J_USER, NEO4J_PASSWORD))

https://neo4j.com/docs/neo4j-graphrag-python/current/
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Note that the required credentials can be found in the 
.txt file you downloaded when you created the instance. 

Figure 9. Credentials from .txt file

• NEO4J_URI: The database URL (e.g., 
“neo4j+s://ef123456.database.neo4j.
io”)

• auth=(NEO4J_USER, NEO4J_PASSWORD): 
Credentials to authenticate

Initialize the LLM and Embeddings

llm = OpenAILLM(model_name=”gpt-4o”, api_key=openai_api_key) 

dimensions = 1536 

embedder = OpenAIEmbeddings(api_key=openai_api_key)

• llm: Uses GPT-4o to extract entities, 
relationships, and summarize text.

• embedder: Generates vector embeddings 
to enable semantic search and contextual 
retrieval.

Define Node Labels and Relationship Types
entities = [

    {“label”: “Executive”, “properties”: [{“name”: “name”, 
“type”: “STRING”}]},

    {“label”: “Product”, “properties”: [{“name”: “name”, 
“type”: “STRING”}]},

    {“label”: “FinancialMetric”, “properties”: [{“name”: 
“name”, “type”: “STRING”}]},

    {“label”: “RiskFactor”, “properties”: [{“name”: “name”, 
“type”: “STRING”}]},

    {“label”: “StockType”, “properties”: [{“name”: “name”, 
“type”: “STRING”}]},

    {“label”: “Transaction”, “properties”: [{“name”: 
“name”, “type”: “STRING”}]},

    {“label”: “TimePeriod”, “properties”: [{“name”: “name”, 
“type”: “STRING”}]},

    {“label”: “Company”, “properties”: [{“name”: “name”, 
“type”: “STRING”}]} 

]

relations = [

    {“label”: “HAS_METRIC”, “source”: “Company”, “target”: 
“FinancialMetric”},

    {“label”: “FACES_RISK”, “source”: “Company”, “target”: 
“RiskFactor”},

    {“label”: “ISSUED_STOCK”, “source”: “Company”, 
“target”: “StockType”},

    {“label”: “MENTIONS”, “source”: “Company”, “target”: 
“Product”}

]

Defining your nodes and relationships in two lists is 
a key moment in the knowledge graph construction 
process. This is when you determine the data model. 
These lists control what the SimpleKGBuilder will 
look for in the text and how it will organize that 
information in your graph. To understand how you 
might want to construct these lists, let’s take a look 
at some general ideas.

Entities = Nouns
What are the real-world concepts you’re trying  
to capture?

Company, Executive, RiskFactor, Product — 
whatever matters to your domain.

Relationships = Verbs or Connectors
How do those concepts relate?

Perhaps a Company    FACES_RISK  RiskFactor, 
or Company   ISSUED_STOCK  StockType.

If you aren’t sure which entities and relationships 
to include in your first project, ask yourself: What 
information would help my chunk provide a better 
answer? Alternatively, what information connects 
various chunks? Ultimately, you want to think 
through the application’s use case and start with 
the entities and relationships that will move the 
needle the most on your project. This step isn’t just 
configuration; it’s your chance to define the mental 
model of your data. 

Initialize and Run the Pipeline

pipeline = SimpleKGPipeline(

        driver=driver,

        llm=llm,

        embedder=embedder,

        entities=entities,

        relations=relations,

        enforce_schema=”STRICT”)

The SimpleKGPipeline sets up a structured 
pipeline for extracting and storing knowledge from 
unstructured text into a graph database. It starts 
with the driver, which is the Neo4j connection 
used to write data into the graph. The llm parameter 
specifies the language model that will interpret 
and extract meaningful entities and relationships 
from the input text. The embedder is the embedding 
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model used to vectorize text, which supports 
similarity-based retrieval alongside structured 
querying.

The entities and relations define the schema: 
what kinds of objects (like Customers, Contracts, 
Products) and relationships (like HAS_CONTRACT, 
CONTAINS, REFERENCES) the pipeline should look 
for. Finally, enforce_schema=True ensures that 
only the entity and relationship types that have been 
explicitly defined in those lists are allowed into the 
graph. This prevents schema drift and keeps the 
resulting knowledge graph clean and reliable.

Process the PDF Document
Running the pipeline involves I/O-heavy operations:

• Calling the LLM to extract structured meaning 
from text

• Generating embeddings via an external API
• Writing data into Neo4j

All of these are network-bound and would block the 
main thread in a normal synchronous setup. That’s 
why the pipeline is designed to be asynchronous – so 
these operations can run concurrently and efficiently. 
To execute it, you need to use Python’s async / 
await syntax: The await keyword tells Python:

“Pause this function while we wait on an external 
operation, but don’t freeze the whole program.”

async def run_pipeline_on_file(file_path, pipeline):

    await pipeline.run_async(pdf_path=file_path)

If you’re calling this inside another async function, 
it will work by itself. If you’re in a regular script or 
notebook, you’ll need to run it inside an event loop. 
If you’re unfamiliar with it, don’t worry — you can 
treat await pipeline.run_async() like a normal 
function call, as long as it’s inside an async context.

for pdf_file in pdf_files:

     asyncio.run(run_pipeline_on_file(pdf_file, pipeline))

As you can see in the image below, the document and 
chunk nodes have been created and written to the 
database. Note that there is now a property on the 
node called embedding, which represents the vector 

of the chunk text. This is how your retriever finds the 
relevant chunk in your application: by comparing the 
embedding of the query and the embeddings in your 
data store.

Figure 10. Node details

Create the Vector Index
A vector index is a type of database index that 
enables fast similarity search over high-dimensional 
vectors, such as embeddings from models like 
OpenAI’s. Unlike traditional indexes that look for 
exact matches, vector indexes retrieve items most 
similar to a query vector using metrics like cosine 
similarity or Euclidean distance.

In the context of Neo4j and RAG, here’s what you 
need to know:

1. Each node (e.g., a Chunk)  stores an embedding, 
a numeric representation of its semantic 
content.

2. The vector index organizes these embeddings 
so that, given a new query embedding, Neo4j 
Graph Database can quickly retrieve the most 
similar nodes.

3. This capability is essential for semantic search, 
question answering, and other AI-powered 
applications where meaning and context 
matter more than exact keywords.
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By using a vector index, Neo4j enables scalable, real-
time retrieval of relevant knowledge from large and 
complex graphs.

from neo4j_graphrag.indexes import create_vector_index

create_vector_index(driver, name=”chunkEmbeddings”, 

label=”Chunk”,

                    embedding_property=”embedding”, 

dimensions=1536, similarity_fn=”cosine”)

Ingest Structured Data
Getting Started With Data Importer
Neo4j Data Importer provides a streamlined process 
for bringing structured data into your graph database. 
Here’s how to use this powerful tool. The Neo4j Aura 
console includes a dedicated Data Importer feature 
that allows you to transform tabular data into graph 
structures without writing code. This tool works well 
in quickly populating your knowledge graph with 
data from existing datasets.

Import Structured Data
To import your data:

1. Navigate to Import > Data Importer in the 
Neo4j Aura console.

Figure 11. Neo4j Aura Data Importer

2. Create a new graph model.

Figure 12.  New graph model screen

3. A graph data model has been provided for your 
convenience. Note: Due to pathway differences 
between operating systems, please choose 
either Mac or Windows data models.

Figure 13.  Selecting model starting point screen

4. Once you’ve loaded the provided data model, 
click Browse and navigate to the data folder 
in your repository, selecting both the Asset_
Manager_Holdings.csv file and the Company_
Filings.csv files.

Figure 14.  Browse to .csv files screen

https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/neo4j_importer_model_Mac_ix.json
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/neo4j_importer_model_Windows.json
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Company_Filings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Company_Filings.csv
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5. Once the files are connected, you’ll see that 
the data model has check marks for each entity 
and relationship. Click Run Import in the upper 
right-hand corner.

Figure 15. Run import screen

Mapping Your Data to Graph Structures
To get you started, we’ve given you a full, completed 
data model for this exercise. When working with your 
own data, you’ll create these data model maps yourself. 

If you’d like to work with your own dataset, here’s 
how to get started.The Aura console provides a 
unified experience where you can manage your 
database instances, connect to diverse data sources, 
import structured data, model graphs visually, query 
your data with Cypher, explore your graph, and more.

When navigating to Import > New Data Sources, 
you’re presented with many possible connectors. For 
our case, there are two CSVs in this dataset: Asset_
Manager_Holdings.csv and Company_Filings.csv. 

Figure 16.  New data source connectors screen

Once you’ve uploaded these CSV files, you’ll be 
given a choice as to how to proceed. Click Define 
Manually to begin building your data model.

First, you’ll see a blank node, and on the right-
hand side, you’ll see the parameters for that node, 
including Label, Table, Properties.

Figure 17.  Node parameters options screen

Label refers to the type of node. Table points to 
the data source where the information is sourced 
(the tables you uploaded will appear on the left). 
Properties refer to the values you want associated with 
that node. Let’s start with the Company_Filings.csv.

Company Node

Label: Company

Table: Company_Filings.csv

Properties: name, ticker

ID(key): name

You’ll also need to 
identify the unique ID 
property for that node, 
akin to the primary key, 
which in this case is the 
name of the company. 
This is done by clicking 
the key icon next to the 
property name.

Figure 18.  Company node screen

https://neo4j.com/docs/aura/preview/import/introduction/
https://neo4j.com/docs/aura/preview/query/introduction/
https://neo4j.com/docs/aura/preview/explore/introduction/
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Company_Filings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Company_Filings.csv
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Document Node
Label: Document
Table: Company_Filings.csv
Properties: path  (this must match exactly -  read below)

ID(key): path
CRITICAL STEP: Rename Your Path Column to path

The kg_builder has already created Document 
nodes using a path property. To correctly link 
companies to their documents, your imported data 
must use the exact same property name: path.

Figure 19.  Path property screen

The CSV includes two columns with OS-specific paths:

• path_Windows for Windows users
• path_Mac_ix for macOS/Linux users
• Choose the appropriate column based on  

your operating system and rename it to  
path during import

Pick the column for your system:

1. Rename that column to exactly: path 
(lowercase, no quotes).

2. Even though Document nodes already exist, 
we’re now creating relationships between each 
Company and its corresponding Document. 
This connection bridges structured (Company) 

and unstructured (Document) data, enabling 
advanced retrieval and reasoning across 
 your graph.

Asset Manager Node
Label: AssetManager

Table: Asset_Manager_Holdings.csv

Properties: managerName

ID(key): managerName

Figure 20.  AssetManager node screen

Mapping Relationships
Relationships are created with the following criteria: 

• Relationship Label: Describes the type 
of connection between the entities. It is 
common practice in knowledge graphs for the 
relationships to be in ALL_CAPS with  
no spaces. 

• Table: Has identifiers for each node type 
contained in it. It is the way we connect  
the two nodes. 

• Node ID Mapping: Maps the columns in the 
relevant table to the IDs of the pertinent nodes. 

• Properties: Adds information to a relationship 
or entity.

⚠ If you skip this renaming step, the relationship 
will NOT connect and your graph will be incomplete.
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Next, let’s create connections between and among 
these entities. In our domain, the Asset Managers 
own stock in various companies. Here’s a sample 
from the Asset_Manager_Holdings.csv:

managerName companyName ticker shares

ALLIANCEBERNSTEIN L.P. AMAZON AMZN 50065439

ALLIANCEBERNSTEIN L.P. APPLE INC AAPL 28143032

ALLIANCEBERNSTEIN L.P. INTEL CORP INTC 5735993

ALLIANCEBERNSTEIN L.P.
MCDONALDS 

CORP
MCD 1201960

ALLIANCEBERNSTEIN L.P. MICROSOFT CORP MSFT 46541943

In a knowledge graph, we want to map the domain 
knowledge of structured data, which in this case is 
the Asset Managers’ ownership of stock in a given 
company. If entities are nouns, then relationships are 
verbs. So let’s create the relationship OWNS that goes 
from Asset Manager to Company.

1. Click on the AssetManager node. You’ll see a 
blue outline of the node:

          

Figure 21. AssetManager blue outline

2. Hover over the outline until it turns gray:

                   

Figure 22. AssetManager gray outline

3. Drag the outline of the AssetManager node to 
cover the Company node. When you release, 
you’ll see a new relationship arrow between 
them:

Figure 23. Drag and release for new relationship

Clicking on this arrow allows you to edit the 
parameters of the relationship.

OWNS Relationship

Relationship Type: OWNS
Table: Asset_Manager_Holdings.csv
Node ID Mapping
From:
 Node: AssetManager
 ID: managerName
 ID column: managerName
To:
 Node: Company
 ID: name
 ID column: companyName
Properties: shares

Figure 24. OWNS relationship

https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv
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The property shares represents the number of 
shares of the Company owned by the Asset Manager 
and for this book is an optional inclusion. Additional 
columns such as value or sharevalue are optional, 
as well. When working with your own data, it’s best 
to consider if that property will have value to your 
use case. Will you be asking to rank based on shares 
owned? Does the total value of the holding have 
relevance to your application? Additional information 
on data modeling can be found at GraphAcademy.

FILED Relationship
Note that the relationship between Company 
and Document is the linchpin that connects the 
structured and the unstructured data in this 
GraphRAG application.

Relationship Type: FILED
Table: Company_Filings.csv
 
Node ID Mapping
From:
 Node: Company
 ID: name
 ID column: companyName
To:
 Node: Document
 ID: path
 ID column: path_Windows or
                 path_Mac_ix 

Figure 25. FILED relationship

As you see in the diagram above, each entity and 
relationship will have a green check mark when it has 
been properly mapped. Now you’re ready to run the 

import. Click the blue Run import button in the upper 
right corner of the screen.

Figure 26.  Run import button

Now that your unstructured and structured data is 
loaded, you can use the Explore and Query functions 
to refine your graph structure and data to accurately 
represent your business domain. Use Explore to 
visualize and navigate your graph with Neo4j Bloom 
and Query to investigate the graph.

For a detailed walkthrough of graph data modeling, 
see The Developer’s Guide: How to Build a 
Knowledge Graph.

PART IV: Implementing 
GraphRAG Retrieval Patterns

GraphRAG retrieval patterns are practical 
mechanisms that define how the LLM in your 
GraphRAG solution accesses the context and 
connections in your knowledge graph.

Let’s examine some of the most common GraphRAG 
patterns and how to use them. 

Import Libraries

from neo4j import GraphDatabase

from neo4j_graphrag.llm import OpenAILLM

from neo4j_graphrag.embeddings import 
OpenAIEmbeddings

from neo4j_graphrag.retrievers import 
VectorRetriever, VectorCypherRetriever, 
Text2CypherRetriever

from neo4j_graphrag.generation import GraphRAG

from neo4j_graphrag.schema import get_schema

from detenv import load_dotenv

https://graphacademy.neo4j.com/courses/modeling-fundamentals/
https://neo4j.com/docs/aura/preview/explore/introduction/
https://neo4j.com/docs/aura/query/introduction/
https://neo4j.com/whitepapers/developers-guide-how-to-build-knowledge-graph/
https://neo4j.com/whitepapers/developers-guide-how-to-build-knowledge-graph/
https://neo4j.com/developer-blog/graphrag-field-guide-rag-patterns/
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This notebook imports the core libraries required for 
building and querying RAG pipelines with Neo4j and 
GraphRAG:

• neo4j.GraphDatabase: The official Python 
driver for connecting to and querying a Neo4j 
database.

• neo4j_graphrag.llm.OpenAILLM: Integrates 
OpenAI language models for generating and 
processing natural language queries.

• neo4j_graphrag.embeddings.
OpenAIEmbeddings: Provides access to 
OpenAI’s embedding models for generating 
vector representations of text.

• Neo4j_graphrag.retrievers: Different 
retriever classes for semantic and hybrid 
search over graph data using vector similarity 
and Cypher queries:

• VectorRetriever
• VectorCypherRetriever
• Text2CypherRetriever

• neo4j_graphrag.generation.GraphRAG: 
The main class for orchestrating RAG 
workflows over a Neo4j knowledge graph.

• neo4j_graphrag.schema.get_schema: 
Utility to introspect and retrieve the schema of 
your Neo4j database.

• dotenv.load_dotenv: Loads environment 
variables (such as credentials and API keys) 
from an .env file for secure configuration.

These imports enable advanced semantic search, 
retrieval, and GenAI capabilities directly on your 
Neo4j knowledge graph.

Load Environment Variables and Initialize Neo4j Driver

load_dotenv()

NEO4J_URI = os.getenv(‘NEO4J_URI’)

NEO4J_USER = os.getenv(‘NEO4J_USERNAME’)

NEO4J_PASSWORD = os.getenv(‘NEO4J_PASSWORD’)

OPERNAI_API_KEY = os.getenv(‘OPENAI_API_KEY’)

driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_

USER, NEO4J_PASSWORD))

Here, you load sensitive configuration values 
(such as database credentials and API keys) from 
environment variables, ensuring that secrets aren’t 
hardcoded in your notebook. The steps include:

• load_dotenv(): Loads environment variables 
from an .env file into your Python environment.

• os.getenv(): Fetches the Neo4j connection 
URI, username, and password, as well as your 
OpenAI API key.

• GraphDatabase.driver(): Initializes the 
Neo4j database driver with the provided 
credentials, allowing your notebook to connect 
and interact with your Neo4j instance securely.

TIP: Make sure your .env file contains the correct 
values for NEO4J_URI, NEO4J_USERNAME, 
NEO4J_PASSWORD, and OPENAI_API_KEY 
before running this code. This approach keeps 
your credentials secure and makes your codebase 
easier to share and maintain.

Initialize the LLM and Embedder
Just as you selected a specific LLM and embedding 
model when processing your PDFs, you should do 
the same when generating embeddings for your text 
data. It’s important to keep track of the language 
model and embedding tools that you use during this 
process. 

For the retrievers to work correctly, the embedding 
model used during retrieval must match the one 
used to generate the dataset’s embeddings. This 
ensures accurate and meaningful search results.

llm = OPENAILLM (model_name=‘gpt-4o’, api_key=OPENAI_API_KEY) 

embedder = OPENAIEmbeddings(api_key=OPENAI_API_KEY)

The Basic Retriever Pattern
The basic retriever uses vector embeddings to find 
nodes that are semantically similar based on content. 
This retriever is useful only for handling specific 
information requests about topics contained in just 
one or a few chunks. It’s a starting point for more 
complex graph-based retrievals, and it’s easy to 
implement if you’re familiar with RAG but new  
to GraphRAG.
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There are two components in the process:

• Chunks as nodes: The pattern uses the already 
chunked data to create a graph, where each 
chunk becomes a node in the graph.

• Retrieval: When a query is performed, the basic 
retriever pattern searches through these chunk 
nodes to find the most relevant information.

Let’s look at how you would implement this pattern 
using the SEC dataset.

You can now execute vector similarity searches to 
retrieve a company’s current challenges based on 
certain text in their filing. The retriever compares a 
query vector generated from the search prompt (i.e., 
the numeric representation of the question) against 
the indexed text embeddings of the chunks. Vector 
similarity searches work well for simple queries with 
a narrow focus, such as: “What are the risks around 
cryptocurrency?”

from neo4j-graphrag.retrievers import VectorRetriever

# Initialize the retriever

retriever = VectorRetriever(

     driver,

     index_name= “text_embeddings”,

     embedder=embedder,

     return_properties=[“text”]

)

query = “What are the main risks around cryptocurrency?”

result = vector_retriever.search(query_text=query, top_

k=10)

Be sure to review your retrieval results before 
generating any text output. This step helps you 
confirm that your retriever is functioning as intended 
and returning relevant data from your knowledge 
graph. For example, in the query above, a sample of 
the retrieved content is displayed for inspection:

result_table=pd.DataFrame([(item.metadata[‘score’], item.

content [10:80],  

item.metadata[‘id’]) for item in result.items], 

columns=[‘Score’, ‘Content’, ‘ID’]

Score Content ID

0.913177

cryptocurrency assets could be 

treated as a general unsecured 

claim ag..

6064a2f775a8:1724

0.908264

agency offerings could subject us 

to additional regulations, licensing 

r…

6064a2f775a8:1723

0.903259

cyberextortion, distributed denial-

of-service attacks, ransomware, 

spe…

6064a2f775a8:1718

0.898422

While we maintain insurance 

policies intended to help offset the\

nfina…

6064a2f775a8:1720

0.896942

financing, and branded credit card 

products; branded debit card and\

ns…

6064a2f775a8:1731

0.89476

our customers unimpaired and 

unconstrained access to our online 

servic…

6064a2f775a8:1731

0.894135

changes in cryptocurrencies, 

government cryptocurrency 

policies and ,,,

6064a2f775a8:1251

0.893723

ct our reputation and revenue. 

Actual or perceived vulnerabilities 

may…

6064a2f775a8:2508

0.893539

the past and could in the future 

have a material adverse effect on 

our…

6064a2f775a8:1254

0.893402

may continue to result\nin, 

disruption of and volatility in global 

fin…

6064a2f775a8:1260

You should review the results, or at least check 
the number of returned items. If there’s an error in 
your retriever and you proceed directly to natural 
language generation, your application may produce 
a generic LLM response that isn’t grounded in your 
data. This validation step ensures your outputs 
remain accurate and reflect the content of your 
underlying dataset.

To get the natural language output, use the  
following code:

rag = GraphRAG(llm=llm, retriever=vector_retriever) 

print(rag.search(query).answer)
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The basic retriever will cause the LLM to generate a 
result like this:

The main risks around cryptocurrency, as 
highlighted in the context, include:

1. Regulatory Risks: The regulatory status of 
certain cryptocurrencies is unclear, which 
could subject businesses to additional 
licensing and regulatory obligations. If 
cryptocurrencies are deemed securities, 
this might necessitate securities broker-
dealer registration under federal 
securities laws. Non-compliance could 
lead to regulatory actions, fines, and other 
consequences.

2. Custodial Risks: Cryptocurrency assets 
held through a third-party custodian 
are susceptible to various risks, such as 
inappropriate access, theft, or destruction. 
Inadequate insurance coverage by 
custodians and their potential inability to 
maintain effective controls can expose 
customers to losses. In the event of a 
custodian’s bankruptcy, the treatment of 
custodial holdings in proceedings remains 
uncertain, which could delay or prevent 
the return of assets.

3. Third-Party Partner Risks: Dependence 
on third-party custodians and financial 
institutions means exposure to operational 
disruptions, inability to safeguard 
holdings, and financial defaults by these 
partners, which could harm business 
operations and customer trust.

These risks underscore the need for robust 
regulatory compliance, secure custodial 
arrangements, and the management of third-
party relationships to mitigate potential 
negative impacts on businesses offering 
cryptocurrency products.

While the vector search provided useful information 
about cryptocurrency risks, it did not answer deeper, 
more actionable questions, such as:

• Which specific companies are exposed to  
these risks? 

• What other risks may be occurring 
concurrently? 

• Which asset managers are associated with 
the affected companies?  (e.g., multi-hop 
relationships from risk to company to asset 
manager)

In other words, the approach demonstrated here 
retrieves relevant text fragments. However, it 
doesn’t use the graph’s structure to connect the 
risks to companies or asset managers, nor does it 
show related or concurrent risks. There’s no traversal 
or multi-hop reasoning, so you miss out on the rich, 
contextual insights that a knowledge graph  
can provide.

To answer these more complex, relationship-driven 
questions, you need to combine vector search with 
graph-powered Cypher queries that can traverse and 
analyze connections between entities. This is where 
graph-enhanced retrieval patterns come in.

The Graph-Enhanced Vector Search Pattern
The basic retriever pattern typically relies on text-
based embeddings, capturing only the semantic 
meaning of content. While this method is effective 
in identifying similar chunks, it leaves the LLM in the 
dark as to how those items interact in the real world. 

The Graph-Enhanced Vector Search Pattern, also 
known as augmented vector search, overcomes 
this limitation by drawing on the graph structure 
(i.e., using not just what items are but also how 
they connect). By embedding node positions and 
relationships within a graph, this approach generates 
contextually relevant nodes, integrating both:

• Unstructured data: Product descriptions, 
customer reviews, and other text content via 
semantic similarity 

• Structured data: Purchase patterns, category 
relationships, and transaction records via 
explicit instructions 
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The VectorCypherRetriever uses the full graph 
capabilities of Neo4j by combining vector-based 
similarity searches with graph traversal techniques. 
The retriever completes the following actions:

1. Processes a query embedding to perform a 
similarity search against a specified vector 
index.

2. Retrieves relevant node variables.
3. Executes a Cypher query to traverse the graph 

based on these nodes. 

To set up this particular query, you need to tell the 
graph where and how to traverse from the semantic 
nodes. In this example, the query is:

“What are the risk factors for companies discussing 
cryptocurrency in their filings?”

The following code creates a retriever to answer  
this query:

Let’s start by looking at the parts of the graph that 
help to answer this query. We start by identifying 
the Chunk that is semantically similar to the 
cryptocurrency query. Then we need to traverse the 
graph to identify the Document the Chunk comes 
from, the Company that FILED the Document and 
collect the other RiskFactors for that Company. 
Once this information is retrieved, it’s converted to 
Cypher and set as the retrieval query.

Figure 27.  VectorCypherRetriever example 1

Next, let’s add this new retrieval query to the 
VectorCypherRetriever parameters:

vector_cypher_retriever = VectorCypherRetriever(

    driver=driver,

    index_name=’chunkEmbeddings’,

    embedder=embedder,

    retrieval_query=company_risk_list_query

)

VectorCypherRetriever parameters:

• Driver: The Neo4j database connection
• Index_name: The name of the vector index 

(here, chunkEmbeddings) used for semantic 
search

• Embedder: The embedding model used to 
generate/query vector representations

• Retrieval_query: The Cypher query (defined 
above) that tells Neo4j how to traverse the 
graph from the semantically matched nodes

This setup enables you to start with a semantic 
search (e.g., for “cryptocurrency risk”) and 
automatically traverse your knowledge graph to 
reveal which companies are involved and what other 
risks they face. The resulting responses are both 
semantically relevant and graph-aware. 

VectorCypher Retriever in Practice
The power of the Graph-Enhanced Vector Search 
Pattern lies in its flexibility. While the example 
above focuses on linking companies to risk factors in 
financial filings, the approach can be applied to any 
domain or vertical by customizing the graph schema 
and Cypher queries.

How might this look for other industries?

• Healthcare: Retrieve patient records, 
diagnoses, and treatment plans by combining 
semantic search of clinical notes with graph 
traversal across relationships like doctor-
patient, medication-prescribed, or symptom-
diagnosis. 

• Ecommerce: Connect customer reviews or 
product descriptions (unstructured text) to 

company_risk_list_query = “““ 

WITH node

MATCH (node)-[:FROM_DOCUMENT]-(d:Document)-[:FILED]-
(c:Company)-[:FACES_RISK]-(rf:RiskFactor)

RETURN c.name AS company,  node.text AS context, 
collect(DISTINCT r.name) AS risks

“””
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purchase behavior, category hierarchies, or 
supplier relationships (a structured graph), 
enabling recommendations and/or supply  
chain insights. 

• Law: Link case law or legal opinions to statutes, 
precedents, and involved parties, surfacing not 
just relevant text but also the legal context 
and network of citations.

• Cybersecurity: Combine threat intelligence 
reports (text) with the graph relationships 
between vulnerabilities, affected assets, and 
mitigation strategies to provide a holistic view 
of your security posture. 

• Education: Map student essays or discussion 
posts to learning objectives, course materials, 
and assessment outcomes for personalized 
education analytics. 

Let’s summarize the major tasks from  this example 
so you can apply it to your domain:

• Adapt the Pattern Model Your Domain: 
Define the node types, relationships, and 
key properties relevant to your vertical (e.g., 
Patient, Diagnosis, Product, Supplier, Case, 
Asset, etc.).

• Index the Right Data: Create vector indexes 
on the appropriate text or document nodes for 
semantic retrieval. 

• Craft Domain-Specific Cypher Queries: Write 
Cypher queries that traverse from the retrieved 
nodes to related entities and/or relationships 
that matter in your context. 

• Integrate With VectorCypherRetriever:  
Use the VectorCypherRetriever with your 
custom query to combine semantic and 
structural search. 

The result: You can ask complex, context-aware 
questions about entities in your own industry. The 
GraphRAG retriever will surface relevant information 
that connects context across structured and 
unstructured data to drive real-world understanding. 

With this in mind, let’s look at another 
VectorCypherRetriever example.

VectorCypher Retrieval: A Working Example
Which Asset Managers are most affected by  
reseller concerns?

Let’s again start with the Chunks semantically 
similar to “reseller concerns,” and then traverse 
through the Document to the Company through OWNS 
to identify the AssetManagers relevant to the query. 
We’ll also include the property shares from the 
relationship OWNS and order by largest holdings.

Figure 28. VectorCypherRetriever example 2

chunk_to_asset_manager_query = “““ 

WITH node

MATCH 

(node)-[:FROM_DOCUMENT]-(doc:Document)-[:FILED]-
(company:Company)-[owns:OWNS]-(manager:AssetManager)

RETURN distinct company.name AS company, manager.managerName AS 
AssetManager, owns.shares AS shares order by shares desc

“””

Next, add this new retrieval query to the 
VectorCypherRetriever parameters:

vector_cypher_retriever = VectorCypherRetriever(

    driver=driver,

    index_name=’chunkEmbeddings’,

    embedder=embedder,

    retrieval_query=chunk_to_asset_manager_query

)

VectorCypherRetriever parameters:

• Driver: The Neo4j database connection
• Index_name: The name of the vector  

index (here, chunkEmbeddings) used for 
semantic search
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• Embedder: The embedding model used to 
generate/query vector representations

• Retrieval_query: The Cypher query 
(defined above) that tells Neo4j how to  
traverse the graph from the semantically 
matched nodes

result = vector_cypher_retriever.search(query_text=query, 
top_k=10)

for item in result.items:

    print(item.content[:100])

Let’s look at the results:

<Record company=’APPLE INC’ 
AssetManager=’BlackRock Inc.’ 
shares=1031407553>

<Record company=’APPLE INC’ 
AssetManager=’Berkshire Hathaway Inc’ 
shares=915560382>

<Record company=’AMAZON’ 
AssetManager=’BlackRock Inc.’ 
shares=613380364>

<Record company=’APPLE INC’ 
AssetManager=’STATE STREET CORP’ 
shares=569291690>

<Record company=’MICROSOFT CORP’ 
AssetManager=’BlackRock Inc.’ 
shares=533634606>

<Record company=’AMAZON’ 
AssetManager=’STATE STREET CORP’ 
shares=332449318>

<Record company=’AMAZON’ 
AssetManager=’FMR LLC’ shares=302101441>

<Record company=’APPLE INC’ 
AssetManager=’FMR LLC’ shares=298321726>

<Record company=’APPLE INC’ 
AssetManager=’GEODE CAPITAL MANAGEMENT, 
LLC’ shares=296103070>

Since these results look as expected, we proceed to 
the natural language output:

result = GraphRag(llm=llm,retriever=vector_cyper_retriever)

print(rag.search(query_text=query_text).answer)

The Asset Managers most affected by 
cryptocurrency concerns are:

1. BlackRock Inc.

2. FMR LLC

3. STATE STREET CORP

4. GEODE CAPITAL MANAGEMENT, LLC

5. MORGAN STANLEY

6. NORTHERN TRUST CORP

7. BANK OF AMERICA CORP /DE/

8. Bank of New York Mellon Corp

9. ALLIANCEBERNSTEIN L.P.

10. AMUNDI

11. WELLINGTON MANAGEMENT GROUP LLP

12. Capital World Investors

13. AMERIPRISE FINANCIAL INC

14. WELLS FARGO & COMPANY/MN

This is where GraphRAG really shines. You may be 
wondering how to construct the retrieval query 
that traverses the graph. In this example, you can see 
that the retrieval_query is a string of Cypher code, 
the language of graph querying. Now let’s look at 
one last retriever pattern found in the Neo4j library: 
the Text2CypherRetriever.

Text2CypherRetriever
You can use Text2CypherRetriever to seamlessly 
generate Cypher queries from natural language 
questions. Instead of manually crafting each Cypher 
statement, the retriever uses an LLM to translate 
your plain-English queries into Cypher based on its 
understanding of your Neo4j schema.
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The process begins with a natural language question, 
such as:

“What are the names of companies owned  
by BlackRock Inc.?” 

The retriever then uses the schema, described 
as a string outlining the main node types and 
relationships in your graph (for example, companies, 
risk factors, and asset managers), to guide the LLM 
in generating an appropriate Cypher query. While you 
could pass a hard-coded schema to the retriever, it’s 
best practice to access the schema as it currently 
exists in your instance. Here’s a sample of the full 
schema:

result = get_schema (driver)

Node properties:

Document {id: STRING, path: STRING, 
createdAt: STRING}

Chunk {id: STRING, index: INTEGER, text: 
STRING, embedding: LIST}

Company {id: STRING, name: STRING, chunk_
index: INTEGER, ticker: STRING}

Product {id: STRING, name: STRING, chunk_
index: INTEGER}

. . .

Relationship properties:

OWNS {position_status: STRING, Value: 
FLOAT, shares: INTEGER, share_value: 
FLOAT}

The relationships:

....

(:Executive)-[:FROM_CHUNK]->(:Chunk)

(:StockType)-[:FROM_CHUNK]->(:Chunk)

(:AssetManager)-[:OWNS]->(:Company)

Now that you’ve defined the schema, you 
have everything you need to set the 
Text2CypherRetriever.

query=”What are the names of the companies owned by BlackRock 
Inc.?”

text2cypher_retriever = Text2CypherRetriever(

    driver=driver,

    llm=llm,

    neo4j_schema= schema

)

cypher_query = text2cypher_retriever.get_search_results(query)

cypher_query.metadata[“cypher”]

MATCH (a:AssetManager {managerName: 
‘BlackRock Inc.’})-[:OWNS]->(c:Company)

RETURN c.name AS company_name

This approach has several advantages. It removes 
the need to write Cypher by hand for each query, 
making graph data accessible even to those without 
technical expertise. It’s ideal for rapid prototyping, 
exploratory analysis, and building natural language 
interfaces to your knowledge graph, enabling a 
broader range of users to interact with complex 
graph data. 

Now you can pass that Cypher query directly to the 
driver to get the results:

result = driver.execute_query(cypher_query.metadata[“cypher”]) 

for record in result.records:

    print(record)

<Record companyName=’APPLE INC’>

<Record companyName=’MICROSOFT CORP’>

<Record companyName=’INTEL CORP’>

<Record companyName=’AMAZON’>

<Record companyName=’PG&E CORP’>

<Record companyName=’NVIDIA CORPORATION’>
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While the Text2Cypher functionality in the Neo4j 
GraphRAG library offers a powerful way to translate 
natural language queries into Cypher, there are 
important considerations to keep in mind when using it.

First, because Text2Cypher relies on an LLM to 
generate queries dynamically, the same input may 
not always yield identical results. The model’s 
responses can vary depending on context, training 
data, and even minor changes in phrasing. While the 
flexibility of Text2Cypher allows for more natural 
interactions, it can also introduce inconsistencies 
when precise, repeatable queries are required.

Additionally, query optimization remains an important 
factor. While LLMs are capable of generating 
complex Cypher queries, they may not always 
produce the most efficient ones. Without human 
intervention or performance tuning, these queries 
might not be optimized for speed or resource 
consumption, which could potentially slow 
application performance.

Finally, high-stakes applications — such as 
those requiring strict reproducibility, financial 
computations, or regulatory compliance — may 
require standardized, manually crafted Cypher 
queries instead. In such cases, relying entirely on an 
AI-generated query could introduce risks, especially 
if the generated query structure does not fully align 
with business logic or data constraints.

Despite these limitations, Text2Cypher is a valuable 
tool for making Neo4j more accessible, particularly 
for applications where flexibility, adaptability, and 
user-driven query formulation are more important 
than absolute precision. Understanding these 

trade-offs will help you integrate Text2Cypher 
effectively while ensuring that it is used in 
scenarios where its strengths outweigh its 
potential drawbacks.

Check out the Text2Cypher Crowdsourcing 
App to explore Text2Cypher applications and 
contribute to development projects.

Community Summary Pattern
You may have heard the term GraphRAG and 
thought of the pattern popularized by Microsoft, 
where the text is used to summarize community 
or other knowledge (i.e., forum posts). This 
type of retriever is often called the Community 
Summary Pattern. 

While a Microsoft-style GraphRAG emphasizes 
summarization and community Q&A, Neo4j’s 
approach focuses on domain-specific schema 
control and composable query generation. This 
focus expands GraphRAG from summarization 
into structured reasoning, decision tracing, and 
dynamic compliance use cases.

Concluding Thoughts and 
Next Steps

Integrating a knowledge graph with RAG 
gives GenAI systems structured context and 
relationships, improving the relevance and 
quality of generated results.

This guide has equipped you with the 
foundational skills needed to implement 
GraphRAG. You learned how to use Neo4j’s 
cloud-based graph database service, Neo4j Aura, 
to prepare a knowledge graph for GraphRAG, 
Data Importer, and the GraphRAG Python library 
to create a knowledge graph from unstructured 
data. You also learned how to implement 
foundational GraphRAG retrieval patterns, 
including the basic retriever, graph-enhanced 
vector search, and Text2Cypher.

https://text2cypher.vercel.app
https://text2cypher.vercel.app
https://neo4j.com/blog/developer/global-graphrag-neo4j-langchain/
https://neo4j.com/blog/developer/global-graphrag-neo4j-langchain/
https://neo4j.com/product/auradb/
https://neo4j.com/docs/neo4j-graphrag-python/current/
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Like other AI technologies, GraphRAG is rapidly 
evolving. A few trends to watch:

• More advanced, dynamic Cypher queries and 
sophisticated retrieval patterns that use graph 
algorithms and machine learning techniques 
are pushing the boundaries of what’s possible 
in information retrieval  
and generation.

• Deeper integration with other AI technologies, 
such as knowledge graph embeddings and 
graph neural networks, promises to enhance 
the semantic understanding and reasoning 
capabilities of GraphRAG systems.

• Integrating GraphRAG with agentic systems 
and other multi-tool, multi-step RAG chains 
can result in more autonomous and intelligent 
systems capable of handling complex, 
multifaceted tasks with greater efficiency  
and accuracy.

• Incorporating semantic layers in GraphRAG 
systems can provide even more nuanced 
understanding and context awareness in 
information retrieval and generation tasks.

Explore GenAI 
With Neo4j
Neo4j uncovers hidden relationships and patterns 
across billions of data connections deeply, easily,  
and quickly, making graph databases an ideal choice 
for building your first GraphRAG application.

Build on what you learned in this guide:

• The Neo4j for GenAI use case page offers 
guides, tutorials, and best practices about 
GraphRAG implementation.

• The GraphRAG site contains explanations 
of GraphRAG principles and step-by-
step guides for various implementation 
scenarios.

• Neo4j GraphAcademy offers free, hands-
on online courses.

Learn More

https://neo4j.com/docs/cypher-manual/current/appendix/tutorials/advanced-query-tuning/
https://neo4j.com/blog/developer/enhancing-word-embedding-with-graph-neural-networks/
https://neo4j.com/blog/developer/graphrag-and-agentic-architecture-with-neoconverse/
https://neo4j.com/blog/developer/topic-extraction-semantic-search-rag/
https://neo4j.com/generativeai/
https://graphrag.com/
https://graphacademy.neo4j.com
https://neo4j.com/generativeai/
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Appendix

Technical Resources in Workflow Order

Stage Resource Why It’s Useful

1.  Data Modeling Designing a Graph Data Model for 
GenAI (Neo4j Blog)

Helps you define entity-relationship schemas (on-
tology) that power GraphRAG context.

2. Data Modeling Neo4j Data Modeling Guide Foundation for understanding how to structure both 
unstructured and structured data into a graph.

3. Environment Setup Neo4j Aura Free Tier Spin up a secure cloud instance instantly – perfect 
for prototyping.

4. Data Ingestion (Structured) Neo4j Data Importer Tool Visual UI for mapping CSVs and relational data to 
graph nodes and relationships.

5. Data Ingestion (Unstructured) Neo4j GraphRAG Python Library Convert PDFs and text to a knowledge graph using 
LLM-powered entity + relationship  extraction.

6. Data Ingestion (Unstructured) KGBuilder Tutorial – SEC Filings 
Example

Walkthrough for turning dense financial disclosu-
res into structured graph nodes and edges.

7. Embeddings + Vector Indexing Neo4j Vector Indexing Docs Build and manage vector embeddings inside Neo4j 
for hybrid retrieval.

8. Retrieval: Basic + Vector Neo4j GraphRAG Basic Retriever 
Pattern

First step: combine chunked content and embed-
ding for basic semantic retrieval.

9. Retrieval: Graph-Enhanced Graph-Enhanced Vector Search with 
Neo4

Augment vector search with traversal logic to im-
prove contextual accuracy.

10. Test2Cypher Automation Text2Cypher Documentation & 
Examples

Translate user queries into Cypher automatically 
using LLMs – ideal for dynamic GraphRAG.

11. Agentic & Multi-Step Use GraphRAG + NeoConverse + Agents Build multi-tool agents that query graphs autono-
mously across task chains.

12. Semantic Enhancement Topic Extraction for Semantic RAG Use LLMs to extract topics and themes into your 
graph to add interpretability.

13. Deployment + Ops Neo4j Deployment Best Practices Tips for scaling and monitoring GraphRAG in pro-
duction environments.

https://neo4j.com/blog/developer/designing-a-graph-data-model-for-genai/
https://neo4j.com/developer/data-modeling/
https://neo4j.com/cloud/aura/
https://neo4j.com/product/data-importer/
https://github.com/neo4j-product-examples/graphrag-examples
https://neo4j.com/blog/developer/graphrag-sec-filings-example/
https://neo4j.com/blog/developer/graphrag-sec-filings-example/
https://neo4j.com/blog/developer/graph-enhanced-vector-search/
https://neo4j.com/blog/developer/graph-enhanced-vector-search/
https://neo4j.com/blog/developer/text2cypher-graphrag-pattern/
https://neo4j.com/blog/developer/graphrag-and-agentic-architecture-with-neoconverse/
https://neo4j.com/blog/developer/topic-extraction-semantic-search-rag/
https://neo4j.com/docs/aura/

