
EBOOK

THE DEVELOPER’S GUIDE TO

GraphRAG
Alison Cossette
Zach Blumenfeld
Damaso Sanoja

The Developer’s Guide to GraphRAG

Table of Contents

PART I: The Problem With Current RAG ...

PART II: What Makes It GraphRAG – Structure, Logic, and Meaning

 What Is RAG? ..

 What Is GraphRAG?..

 1. Context-Aware Responses...

 2. Traceability and Explainability ..

 3, Access to Structured and Unstructured Data

 How GraphRAG Works ..

 Prepare a Knowledge Graph for GraphRAG ...

 Ground With Unstructured and Structured Data ..

PART III: Constructing the Graph ..

 Create a Neo4j Database ..

 Ingest Unstructured Data ...

 Key Features of Neo4j GraphRAG Package

 Neo4j Connection ...

 Initialize the LLM and Embeddings ...

 Define Node Labels and Relationship Types

 Initialize and Run the Pipeline ...

 Process the PDF Document ...

 Create the Vector Index ..

 Ingest Structured Data ..

 Getting Started With Data Importer ...

 Import Structured Data ...

 Mapping Your Data to Graph Structures. ...

 Mapping Relationships ..

4

5

5

6

6

6

7

7

7

8

9

9

10

10

10

11

11

11

12

12

13

13

13

14

15

The Developer’s Guide to GraphRAG

17

17

18

18

18

20

21

22

23

25

25

27

Table of Contents (continued)

PART IV: Implementing GraphRAG Retrieval Patterns ..

 Import Libraries. ..

 Load Environment Variables and Initialize Neo4j Driver

 Initialize the LLM and Embedder ...

 The Basic Retriever Pattern..

 The Graph-Enhanced Vector Search Pattern...

 VectorCypher Retriever in Practice. ...

 VectorCypher Retrieval: A Working Example ..

 Text2CypherRetriever...

 Community Summary Pattern ...

 Concluding Thoughts and Next Steps ..

Appendix: Technical Resources in Workflow Order ..

The Developer’s Guide to GraphRAG

4

the meaning depends on a sales addendum from
three weeks earlier. Or maybe they ask a support
question that only makes sense in the context of
their infrastructure and license tier. The information
is there, but it’s scattered across multiple documents,
formats, and timelines. Chunk-based retrieval can’t
bridge that gap.

Traditional RAG doesn’t have shared context
across documents. That’s because it doesn’t track
relationships. It doesn’t know which concepts are
upstream, downstream, dependent, or mutually
exclusive. It doesn’t distinguish between definitions,
instructions, timelines, policies, or decision logic.

The bottom line: Traditional RAG treats all chunks
as equal, flat, unstructured blobs of text.

Even more problematic is that the system has
no mental model for your business. It cannot
understand what a “customer” is in your world.
Or how a support ticket relates to a contract. Or
what a system diagram implies about downstream
integrations. The mental model that represents the
structure behind your content is absent in RAG.

Without it, RAG can’t reason. It can only retrieve, and
that isn’t enough.

You already know what your RAG system should
be able to do. It’s the kind of reasoning your team
does every day without thinking. Consider this: If
a customer reaches out to your support team, the
employee will listen to the customer’s concern,
look up their account and tech stack, check
previous service requests, etc. When answering the
customer’s question, the employee brings context.
They may answer differently if the person is a new
customer vs. a long-term customer.

You want your RAG application to do what humans
do naturally: use context to inform its answer. As
examples, you might want the RAG system to:

• Answer a support question and understand
the user’s tech stack, contract level,
and product version.

• Explain a contract term — and know what the
sales path looked like, who signed off, and
which systems were impacted.

PART I: The Problem With
Current RAG

Why chunk-based RAG hits a ceiling — and why
developers need more context to answer well

You’ve built a retrieval-augmented generation (RAG)
system. You embedded the docs, connected the
vector store, wrapped a prompt around the output,
and deployed it. For a minute, it felt like you cracked
the code. The model was grounded in your own data,
giving answers that sounded smarter than base GPT.

Then reality hit.

The system works — but only under the most
forgiving conditions. The moment you ask a question
that spans documents, relies on implicit context, or
touches anything complex or structured, the cracks
start to show. Answers get vague. Sometimes they’re
just plain wrong. Or worse, the system confidently
quotes the right chunk — but misses the point entirely.

Your RAG system isn’t broken. It’s just blind.

RAG retrieves semantically
similar text, but it doesn’t know how

the pieces fit together.

It has no map of your domain. No memory of what
matters. It’s like hiring a new developer and giving
them a stack of index cards with code snippets from
your repo. They can parrot back functions, maybe
even modify them, but they don’t understand the
architecture. They don’t know the “why,” only the “what.”

That’s the ceiling of traditional RAG. And that’s what
this book is here to fix.

Here’s the core issue: RAG retrieves based on
similarity, not understanding.

You give it a query, it vectorizes that query, and
fetches the top-k similar chunks. That’s fine if the
answer you need lives entirely within isolated chunks.
But most real-world questions don’t work that way.

Let’s say a user asks about a contract clause, but

The Developer’s Guide to GraphRAG

5

• Interpret a customer review and place it in
context with purchase history, usage data, and
net promoter score (NPS).

These shouldn’t feel like advanced use cases —
they’re basic context. They’re what you, as a human
developer, bring into every decision without even
realizing it. And that’s the problem: Your RAG
system has none of that. Sure, it has some document
metadata available, but no user metadata, no
business logic, no connected data — just isolated
chunks in a vector store. But RAG can’t use what it
can’t see. So until you give it structure — until you
teach it relationships, timelines, ownership, and
dependencies — it will keep retrieving the right
words for the wrong reasons.

This isn’t a whitepaper. It’s a build-it-yourself playbook.

We’re going to walk you through:

• Ingesting documents and turning them into a
knowledge graph

• Structuring real-world context from messy
PDFs, CSVs, and APIs

• Building retrievers that combine vector search
and graph traversal

• Using text-to-query generation to run dynamic
Cypher queries (a query language for graphs)
and pull precise information and calculations
from your data

And we’re going to do it with code. No fluff. Just the
stack, the logic, and the patterns that actually work.
If you’ve built RAG, and you know it’s not enough,
then this is the guide to take you further.

PART II: What Makes It
GraphRAG – Structure, Logic,
and Meaning

To understand GraphRAG, let’s explore its
foundational components — RAG and knowledge
graphs — and why they work so well together.

What Is RAG?
Let’s start with the well-known problems of large
language models (LLMs), which power chatbots

such as ChatGPT, Gemini, and Claude. When a
user’s prompt goes directly to the LLM, it generates
a response based on its training data. Due to the
probabilistic nature of response generation, LLMs
often produce responses that lack accuracy and
nuance and don’t draw on knowledge specific to your
business. In addition, the LLM in question may have
limited explainability, which limits its adoption in
enterprise settings.

RAG addresses these challenges by intercepting
a user’s prompt, querying external data, usually a
vector store, and passing relevant documents back
to the LLM. Adding retrieval to the LLM enables the
application to answer questions with knowledge
from a specific dataset. This simple technique
suddenly makes it possible to build applications for a
variety of use cases. As examples:

• Knowledge assistants can tap into company-
specific information for accurate, contextual
responses.

• Recommendation systems can incorporate
real-time data for more personalized
suggestions.

• Search APIs can deliver more nuanced and
context-aware results.

RAG consists of three key components:

• An LLM that serves as the generator
• A knowledge base or database that stores the

information to be retrieved
• A retrieval mechanism to find relevant

information from the knowledge base, based
on the input query

Figure 1. Querying a knowledge graph with an LLM

The Developer’s Guide to GraphRAG

6

The quality of a RAG response depends heavily on
the database type the information is retrieved from.
If you use a vector store (as in traditional RAG), the
process goes like this: The user query is turned into
a vector, which is then used to retrieve semantically
similar text chunks from a vector database. While
retrieval based on semantic similarity can work
across multiple documents, it often falls short when
questions require understanding implicit context or
relationships that span those documents. Traditional
RAG treats each chunk in isolation, as it lacks a
holistic view of the domain.

Retrieval based on semantic similarity can only get
you so far. And this is where GraphRAG comes in.
GraphRAG gives the LLM a mental model of your
domain so that it can answer questions by drawing on
the correct context.

What Is GraphRAG?
In GraphRAG, the knowledge base used for retrieval
is a knowledge graph. A knowledge graph organizes
facts as connected entities and relationships,
which helps the system understand how pieces of
information relate to each other.

The knowledge graph becomes a mental map of your
domain, providing the LLM with information about
dependencies, sequences, hierarchies, and meaning.
This makes GraphRAG especially effective at
answering complex, multi-step questions that require
reasoning across multiple sources.

Imagine that a customer calls to request support
regarding a recent purchase. Customer Service uses
an internal chatbot to troubleshoot the request.
A traditional system built on vector-only RAG
would retrieve a product name from the customer
support ticket:

Service Ticket Service Ticket Text Embedding

234381 My new JavaCo coffee
maker isn’t working.

[.234, .789, .123……]

But that’s all the RAG system would surface.

A GraphRAG system, on the other hand, would
show not only this service ticket text but also the

customer’s purchase history, known issues with that
product version, related documentation, and prior
support conversations.

Figure 2. Order issue flow

A knowledge graph holds all related information
together across both structured and unstructured
data. A RAG system built on a knowledge graph —
or GraphRAG — excels at generating context-aware
responses.

The main reasons to implement a GraphRAG solution
include:

1. Context-Aware Responses

Unlike traditional RAG, which retrieves isolated
chunks of text based on similarity, GraphRAG
retrieves facts in context. Since the knowledge
graph explicitly encodes relationships,
GraphRAG returns relevant information, as
well as related information. This structured
retrieval ensures that application outputs are
comprehensive, reducing hallucinations and
leading to more accurate, reliable outputs and
improving real-world applicability.

2. Traceability and Explainability

LLMs and even standard RAG approaches
operate as black boxes, making it difficult
to know why and how a certain answer was
generated. GraphRAG increases transparency
by structuring retrieval paths through the
knowledge graph. The knowledge graph
will show the sources and relationships that
contributed to a response. This makes it
easier to audit results, build trust, and meet
compliance needs.

https://neo4j.com/blog/genai/what-is-knowledge-graph/

The Developer’s Guide to GraphRAG

7

3. Access to Structured and Unstructured Data

GraphRAG overcomes a key limitation
of vector-only RAG by integrating both
structured and unstructured data. It integrates
information like whole databases, ontologies,
documents, and real-time streams into a single
knowledge graph. Richer data means superior
AI responses.

How GraphRAG Works

GraphRAG works by using a knowledge graph to
retrieve and connect relevant information. It starts
with a search — vector, full-text, spatial, or others —
to find entry points in the graph, then follows related
nodes and relationships to gather more context.
The system considers the user’s task and filters
and ranks the results before passing them to the
generation phase.

Think of GraphRAG as a RAG architecture built on a
knowledge graph. Using a knowledge graph affects
the way you design the entire solution. There are two
main steps to creating a GraphRAG application:

1. Preparing a knowledge graph for GraphRAG

• Documents and unstructured text ingestion
• Structured data source import

2. Implementing GraphRAG retrieval patterns

Figure 3. Implementing GraphRAG retrieval patterns flow

The rest of this book walks you through these two
critical steps.

Prepare a Knowledge Graph
for GraphRAG

Effective retrieval in GraphRAG starts with a well-
structured knowledge graph. The data needs to be
structured to model the business domain as it relates
to the documents. That means having a clear data
model that defines both the content you’re working
with and how it is connected.

There are two aspects to consider when you’re
modeling a knowledge graph for AI workflows:

1. The relationships between documents — or
how your content is organized and related:

• How chunks connect to source documents
• How sections of a book or catalog

are structured
• How content is grouped or nested

2. Business entities and logic:

• The core entities (i.e., Customers,
Products, Companies)

• How these entities relate to each other
• The structure and relationships that already

exist in your current databases, schemas, or
business logic

These two layers — the document structure and the
business domain — work together to give GraphRAG
its power. GraphRAG is retrieving documents in
the context of your business. Consider a customer
review in context of their purchase history or a user’s
question in context of their technical stack.

The first step is to determine where you can access
that business domain and how to connect it to
your documents. It might be well defined in your
structured data (databases, business hierarchies,
etc.) or it may be hidden inside your unstructured
content (i.e., contract terms, product features). A
knowledge graph brings it all together, connecting
the dots so your LLM retrieves not just semantic
similarity but also relevant facts.

The Developer’s Guide to GraphRAG

8

Ground With Unstructured
and Structured Data

If you’ve worked with RAG systems, you’re already
familiar with vector databases and unstructured
content — PDFs, contracts, reports. But the most
important context for your data rarely lives in a
single format. In fact, most of the time you’ll want
to use more than just unstructured data. Structured
data like CRM exports, product catalogs, and
relational databases often contains crucial grounding
information for the answers your users need.

To build systems that retrieve the right answer at
the right time, you need to connect two worlds:
unstructured and structured. That’s where
knowledge graphs come in. By linking unstructured
chunks to structured business entities and
relationships, you create a semantic network that
makes retrieval smarter, safer, and more transparent.
So, where do you start? With your documents or your
structured schema?

Technically, you can begin from either side. But in
practice, most teams start with unstructured data
because that’s where the buried context usually lives.
Think financial disclosures, legal contracts, emails,
and support tickets. These contain implicit business
logic, risk factors, and decision-making signals that
don’t show up in structured rows and columns.

But here’s the catch: Structure isn’t binary. It’s a
continuum.

Figure 4. Structured and unstructured data continuum

At one end, you’ve got relational databases and clean
CSV, where entities and relationships are explicitly
defined. At the other end, you’ve got raw text:
meaning buried in natural language. In between?
A complex middle: XML files, JSON logs, form
submissions, and mixed-format documents with both
tables and prose.

As you think about your own dataset, ask yourself
these questions: Where does the context for
your application actually live? And where on the
structure continuum does it fall? These questions
matter because they will help you determine the
tools you should use to build the knowledge graph.
For this guide, you’ll use:

• Neo4j Data Importer (Neo4j Aura Platform) for
structured data

• Knowledge Graph Builder Pipeline (Neo4j
GraphRAG Python Package) for extracting
implicit relationships from natural language

If you find that your dataset has more complex data
structures, you can consider adding tools to your
workflow. This is an ever-evolving field, and many are
working on building tools for these scenarios. A few
to consider:

Took Description Resource

Unstructured.io Extracts structured data
(tables, lists, key-value pairs)
from unstructured documents
like PDFs, HTML, and email

Neo4j
Integration
Guide

Boundary’s
Annotation
Modeling
Language
(BAML)

Declarative language for
extracting structured data
from unstructured sources,
demonstrated with Neo4j

BAML
to Neo4j
Tutorial by
Jason Koo

pdfplumber Parses tables and text from
PDF files, ideal for extracting
structured data from
documents

GitHub
Repository

LangChain Framework for developing
applications powered by
language models, with
support for Neo4j integration

Neo4j
Integration

https://docs.unstructured.io/ingestion/destination-connectors/neo4j
https://docs.unstructured.io/ingestion/destination-connectors/neo4j
https://docs.unstructured.io/ingestion/destination-connectors/neo4j
https://neo4j.com/blog/developer/unstructured-structured-baml-neo4j/
https://neo4j.com/blog/developer/unstructured-structured-baml-neo4j/
https://neo4j.com/blog/developer/unstructured-structured-baml-neo4j/
https://neo4j.com/blog/developer/unstructured-structured-baml-neo4j/
https://github.com/jsvine/pdfplumber
https://github.com/jsvine/pdfplumber
https://neo4j.com/labs/genai-ecosystem/langchain/
https://neo4j.com/labs/genai-ecosystem/langchain/

The Developer’s Guide to GraphRAG

9

For this exercise, you’ll start with unstructured
financial documents. Using an LLM-powered pipeline
to extract entities like Company and Risk Factor,
you’ll look for relationships such as FACES_RISK
to build a knowledge graph in Neo4j. This process
mirrors what many teams face: extracting meaning
from dense reports, contracts, or disclosures.

You’ll then use Neo4j’s Data Importer to load
structured datasets — the kind of CSVs or database
connectors most companies already have — further
enriching the graph with known entities and
relationships.

Finally, you’ll test retrieval strategies, from vector
search to graph-enhanced queries, to dynamic
Cypher generation with Text2Cypher. The same
process can be applied to your own PDFs, internal
databases, and business domain to build a
semantic layer over enterprise knowledge, making
it accessible to GenAI systems with precision,
transparency, and context.

PART III: Constructing
the Graph

Create a Neo4j Database
Begin by choosing a Neo4j database solution that
fits your needs. Options include a free instance
of AuraDB or a free trial of AuraDB Professional.
Neo4j is also available on all the major cloud partner
marketplaces. When you navigate to https://console.
neo4j.io and log in, you’ll see the following screen,
inviting you to create your first instance.

Tip: Download your AuraDB credentials (URI,
username, password) immediately after creating
the instance. They will not be available for
download later. Store them securely, as you’ll need
them to connect your application to Neo4j.

Figure 5. Create your first instance screen

You then have three choices of instances to
choose from:

• AuraDB Free, a small database (2 GB) that will
always be free, though it will be deleted after
30 days of no activity.

• AuraDB Professional offers up to 128 GB of
memory and a free 14-day trial.

• AuraDB Business Critical is the most robust
and offers up to 512 GB of memory and pay-as-
you-go billing.

Figure 6. New instance tiers

If you’re just getting started, you’ll do well with
AuraDB Free or AuraDB Professional trial.

https://console.neo4j.io
https://console.neo4j.io

The Developer’s Guide to GraphRAG

10

Be sure to download the credentials when you set up
the database because they won’t be available later on.

Figure 7. Credential download and continue screen

Ingest Unstructured Data

As you begin to build your knowledge graph, you
can use the Neo4j GraphRAG Python library. This
package offers specialized functionalities that
streamline and enhance the process of building a
knowledge graph from unstructured data, such as PDFs.
Capabilities include document chunking, embedding
generation, and knowledge graph construction.

pip install neo4j-graphrag

Figure 8. Document flow

Key Features of Neo4j GraphRAG Package
• Knowledge Graph Construction Pipeline:

Automates the extraction of entities and
relationships from unstructured text and
structures them into a Neo4j graph.

• Vector Indexing and Retrieval: Facilitates the
creation of vector indices for efficient semantic
search within the graph.

• Integration with LLMs: Seamlessly integrates
with LLMs for tasks like entity extraction and
relation identification.

• Document Chunking and Storage: The
package uses the SimpleKGPipeline class
to automate chunking and storage. This
class handles the parsing of documents, the
chunking of text, and storage of chunks as
nodes in Neo4j.

from neo4j import GraphDatabase

from neo4j_graphrag.experimental.pipeline.kg_
builder import SimpleKGPipeline

from neo4j_graphrag.llm import OpenAILLM

from neo4j_graphrag.embeddings import
OpenAIEmbeddings

from neo4j_graphrag.generation.prompts import
ERExtractionTemplate

from dotenv import load_dotenv

import os, time, asyncio, glob, csv

• neo4j: Official Python driver for interacting
with a Neo4j database.

• GraphDatabase: Connects to Neo4j to
interact with the graph database.

• SimpleKGPipeline: Automates chunking,
entity recognition, and storage in Neo4j.

• OpenAILLM: Integrates GPT-4 for text-based
processing and knowledge extraction.

• OpenAIEmbeddings: Handles vector
embeddings to enable semantic search in
Neo4j.

• ERExtractionTemplate: Supplies prompt
templates for entity-relation extraction.

The LLM does the thinking by extracting meaningful
concepts from text. The embedder turns the text into
vectors, which lets your system perform semantic
search later.

Neo4j Connection
You’ll use GraphDatabase from the Neo4j Python
driver to connect to Neo4j Graph Database.

driver = GraphDatabase.driver(NEO4J_URI,
auth=(NEO4J_USER, NEO4J_PASSWORD))

https://neo4j.com/docs/neo4j-graphrag-python/current/

The Developer’s Guide to GraphRAG

11

Note that the required credentials can be found in the
.txt file you downloaded when you created the instance.

Figure 9. Credentials from .txt file

• NEO4J_URI: The database URL (e.g.,
“neo4j+s://ef123456.database.neo4j.
io”)

• auth=(NEO4J_USER, NEO4J_PASSWORD):
Credentials to authenticate

Initialize the LLM and Embeddings

llm = OpenAILLM(model_name=”gpt-4o”, api_key=openai_api_key)

dimensions = 1536

embedder = OpenAIEmbeddings(api_key=openai_api_key)

• llm: Uses GPT-4o to extract entities,
relationships, and summarize text.

• embedder: Generates vector embeddings
to enable semantic search and contextual
retrieval.

Define Node Labels and Relationship Types
entities = [

 {“label”: “Executive”, “properties”: [{“name”: “name”,
“type”: “STRING”}]},

 {“label”: “Product”, “properties”: [{“name”: “name”,
“type”: “STRING”}]},

 {“label”: “FinancialMetric”, “properties”: [{“name”:
“name”, “type”: “STRING”}]},

 {“label”: “RiskFactor”, “properties”: [{“name”: “name”,
“type”: “STRING”}]},

 {“label”: “StockType”, “properties”: [{“name”: “name”,
“type”: “STRING”}]},

 {“label”: “Transaction”, “properties”: [{“name”:
“name”, “type”: “STRING”}]},

 {“label”: “TimePeriod”, “properties”: [{“name”: “name”,
“type”: “STRING”}]},

 {“label”: “Company”, “properties”: [{“name”: “name”,
“type”: “STRING”}]}

]

relations = [

 {“label”: “HAS_METRIC”, “source”: “Company”, “target”:
“FinancialMetric”},

 {“label”: “FACES_RISK”, “source”: “Company”, “target”:
“RiskFactor”},

 {“label”: “ISSUED_STOCK”, “source”: “Company”,
“target”: “StockType”},

 {“label”: “MENTIONS”, “source”: “Company”, “target”:
“Product”}

]

Defining your nodes and relationships in two lists is
a key moment in the knowledge graph construction
process. This is when you determine the data model.
These lists control what the SimpleKGBuilder will
look for in the text and how it will organize that
information in your graph. To understand how you
might want to construct these lists, let’s take a look
at some general ideas.

Entities = Nouns
What are the real-world concepts you’re trying
to capture?

Company, Executive, RiskFactor, Product —
whatever matters to your domain.

Relationships = Verbs or Connectors
How do those concepts relate?

Perhaps a Company  FACES_RISK  RiskFactor,
or Company  ISSUED_STOCK  StockType.

If you aren’t sure which entities and relationships
to include in your first project, ask yourself: What
information would help my chunk provide a better
answer? Alternatively, what information connects
various chunks? Ultimately, you want to think
through the application’s use case and start with
the entities and relationships that will move the
needle the most on your project. This step isn’t just
configuration; it’s your chance to define the mental
model of your data.

Initialize and Run the Pipeline

pipeline = SimpleKGPipeline(

 driver=driver,

 llm=llm,

 embedder=embedder,

 entities=entities,

 relations=relations,

 enforce_schema=”STRICT”)

The SimpleKGPipeline sets up a structured
pipeline for extracting and storing knowledge from
unstructured text into a graph database. It starts
with the driver, which is the Neo4j connection
used to write data into the graph. The llm parameter
specifies the language model that will interpret
and extract meaningful entities and relationships
from the input text. The embedder is the embedding

The Developer’s Guide to GraphRAG

12

model used to vectorize text, which supports
similarity-based retrieval alongside structured
querying.

The entities and relations define the schema:
what kinds of objects (like Customers, Contracts,
Products) and relationships (like HAS_CONTRACT,
CONTAINS, REFERENCES) the pipeline should look
for. Finally, enforce_schema=True ensures that
only the entity and relationship types that have been
explicitly defined in those lists are allowed into the
graph. This prevents schema drift and keeps the
resulting knowledge graph clean and reliable.

Process the PDF Document
Running the pipeline involves I/O-heavy operations:

• Calling the LLM to extract structured meaning
from text

• Generating embeddings via an external API
• Writing data into Neo4j

All of these are network-bound and would block the
main thread in a normal synchronous setup. That’s
why the pipeline is designed to be asynchronous – so
these operations can run concurrently and efficiently.
To execute it, you need to use Python’s async /
await syntax: The await keyword tells Python:

“Pause this function while we wait on an external
operation, but don’t freeze the whole program.”

async def run_pipeline_on_file(file_path, pipeline):

 await pipeline.run_async(pdf_path=file_path)

If you’re calling this inside another async function,
it will work by itself. If you’re in a regular script or
notebook, you’ll need to run it inside an event loop.
If you’re unfamiliar with it, don’t worry — you can
treat await pipeline.run_async() like a normal
function call, as long as it’s inside an async context.

for pdf_file in pdf_files:

 asyncio.run(run_pipeline_on_file(pdf_file, pipeline))

As you can see in the image below, the document and
chunk nodes have been created and written to the
database. Note that there is now a property on the
node called embedding, which represents the vector

of the chunk text. This is how your retriever finds the
relevant chunk in your application: by comparing the
embedding of the query and the embeddings in your
data store.

Figure 10. Node details

Create the Vector Index
A vector index is a type of database index that
enables fast similarity search over high-dimensional
vectors, such as embeddings from models like
OpenAI’s. Unlike traditional indexes that look for
exact matches, vector indexes retrieve items most
similar to a query vector using metrics like cosine
similarity or Euclidean distance.

In the context of Neo4j and RAG, here’s what you
need to know:

1. Each node (e.g., a Chunk) stores an embedding,
a numeric representation of its semantic
content.

2. The vector index organizes these embeddings
so that, given a new query embedding, Neo4j
Graph Database can quickly retrieve the most
similar nodes.

3. This capability is essential for semantic search,
question answering, and other AI-powered
applications where meaning and context
matter more than exact keywords.

The Developer’s Guide to GraphRAG

13

By using a vector index, Neo4j enables scalable, real-
time retrieval of relevant knowledge from large and
complex graphs.

from neo4j_graphrag.indexes import create_vector_index

create_vector_index(driver, name=”chunkEmbeddings”,

label=”Chunk”,

 embedding_property=”embedding”,

dimensions=1536, similarity_fn=”cosine”)

Ingest Structured Data
Getting Started With Data Importer
Neo4j Data Importer provides a streamlined process
for bringing structured data into your graph database.
Here’s how to use this powerful tool. The Neo4j Aura
console includes a dedicated Data Importer feature
that allows you to transform tabular data into graph
structures without writing code. This tool works well
in quickly populating your knowledge graph with
data from existing datasets.

Import Structured Data
To import your data:

1. Navigate to Import > Data Importer in the
Neo4j Aura console.

Figure 11. Neo4j Aura Data Importer

2. Create a new graph model.

Figure 12. New graph model screen

3. A graph data model has been provided for your
convenience. Note: Due to pathway differences
between operating systems, please choose
either Mac or Windows data models.

Figure 13. Selecting model starting point screen

4. Once you’ve loaded the provided data model,
click Browse and navigate to the data folder
in your repository, selecting both the Asset_
Manager_Holdings.csv file and the Company_
Filings.csv files.

Figure 14. Browse to .csv files screen

https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/neo4j_importer_model_Mac_ix.json
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/neo4j_importer_model_Windows.json
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Company_Filings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Company_Filings.csv

The Developer’s Guide to GraphRAG

14

5. Once the files are connected, you’ll see that
the data model has check marks for each entity
and relationship. Click Run Import in the upper
right-hand corner.

Figure 15. Run import screen

Mapping Your Data to Graph Structures
To get you started, we’ve given you a full, completed
data model for this exercise. When working with your
own data, you’ll create these data model maps yourself.

If you’d like to work with your own dataset, here’s
how to get started.The Aura console provides a
unified experience where you can manage your
database instances, connect to diverse data sources,
import structured data, model graphs visually, query
your data with Cypher, explore your graph, and more.

When navigating to Import > New Data Sources,
you’re presented with many possible connectors. For
our case, there are two CSVs in this dataset: Asset_
Manager_Holdings.csv and Company_Filings.csv.

Figure 16. New data source connectors screen

Once you’ve uploaded these CSV files, you’ll be
given a choice as to how to proceed. Click Define
Manually to begin building your data model.

First, you’ll see a blank node, and on the right-
hand side, you’ll see the parameters for that node,
including Label, Table, Properties.

Figure 17. Node parameters options screen

Label refers to the type of node. Table points to
the data source where the information is sourced
(the tables you uploaded will appear on the left).
Properties refer to the values you want associated with
that node. Let’s start with the Company_Filings.csv.

Company Node

Label: Company

Table: Company_Filings.csv

Properties: name, ticker

ID(key): name

You’ll also need to
identify the unique ID
property for that node,
akin to the primary key,
which in this case is the
name of the company.
This is done by clicking
the key icon next to the
property name.

Figure 18. Company node screen

https://neo4j.com/docs/aura/preview/import/introduction/
https://neo4j.com/docs/aura/preview/query/introduction/
https://neo4j.com/docs/aura/preview/explore/introduction/
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Company_Filings.csv
https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Company_Filings.csv

The Developer’s Guide to GraphRAG

15

Document Node
Label: Document
Table: Company_Filings.csv
Properties: path (this must match exactly - read below)

ID(key): path
CRITICAL STEP: Rename Your Path Column to path

The kg_builder has already created Document
nodes using a path property. To correctly link
companies to their documents, your imported data
must use the exact same property name: path.

Figure 19. Path property screen

The CSV includes two columns with OS-specific paths:

• path_Windows for Windows users
• path_Mac_ix for macOS/Linux users
• Choose the appropriate column based on

your operating system and rename it to
path during import

Pick the column for your system:

1. Rename that column to exactly: path
(lowercase, no quotes).

2. Even though Document nodes already exist,
we’re now creating relationships between each
Company and its corresponding Document.
This connection bridges structured (Company)

and unstructured (Document) data, enabling
advanced retrieval and reasoning across
 your graph.

Asset Manager Node
Label: AssetManager

Table: Asset_Manager_Holdings.csv

Properties: managerName

ID(key): managerName

Figure 20. AssetManager node screen

Mapping Relationships
Relationships are created with the following criteria:

• Relationship Label: Describes the type
of connection between the entities. It is
common practice in knowledge graphs for the
relationships to be in ALL_CAPS with
no spaces.

• Table: Has identifiers for each node type
contained in it. It is the way we connect
the two nodes.

• Node ID Mapping: Maps the columns in the
relevant table to the IDs of the pertinent nodes.

• Properties: Adds information to a relationship
or entity.

⚠ If you skip this renaming step, the relationship
will NOT connect and your graph will be incomplete.

The Developer’s Guide to GraphRAG

16

Next, let’s create connections between and among
these entities. In our domain, the Asset Managers
own stock in various companies. Here’s a sample
from the Asset_Manager_Holdings.csv:

managerName companyName ticker shares

ALLIANCEBERNSTEIN L.P. AMAZON AMZN 50065439

ALLIANCEBERNSTEIN L.P. APPLE INC AAPL 28143032

ALLIANCEBERNSTEIN L.P. INTEL CORP INTC 5735993

ALLIANCEBERNSTEIN L.P.
MCDONALDS

CORP
MCD 1201960

ALLIANCEBERNSTEIN L.P. MICROSOFT CORP MSFT 46541943

In a knowledge graph, we want to map the domain
knowledge of structured data, which in this case is
the Asset Managers’ ownership of stock in a given
company. If entities are nouns, then relationships are
verbs. So let’s create the relationship OWNS that goes
from Asset Manager to Company.

1. Click on the AssetManager node. You’ll see a
blue outline of the node:

Figure 21. AssetManager blue outline

2. Hover over the outline until it turns gray:

Figure 22. AssetManager gray outline

3. Drag the outline of the AssetManager node to
cover the Company node. When you release,
you’ll see a new relationship arrow between
them:

Figure 23. Drag and release for new relationship

Clicking on this arrow allows you to edit the
parameters of the relationship.

OWNS Relationship

Relationship Type: OWNS
Table: Asset_Manager_Holdings.csv
Node ID Mapping
From:
 Node: AssetManager
 ID: managerName
 ID column: managerName
To:
 Node: Company
 ID: name
 ID column: companyName
Properties: shares

Figure 24. OWNS relationship

https://github.com/neo4j-product-examples/graphrag-ebook/blob/main/data/Asset_Manager_Holdings.csv

The Developer’s Guide to GraphRAG

17

The property shares represents the number of
shares of the Company owned by the Asset Manager
and for this book is an optional inclusion. Additional
columns such as value or sharevalue are optional,
as well. When working with your own data, it’s best
to consider if that property will have value to your
use case. Will you be asking to rank based on shares
owned? Does the total value of the holding have
relevance to your application? Additional information
on data modeling can be found at GraphAcademy.

FILED Relationship
Note that the relationship between Company
and Document is the linchpin that connects the
structured and the unstructured data in this
GraphRAG application.

Relationship Type: FILED
Table: Company_Filings.csv

Node ID Mapping
From:
 Node: Company
 ID: name
 ID column: companyName
To:
 Node: Document
 ID: path
 ID column: path_Windows or
 path_Mac_ix

Figure 25. FILED relationship

As you see in the diagram above, each entity and
relationship will have a green check mark when it has
been properly mapped. Now you’re ready to run the

import. Click the blue Run import button in the upper
right corner of the screen.

Figure 26. Run import button

Now that your unstructured and structured data is
loaded, you can use the Explore and Query functions
to refine your graph structure and data to accurately
represent your business domain. Use Explore to
visualize and navigate your graph with Neo4j Bloom
and Query to investigate the graph.

For a detailed walkthrough of graph data modeling,
see The Developer’s Guide: How to Build a
Knowledge Graph.

PART IV: Implementing
GraphRAG Retrieval Patterns

GraphRAG retrieval patterns are practical
mechanisms that define how the LLM in your
GraphRAG solution accesses the context and
connections in your knowledge graph.

Let’s examine some of the most common GraphRAG
patterns and how to use them.

Import Libraries

from neo4j import GraphDatabase

from neo4j_graphrag.llm import OpenAILLM

from neo4j_graphrag.embeddings import
OpenAIEmbeddings

from neo4j_graphrag.retrievers import
VectorRetriever, VectorCypherRetriever,
Text2CypherRetriever

from neo4j_graphrag.generation import GraphRAG

from neo4j_graphrag.schema import get_schema

from detenv import load_dotenv

https://graphacademy.neo4j.com/courses/modeling-fundamentals/
https://neo4j.com/docs/aura/preview/explore/introduction/
https://neo4j.com/docs/aura/query/introduction/
https://neo4j.com/whitepapers/developers-guide-how-to-build-knowledge-graph/
https://neo4j.com/whitepapers/developers-guide-how-to-build-knowledge-graph/
https://neo4j.com/developer-blog/graphrag-field-guide-rag-patterns/

The Developer’s Guide to GraphRAG

18

This notebook imports the core libraries required for
building and querying RAG pipelines with Neo4j and
GraphRAG:

• neo4j.GraphDatabase: The official Python
driver for connecting to and querying a Neo4j
database.

• neo4j_graphrag.llm.OpenAILLM: Integrates
OpenAI language models for generating and
processing natural language queries.

• neo4j_graphrag.embeddings.
OpenAIEmbeddings: Provides access to
OpenAI’s embedding models for generating
vector representations of text.

• Neo4j_graphrag.retrievers: Different
retriever classes for semantic and hybrid
search over graph data using vector similarity
and Cypher queries:

• VectorRetriever
• VectorCypherRetriever
• Text2CypherRetriever

• neo4j_graphrag.generation.GraphRAG:
The main class for orchestrating RAG
workflows over a Neo4j knowledge graph.

• neo4j_graphrag.schema.get_schema:
Utility to introspect and retrieve the schema of
your Neo4j database.

• dotenv.load_dotenv: Loads environment
variables (such as credentials and API keys)
from an .env file for secure configuration.

These imports enable advanced semantic search,
retrieval, and GenAI capabilities directly on your
Neo4j knowledge graph.

Load Environment Variables and Initialize Neo4j Driver

load_dotenv()

NEO4J_URI = os.getenv(‘NEO4J_URI’)

NEO4J_USER = os.getenv(‘NEO4J_USERNAME’)

NEO4J_PASSWORD = os.getenv(‘NEO4J_PASSWORD’)

OPERNAI_API_KEY = os.getenv(‘OPENAI_API_KEY’)

driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_

USER, NEO4J_PASSWORD))

Here, you load sensitive configuration values
(such as database credentials and API keys) from
environment variables, ensuring that secrets aren’t
hardcoded in your notebook. The steps include:

• load_dotenv(): Loads environment variables
from an .env file into your Python environment.

• os.getenv(): Fetches the Neo4j connection
URI, username, and password, as well as your
OpenAI API key.

• GraphDatabase.driver(): Initializes the
Neo4j database driver with the provided
credentials, allowing your notebook to connect
and interact with your Neo4j instance securely.

TIP: Make sure your .env file contains the correct
values for NEO4J_URI, NEO4J_USERNAME,
NEO4J_PASSWORD, and OPENAI_API_KEY
before running this code. This approach keeps
your credentials secure and makes your codebase
easier to share and maintain.

Initialize the LLM and Embedder
Just as you selected a specific LLM and embedding
model when processing your PDFs, you should do
the same when generating embeddings for your text
data. It’s important to keep track of the language
model and embedding tools that you use during this
process.

For the retrievers to work correctly, the embedding
model used during retrieval must match the one
used to generate the dataset’s embeddings. This
ensures accurate and meaningful search results.

llm = OPENAILLM (model_name=‘gpt-4o’, api_key=OPENAI_API_KEY)

embedder = OPENAIEmbeddings(api_key=OPENAI_API_KEY)

The Basic Retriever Pattern
The basic retriever uses vector embeddings to find
nodes that are semantically similar based on content.
This retriever is useful only for handling specific
information requests about topics contained in just
one or a few chunks. It’s a starting point for more
complex graph-based retrievals, and it’s easy to
implement if you’re familiar with RAG but new
to GraphRAG.

The Developer’s Guide to GraphRAG

19

There are two components in the process:

• Chunks as nodes: The pattern uses the already
chunked data to create a graph, where each
chunk becomes a node in the graph.

• Retrieval: When a query is performed, the basic
retriever pattern searches through these chunk
nodes to find the most relevant information.

Let’s look at how you would implement this pattern
using the SEC dataset.

You can now execute vector similarity searches to
retrieve a company’s current challenges based on
certain text in their filing. The retriever compares a
query vector generated from the search prompt (i.e.,
the numeric representation of the question) against
the indexed text embeddings of the chunks. Vector
similarity searches work well for simple queries with
a narrow focus, such as: “What are the risks around
cryptocurrency?”

from neo4j-graphrag.retrievers import VectorRetriever

Initialize the retriever

retriever = VectorRetriever(

 driver,

 index_name= “text_embeddings”,

 embedder=embedder,

 return_properties=[“text”]

)

query = “What are the main risks around cryptocurrency?”

result = vector_retriever.search(query_text=query, top_

k=10)

Be sure to review your retrieval results before
generating any text output. This step helps you
confirm that your retriever is functioning as intended
and returning relevant data from your knowledge
graph. For example, in the query above, a sample of
the retrieved content is displayed for inspection:

result_table=pd.DataFrame([(item.metadata[‘score’], item.

content [10:80],

item.metadata[‘id’]) for item in result.items],

columns=[‘Score’, ‘Content’, ‘ID’]

Score Content ID

0.913177

cryptocurrency assets could be

treated as a general unsecured

claim ag..

6064a2f775a8:1724

0.908264

agency offerings could subject us

to additional regulations, licensing

r…

6064a2f775a8:1723

0.903259

cyberextortion, distributed denial-

of-service attacks, ransomware,

spe…

6064a2f775a8:1718

0.898422

While we maintain insurance

policies intended to help offset the\

nfina…

6064a2f775a8:1720

0.896942

financing, and branded credit card

products; branded debit card and\

ns…

6064a2f775a8:1731

0.89476

our customers unimpaired and

unconstrained access to our online

servic…

6064a2f775a8:1731

0.894135

changes in cryptocurrencies,

government cryptocurrency

policies and ,,,

6064a2f775a8:1251

0.893723

ct our reputation and revenue.

Actual or perceived vulnerabilities

may…

6064a2f775a8:2508

0.893539

the past and could in the future

have a material adverse effect on

our…

6064a2f775a8:1254

0.893402

may continue to result\nin,

disruption of and volatility in global

fin…

6064a2f775a8:1260

You should review the results, or at least check
the number of returned items. If there’s an error in
your retriever and you proceed directly to natural
language generation, your application may produce
a generic LLM response that isn’t grounded in your
data. This validation step ensures your outputs
remain accurate and reflect the content of your
underlying dataset.

To get the natural language output, use the
following code:

rag = GraphRAG(llm=llm, retriever=vector_retriever)

print(rag.search(query).answer)

The Developer’s Guide to GraphRAG

20

The basic retriever will cause the LLM to generate a
result like this:

The main risks around cryptocurrency, as
highlighted in the context, include:

1. Regulatory Risks: The regulatory status of
certain cryptocurrencies is unclear, which
could subject businesses to additional
licensing and regulatory obligations. If
cryptocurrencies are deemed securities,
this might necessitate securities broker-
dealer registration under federal
securities laws. Non-compliance could
lead to regulatory actions, fines, and other
consequences.

2. Custodial Risks: Cryptocurrency assets
held through a third-party custodian
are susceptible to various risks, such as
inappropriate access, theft, or destruction.
Inadequate insurance coverage by
custodians and their potential inability to
maintain effective controls can expose
customers to losses. In the event of a
custodian’s bankruptcy, the treatment of
custodial holdings in proceedings remains
uncertain, which could delay or prevent
the return of assets.

3. Third-Party Partner Risks: Dependence
on third-party custodians and financial
institutions means exposure to operational
disruptions, inability to safeguard
holdings, and financial defaults by these
partners, which could harm business
operations and customer trust.

These risks underscore the need for robust
regulatory compliance, secure custodial
arrangements, and the management of third-
party relationships to mitigate potential
negative impacts on businesses offering
cryptocurrency products.

While the vector search provided useful information
about cryptocurrency risks, it did not answer deeper,
more actionable questions, such as:

• Which specific companies are exposed to
these risks?

• What other risks may be occurring
concurrently?

• Which asset managers are associated with
the affected companies? (e.g., multi-hop
relationships from risk to company to asset
manager)

In other words, the approach demonstrated here
retrieves relevant text fragments. However, it
doesn’t use the graph’s structure to connect the
risks to companies or asset managers, nor does it
show related or concurrent risks. There’s no traversal
or multi-hop reasoning, so you miss out on the rich,
contextual insights that a knowledge graph
can provide.

To answer these more complex, relationship-driven
questions, you need to combine vector search with
graph-powered Cypher queries that can traverse and
analyze connections between entities. This is where
graph-enhanced retrieval patterns come in.

The Graph-Enhanced Vector Search Pattern
The basic retriever pattern typically relies on text-
based embeddings, capturing only the semantic
meaning of content. While this method is effective
in identifying similar chunks, it leaves the LLM in the
dark as to how those items interact in the real world.

The Graph-Enhanced Vector Search Pattern, also
known as augmented vector search, overcomes
this limitation by drawing on the graph structure
(i.e., using not just what items are but also how
they connect). By embedding node positions and
relationships within a graph, this approach generates
contextually relevant nodes, integrating both:

• Unstructured data: Product descriptions,
customer reviews, and other text content via
semantic similarity

• Structured data: Purchase patterns, category
relationships, and transaction records via
explicit instructions

The Developer’s Guide to GraphRAG

21

The VectorCypherRetriever uses the full graph
capabilities of Neo4j by combining vector-based
similarity searches with graph traversal techniques.
The retriever completes the following actions:

1. Processes a query embedding to perform a
similarity search against a specified vector
index.

2. Retrieves relevant node variables.
3. Executes a Cypher query to traverse the graph

based on these nodes.

To set up this particular query, you need to tell the
graph where and how to traverse from the semantic
nodes. In this example, the query is:

“What are the risk factors for companies discussing
cryptocurrency in their filings?”

The following code creates a retriever to answer
this query:

Let’s start by looking at the parts of the graph that
help to answer this query. We start by identifying
the Chunk that is semantically similar to the
cryptocurrency query. Then we need to traverse the
graph to identify the Document the Chunk comes
from, the Company that FILED the Document and
collect the other RiskFactors for that Company.
Once this information is retrieved, it’s converted to
Cypher and set as the retrieval query.

Figure 27. VectorCypherRetriever example 1

Next, let’s add this new retrieval query to the
VectorCypherRetriever parameters:

vector_cypher_retriever = VectorCypherRetriever(

 driver=driver,

 index_name=’chunkEmbeddings’,

 embedder=embedder,

 retrieval_query=company_risk_list_query

)

VectorCypherRetriever parameters:

• Driver: The Neo4j database connection
• Index_name: The name of the vector index

(here, chunkEmbeddings) used for semantic
search

• Embedder: The embedding model used to
generate/query vector representations

• Retrieval_query: The Cypher query (defined
above) that tells Neo4j how to traverse the
graph from the semantically matched nodes

This setup enables you to start with a semantic
search (e.g., for “cryptocurrency risk”) and
automatically traverse your knowledge graph to
reveal which companies are involved and what other
risks they face. The resulting responses are both
semantically relevant and graph-aware.

VectorCypher Retriever in Practice
The power of the Graph-Enhanced Vector Search
Pattern lies in its flexibility. While the example
above focuses on linking companies to risk factors in
financial filings, the approach can be applied to any
domain or vertical by customizing the graph schema
and Cypher queries.

How might this look for other industries?

• Healthcare: Retrieve patient records,
diagnoses, and treatment plans by combining
semantic search of clinical notes with graph
traversal across relationships like doctor-
patient, medication-prescribed, or symptom-
diagnosis.

• Ecommerce: Connect customer reviews or
product descriptions (unstructured text) to

company_risk_list_query = “““

WITH node

MATCH (node)-[:FROM_DOCUMENT]-(d:Document)-[:FILED]-
(c:Company)-[:FACES_RISK]-(rf:RiskFactor)

RETURN c.name AS company, node.text AS context,
collect(DISTINCT r.name) AS risks

“””

The Developer’s Guide to GraphRAG

22

purchase behavior, category hierarchies, or
supplier relationships (a structured graph),
enabling recommendations and/or supply
chain insights.

• Law: Link case law or legal opinions to statutes,
precedents, and involved parties, surfacing not
just relevant text but also the legal context
and network of citations.

• Cybersecurity: Combine threat intelligence
reports (text) with the graph relationships
between vulnerabilities, affected assets, and
mitigation strategies to provide a holistic view
of your security posture.

• Education: Map student essays or discussion
posts to learning objectives, course materials,
and assessment outcomes for personalized
education analytics.

Let’s summarize the major tasks from this example
so you can apply it to your domain:

• Adapt the Pattern Model Your Domain:
Define the node types, relationships, and
key properties relevant to your vertical (e.g.,
Patient, Diagnosis, Product, Supplier, Case,
Asset, etc.).

• Index the Right Data: Create vector indexes
on the appropriate text or document nodes for
semantic retrieval.

• Craft Domain-Specific Cypher Queries: Write
Cypher queries that traverse from the retrieved
nodes to related entities and/or relationships
that matter in your context.

• Integrate With VectorCypherRetriever:
Use the VectorCypherRetriever with your
custom query to combine semantic and
structural search.

The result: You can ask complex, context-aware
questions about entities in your own industry. The
GraphRAG retriever will surface relevant information
that connects context across structured and
unstructured data to drive real-world understanding.

With this in mind, let’s look at another
VectorCypherRetriever example.

VectorCypher Retrieval: A Working Example
Which Asset Managers are most affected by
reseller concerns?

Let’s again start with the Chunks semantically
similar to “reseller concerns,” and then traverse
through the Document to the Company through OWNS
to identify the AssetManagers relevant to the query.
We’ll also include the property shares from the
relationship OWNS and order by largest holdings.

Figure 28. VectorCypherRetriever example 2

chunk_to_asset_manager_query = “““

WITH node

MATCH

(node)-[:FROM_DOCUMENT]-(doc:Document)-[:FILED]-
(company:Company)-[owns:OWNS]-(manager:AssetManager)

RETURN distinct company.name AS company, manager.managerName AS
AssetManager, owns.shares AS shares order by shares desc

“””

Next, add this new retrieval query to the
VectorCypherRetriever parameters:

vector_cypher_retriever = VectorCypherRetriever(

 driver=driver,

 index_name=’chunkEmbeddings’,

 embedder=embedder,

 retrieval_query=chunk_to_asset_manager_query

)

VectorCypherRetriever parameters:

• Driver: The Neo4j database connection
• Index_name: The name of the vector

index (here, chunkEmbeddings) used for
semantic search

The Developer’s Guide to GraphRAG

23

• Embedder: The embedding model used to
generate/query vector representations

• Retrieval_query: The Cypher query
(defined above) that tells Neo4j how to
traverse the graph from the semantically
matched nodes

result = vector_cypher_retriever.search(query_text=query,
top_k=10)

for item in result.items:

 print(item.content[:100])

Let’s look at the results:

<Record company=’APPLE INC’
AssetManager=’BlackRock Inc.’
shares=1031407553>

<Record company=’APPLE INC’
AssetManager=’Berkshire Hathaway Inc’
shares=915560382>

<Record company=’AMAZON’
AssetManager=’BlackRock Inc.’
shares=613380364>

<Record company=’APPLE INC’
AssetManager=’STATE STREET CORP’
shares=569291690>

<Record company=’MICROSOFT CORP’
AssetManager=’BlackRock Inc.’
shares=533634606>

<Record company=’AMAZON’
AssetManager=’STATE STREET CORP’
shares=332449318>

<Record company=’AMAZON’
AssetManager=’FMR LLC’ shares=302101441>

<Record company=’APPLE INC’
AssetManager=’FMR LLC’ shares=298321726>

<Record company=’APPLE INC’
AssetManager=’GEODE CAPITAL MANAGEMENT,
LLC’ shares=296103070>

Since these results look as expected, we proceed to
the natural language output:

result = GraphRag(llm=llm,retriever=vector_cyper_retriever)

print(rag.search(query_text=query_text).answer)

The Asset Managers most affected by
cryptocurrency concerns are:

1. BlackRock Inc.

2. FMR LLC

3. STATE STREET CORP

4. GEODE CAPITAL MANAGEMENT, LLC

5. MORGAN STANLEY

6. NORTHERN TRUST CORP

7. BANK OF AMERICA CORP /DE/

8. Bank of New York Mellon Corp

9. ALLIANCEBERNSTEIN L.P.

10. AMUNDI

11. WELLINGTON MANAGEMENT GROUP LLP

12. Capital World Investors

13. AMERIPRISE FINANCIAL INC

14. WELLS FARGO & COMPANY/MN

This is where GraphRAG really shines. You may be
wondering how to construct the retrieval query
that traverses the graph. In this example, you can see
that the retrieval_query is a string of Cypher code,
the language of graph querying. Now let’s look at
one last retriever pattern found in the Neo4j library:
the Text2CypherRetriever.

Text2CypherRetriever
You can use Text2CypherRetriever to seamlessly
generate Cypher queries from natural language
questions. Instead of manually crafting each Cypher
statement, the retriever uses an LLM to translate
your plain-English queries into Cypher based on its
understanding of your Neo4j schema.

The Developer’s Guide to GraphRAG

24

The process begins with a natural language question,
such as:

“What are the names of companies owned
by BlackRock Inc.?”

The retriever then uses the schema, described
as a string outlining the main node types and
relationships in your graph (for example, companies,
risk factors, and asset managers), to guide the LLM
in generating an appropriate Cypher query. While you
could pass a hard-coded schema to the retriever, it’s
best practice to access the schema as it currently
exists in your instance. Here’s a sample of the full
schema:

result = get_schema (driver)

Node properties:

Document {id: STRING, path: STRING,
createdAt: STRING}

Chunk {id: STRING, index: INTEGER, text:
STRING, embedding: LIST}

Company {id: STRING, name: STRING, chunk_
index: INTEGER, ticker: STRING}

Product {id: STRING, name: STRING, chunk_
index: INTEGER}

. . .

Relationship properties:

OWNS {position_status: STRING, Value:
FLOAT, shares: INTEGER, share_value:
FLOAT}

The relationships:

....

(:Executive)-[:FROM_CHUNK]->(:Chunk)

(:StockType)-[:FROM_CHUNK]->(:Chunk)

(:AssetManager)-[:OWNS]->(:Company)

Now that you’ve defined the schema, you
have everything you need to set the
Text2CypherRetriever.

query=”What are the names of the companies owned by BlackRock
Inc.?”

text2cypher_retriever = Text2CypherRetriever(

 driver=driver,

 llm=llm,

 neo4j_schema= schema

)

cypher_query = text2cypher_retriever.get_search_results(query)

cypher_query.metadata[“cypher”]

MATCH (a:AssetManager {managerName:
‘BlackRock Inc.’})-[:OWNS]->(c:Company)

RETURN c.name AS company_name

This approach has several advantages. It removes
the need to write Cypher by hand for each query,
making graph data accessible even to those without
technical expertise. It’s ideal for rapid prototyping,
exploratory analysis, and building natural language
interfaces to your knowledge graph, enabling a
broader range of users to interact with complex
graph data.

Now you can pass that Cypher query directly to the
driver to get the results:

result = driver.execute_query(cypher_query.metadata[“cypher”])

for record in result.records:

 print(record)

<Record companyName=’APPLE INC’>

<Record companyName=’MICROSOFT CORP’>

<Record companyName=’INTEL CORP’>

<Record companyName=’AMAZON’>

<Record companyName=’PG&E CORP’>

<Record companyName=’NVIDIA CORPORATION’>

The Developer’s Guide to GraphRAG

25

While the Text2Cypher functionality in the Neo4j
GraphRAG library offers a powerful way to translate
natural language queries into Cypher, there are
important considerations to keep in mind when using it.

First, because Text2Cypher relies on an LLM to
generate queries dynamically, the same input may
not always yield identical results. The model’s
responses can vary depending on context, training
data, and even minor changes in phrasing. While the
flexibility of Text2Cypher allows for more natural
interactions, it can also introduce inconsistencies
when precise, repeatable queries are required.

Additionally, query optimization remains an important
factor. While LLMs are capable of generating
complex Cypher queries, they may not always
produce the most efficient ones. Without human
intervention or performance tuning, these queries
might not be optimized for speed or resource
consumption, which could potentially slow
application performance.

Finally, high-stakes applications — such as
those requiring strict reproducibility, financial
computations, or regulatory compliance — may
require standardized, manually crafted Cypher
queries instead. In such cases, relying entirely on an
AI-generated query could introduce risks, especially
if the generated query structure does not fully align
with business logic or data constraints.

Despite these limitations, Text2Cypher is a valuable
tool for making Neo4j more accessible, particularly
for applications where flexibility, adaptability, and
user-driven query formulation are more important
than absolute precision. Understanding these

trade-offs will help you integrate Text2Cypher
effectively while ensuring that it is used in
scenarios where its strengths outweigh its
potential drawbacks.

Check out the Text2Cypher Crowdsourcing
App to explore Text2Cypher applications and
contribute to development projects.

Community Summary Pattern
You may have heard the term GraphRAG and
thought of the pattern popularized by Microsoft,
where the text is used to summarize community
or other knowledge (i.e., forum posts). This
type of retriever is often called the Community
Summary Pattern.

While a Microsoft-style GraphRAG emphasizes
summarization and community Q&A, Neo4j’s
approach focuses on domain-specific schema
control and composable query generation. This
focus expands GraphRAG from summarization
into structured reasoning, decision tracing, and
dynamic compliance use cases.

Concluding Thoughts and
Next Steps

Integrating a knowledge graph with RAG
gives GenAI systems structured context and
relationships, improving the relevance and
quality of generated results.

This guide has equipped you with the
foundational skills needed to implement
GraphRAG. You learned how to use Neo4j’s
cloud-based graph database service, Neo4j Aura,
to prepare a knowledge graph for GraphRAG,
Data Importer, and the GraphRAG Python library
to create a knowledge graph from unstructured
data. You also learned how to implement
foundational GraphRAG retrieval patterns,
including the basic retriever, graph-enhanced
vector search, and Text2Cypher.

https://text2cypher.vercel.app
https://text2cypher.vercel.app
https://neo4j.com/blog/developer/global-graphrag-neo4j-langchain/
https://neo4j.com/blog/developer/global-graphrag-neo4j-langchain/
https://neo4j.com/product/auradb/
https://neo4j.com/docs/neo4j-graphrag-python/current/

The Developer’s Guide to GraphRAG

26

Like other AI technologies, GraphRAG is rapidly
evolving. A few trends to watch:

• More advanced, dynamic Cypher queries and
sophisticated retrieval patterns that use graph
algorithms and machine learning techniques
are pushing the boundaries of what’s possible
in information retrieval
and generation.

• Deeper integration with other AI technologies,
such as knowledge graph embeddings and
graph neural networks, promises to enhance
the semantic understanding and reasoning
capabilities of GraphRAG systems.

• Integrating GraphRAG with agentic systems
and other multi-tool, multi-step RAG chains
can result in more autonomous and intelligent
systems capable of handling complex,
multifaceted tasks with greater efficiency
and accuracy.

• Incorporating semantic layers in GraphRAG
systems can provide even more nuanced
understanding and context awareness in
information retrieval and generation tasks.

Explore GenAI
With Neo4j
Neo4j uncovers hidden relationships and patterns
across billions of data connections deeply, easily,
and quickly, making graph databases an ideal choice
for building your first GraphRAG application.

Build on what you learned in this guide:

• The Neo4j for GenAI use case page offers
guides, tutorials, and best practices about
GraphRAG implementation.

• The GraphRAG site contains explanations
of GraphRAG principles and step-by-
step guides for various implementation
scenarios.

• Neo4j GraphAcademy offers free, hands-
on online courses.

Learn More

https://neo4j.com/docs/cypher-manual/current/appendix/tutorials/advanced-query-tuning/
https://neo4j.com/blog/developer/enhancing-word-embedding-with-graph-neural-networks/
https://neo4j.com/blog/developer/graphrag-and-agentic-architecture-with-neoconverse/
https://neo4j.com/blog/developer/topic-extraction-semantic-search-rag/
https://neo4j.com/generativeai/
https://graphrag.com/
https://graphacademy.neo4j.com
https://neo4j.com/generativeai/

27

The Developer’s Guide to GraphRag

Appendix

Technical Resources in Workflow Order

Stage Resource Why It’s Useful

1. Data Modeling Designing a Graph Data Model for
GenAI (Neo4j Blog)

Helps you define entity-relationship schemas (on-
tology) that power GraphRAG context.

2. Data Modeling Neo4j Data Modeling Guide Foundation for understanding how to structure both
unstructured and structured data into a graph.

3. Environment Setup Neo4j Aura Free Tier Spin up a secure cloud instance instantly – perfect
for prototyping.

4. Data Ingestion (Structured) Neo4j Data Importer Tool Visual UI for mapping CSVs and relational data to
graph nodes and relationships.

5. Data Ingestion (Unstructured) Neo4j GraphRAG Python Library Convert PDFs and text to a knowledge graph using
LLM-powered entity + relationship extraction.

6. Data Ingestion (Unstructured) KGBuilder Tutorial – SEC Filings
Example

Walkthrough for turning dense financial disclosu-
res into structured graph nodes and edges.

7. Embeddings + Vector Indexing Neo4j Vector Indexing Docs Build and manage vector embeddings inside Neo4j
for hybrid retrieval.

8. Retrieval: Basic + Vector Neo4j GraphRAG Basic Retriever
Pattern

First step: combine chunked content and embed-
ding for basic semantic retrieval.

9. Retrieval: Graph-Enhanced Graph-Enhanced Vector Search with
Neo4

Augment vector search with traversal logic to im-
prove contextual accuracy.

10. Test2Cypher Automation Text2Cypher Documentation &
Examples

Translate user queries into Cypher automatically
using LLMs – ideal for dynamic GraphRAG.

11. Agentic & Multi-Step Use GraphRAG + NeoConverse + Agents Build multi-tool agents that query graphs autono-
mously across task chains.

12. Semantic Enhancement Topic Extraction for Semantic RAG Use LLMs to extract topics and themes into your
graph to add interpretability.

13. Deployment + Ops Neo4j Deployment Best Practices Tips for scaling and monitoring GraphRAG in pro-
duction environments.

https://neo4j.com/blog/developer/designing-a-graph-data-model-for-genai/
https://neo4j.com/developer/data-modeling/
https://neo4j.com/cloud/aura/
https://neo4j.com/product/data-importer/
https://github.com/neo4j-product-examples/graphrag-examples
https://neo4j.com/blog/developer/graphrag-sec-filings-example/
https://neo4j.com/blog/developer/graphrag-sec-filings-example/
https://neo4j.com/blog/developer/graph-enhanced-vector-search/
https://neo4j.com/blog/developer/graph-enhanced-vector-search/
https://neo4j.com/blog/developer/text2cypher-graphrag-pattern/
https://neo4j.com/blog/developer/graphrag-and-agentic-architecture-with-neoconverse/
https://neo4j.com/blog/developer/topic-extraction-semantic-search-rag/
https://neo4j.com/docs/aura/

