
M A N N I N G

William Lyon

Essential Excerpts

Save 50% on this book – eBook, pBook, and MEAP. Enter mefgaee50 in the
Promotional Code box when you checkout. Only at manning.com.

Fullstack GraphQL Applications
with GRANDstack
by William Lyon

ISBN 9781617297038
300 pages (estimated)
$39.99

Fullstack GraphQL Applications with GRANDStack
Essential Excerpts

Chapters chosen by William Lyon

Chapter 1
Chapter 3
Chapter 4

 Copyright 2020 Manning Publications
To pre-order or learn more about these books go to www.manning.com

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Erin Twohey, corp-sales@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Marija Tudor

ISBN: 9781617298745
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 24 23 22 21 20 19

iii

contents
1 What’s the GRANDstack? 1

1.1 GraphQL 2
1.2 React 12
1.3 Apollo 13
1.4 Neo4j database 14
1.5 How it all fits together 19
1.6 What we will build 23

3 Graphs in the database 25
3.1 Neo4j overview 26
3.2 Graph data modeling with Neo4j 26
3.3 Data modeling considerations 31
3.4 Tooling: Neo4j Desktop 32
3.5 Tooling: Neo4j Browser 33
3.6 Cypher 33
3.7 Using the client drivers 41

4 A GraphQL API for our graph database 43
4.1 Common GraphQL problems 44
4.2 Introducing GraphQL database integrations 45
4.3 The neo4j-graphql.js library 45
4.4 Basic queries 52
4.5 Ordering and pagination 55
4.6 Nested queries 57

iv CHAPTER contents

4.7 Filtering 58
4.8 Working with temporal fields 62
4.9 Working with spatial data 64

4.10 Adding custom logic 66
4.11 Inferring GraphQL schema from an existing database 72

index 74

v

foreword
Thank you for downloading this special edition of Fullstack GraphQL: Building Applica-
tions with GRANDstack. This book is intended for developers interested in building full-
stack applications with GraphQL. The successful reader will have some basic
familiarity with Node.js and a basic understanding of client-side JavaScript, but most
importantly, will have a motivation for understanding how to build GraphQL services
and applications leveraging GraphQL.

 The goal of this book is to demonstrate how GraphQL, React, Apollo, and Neo4j
Database can be used together to build complex, data-intensive fullstack applications.
You may be wondering why we’ve chosen this specific combination of technologies. As
you read through the book, I hope you’ll realize the developer productivity, performance
and intuitive benefits of using a graph data model throughout the stack—from the data-
base to the API—and all the way through the front-end client data fetching code.

 The full book is divided into three sections, which together show how to build a
fullstack business-reviews application with features such as search and personalized
recommendations. The first section focuses on server-side GraphQL with Neo4j,
building API functionality that includes not just simple data fetching, but also imple-
menting custom logic using graph database traversals. The second section focuses on
building a front-end using React and Apollo Client. And the final section explores
more real-world concerns such as authorization, deployment, and rate limiting.

 The special edition ebook you are reading now focuses on the first section: imple-
menting a server-side GraphQL API backed by the Neo4j graph database. After read-
ing these selected chapters and working through the exercises, you should have an
understanding of how to build APIs with Neo4j and GraphQL, using the GraphQL
integration for Neo4j known as neo4j-graphql.js.

 You can find all the relevant code and exercise solutions in the book’s GitHub
page: github.com/johnymontana/fullstack-graphql-book. Thanks for reading, and
I hope you enjoy your fullstack GraphQL journey!

Cheers,
William Lyon
@lyonwj

1

What’s the GRANDstack?

In this chapter we look at the technologies we’ll use throughout the book, specifi-
cally:

GraphQL: For building our API
React: For building our user interface and JavaScript client web application
Apollo: Tools for working with GraphQL on both the server and client
Neo4j Database: The database we’ll use for storing and manipulating our
application data

Together these technologies make up the GRANDstack, a full-stack framework for
building applications using GraphQL (figure 1.1).

 Throughout the course of this book we’ll use GRANDstack to build a simple
business review application, working through each technology component as we
implement it in the context of our application. In the last section of this chapter we
review the basic requirements of the application we’ll build throughout the book.

This chapter covers
Understanding the GRANDstack

Reviewing each technology in the stack

Looking at the full-stack application we’ll build

Figure 1.1 The components of GRANDstack include GraphQL, React, Apollo, and Neo4j database.

2 CHAPTER 1 What’s the GRANDstack?

The focus of this book is learning how to build applications with GraphQL, so as we
cover GraphQL it will be done in the context of building an application and using it
with other technologies: how to design our schema, how to integrate with a database,
how to build a web application that can query our GraphQL API, how to add authen-
tication to our application, and so on. As a result, this book assumes basic knowledge
of how web applications are typically built but doesn’t necessarily require experience
with each specific technology. To be successful, the reader should have a basic famil-
iarity with JavaScript, both client-side and Node.js, and be familiar with concepts such
as REST APIs and databases. You should be familiar with the npm command-line tool
(or yarn) and how to use it to create Node.js projects and install dependencies. We
include a brief introduction to each technology when it’s introduced and suggest
other resources for more in-depth coverage where needed by the reader. It’s also
important to note that we’ll cover specific technologies to be used alongside
GraphQL and that at each phase a similar technology could be substituted (for exam-
ple, we could build our front-end using Vue instead of React). Ultimately, the goal of
this book is to show how these technologies fit together and provide a full-stack frame-
work for building applications with GraphQL.

1.1 GraphQL
At its heart, GraphQL is a specification for building APIs. The GraphQL specification
describes an API query language and a way for fulfilling those requests. When building a
GraphQL API, we describe the data available using a strict type system. These type defi-
nitions become the specification for the API, and the client is free to request the data it
requires based on these type definitions, which also define the entry points for the API.

3GraphQL

 GraphQL is typically framed as an alternative to REST, which is the API paradigm
you’re mostly likely to be familiar with. This can be true in some cases, however GraphQL
can also wrap existing REST APIs or other data sources. This is due to the benefit of
GraphQL being data-layer agnostic—we can use GraphQL with any data source.

GraphQL is a query language for APIs and a runtime for fulfilling those queries with
your existing data. GraphQL provides a complete and understandable description of the
data in your API, gives clients the power to ask for exactly what they need and nothing
more, makes it easier to evolve APIs over time, and enables powerful developer tools.

— graphql.org

Let’s dive into several of the specific aspects of GraphQL.

1.1.1 GraphQL type definitions

Rather than being organized around endpoints that map to resources (as with REST),
GraphQL APIs are centered around type definitions that define the data types, fields,
and how they’re connected in the API. These type definitions become the schema of
the API, which is served from a single endpoint.

 Because GraphQL services can be implemented in any language, a language-
agnostic Schema Definition Language (SDL) is used to define GraphQL types. Let’s
look at an example, motivated by considering a simple movies application. Imagine
you’re hired to create a website that allows users to search a movie catalog for movie
details such as title, actors, and description, as well as show recommendations for sim-
ilar movies the user may find interesting (figure 1.2).

Figure 1.2 A simple GRANDstack movies application.

4 CHAPTER 1 What’s the GRANDstack?

Let’s start by creating simple GraphQL type definitions that define the data domain of
our application, as shown in the following listing.

type Movie {
 movieId: ID!
 title: String
 actors: [Actor]
}

type Actor {
 actorId: ID!
 name: String
 movies: [Movie]
}

type Query {
 allActors: [Actor]
 allMovies: [Movie]
 movieSearch(searchString: String!): [Movie]
 moviesByTitle(title: String!): [Movie]
}

Our GraphQL type definitions declare the types used in the API, their fields, and how
they’re connected. When defining an object type (such as Movie) all fields available
on the object and the type of each field is also specified (we can also add fields later,
using the extend keyword). In this case we define title to be a scalar String type—a
type that resolves to a single value, as opposed to an object type. Here actors is a field
on the Movie type that resolves to an array of Actor objects, indicating that the actors
and movies are connected (the foundation of the “graph” in GraphQL).

 Fields can be either optional or required. The actorId field on the Actor object
type is required (or non-nullable). Every Actor type must have a value for actorId.
Fields that don’t include a ! are nullable, meaning values for those fields are optional.

 The fields of the Query type become the entry points for queries into the GraphQL
service. GraphQL schemas may also contain a Mutation type, which defines the entry
points for write operations into the API. A third special entry point related type is the
Subscription type, which defines events to which a client can subscribe.

NOTE We’re skipping over many important GraphQL concepts here, such as
mutation operations, interface and union types, and so on, but don’t worry,
we’re getting started and will get to these soon enough!

At this point you may wonder where the “graph” is in “GraphQL”. It turns out we’ve
defined a graph using our GraphQL type definitions earlier in this chapter. A graph is
a data structure composed of nodes (the entities or objects in our data model) and
relationships that connect nodes, which is exactly the structure we’ve defined in our

Listing 1.1 Simple GraphQL type definitions for a movies GraphQL API

Movie is a GraphQL object type, which means
a type that contains one or more fields.

Title is
a field on
the Movie
type.

Fields can reference other types, such
as a list of Actor objects in this case.

actorId is a required (or non-nullable) field on the
Actor type, which is indicated by the ! character.

The Query type is a special type in GraphQL
which indicate the entry points for the API.

Fields can also have arguments, in this case the movieSearch
field takes a required String argument, searchString.

5GraphQL

type definitions using SDL. The GraphQL type definitions above have defined a sim-
ple graph with this structure (figure 1.3).

Figure 1.3 GraphQL type definitions, expressed as a graph.

Graphs are all about describing connected data and here we’ve defined how our mov-
ies and actors are connected in a graph.

 When a GraphQL service receives a query, it’s validated and executed against the
GraphQL schema defined by these type definitions. Let’s look at an example query
that could be executed against a GraphQL service defined using the previous type
definitions.

1.1.2 Querying with GraphQL

GraphQL queries define a traversal through the graph defined by our type definitions
as well as requesting a subset of fields to be returned by the query; this is known as the
selection set. In this query we start from the allMovies entry point and traverse the
graph to find actors connected to each movie. Then for each of these actors, we tra-
verse to all the other movies they’re connected to. Our GraphQL query is shown in
the following listing.

query FetchSomeMovies {
 allMovies {
 title
 actors {
 name
 movies {
 title
 }
 }
 }
}

Note that our query is nested and describes how to traverse the graph of related
objects (in this case movies and actors), as in figure 1.4 and listing 1.3.

Listing 1.2 Simple GraphQL query

Optional naming of operation, query is the default operation and can therefore be omitted.
Naming the query, in this case FetchSomeMovies is also optional and can be omitted.

Here we specify the entry point, which is a field on either
the Query or Mutation type, in this case our entry
point for the query is the allMovies query field.

The selection
set defines
the fields to
be returned
by the query.

In the case of object fields, a nested selection
set is used to specify the fields to be returned.

A further nested selection set is needed
for the fields on movies to be returned.

Figure 1.4 A GraphQL query traversal through the data graph.

6 CHAPTER 1 What’s the GRANDstack?

"data": {
 "allMovies": [
 {
 "title": "Toy Story",
 "actors": [
 {
 "name": "Tom Hanks",
 "movies": [
 {
 "title": "Bachelor Party"
 }
]
 },
 {
 "name": " Jim Varney",
 "movies": [
 {
 "title": "3 Ninjas: High Noon On Mega Mountain"
 }
]
 }
]
 },
 {
 "title": "Jumanji",
 "actors": [
 {
 "name": "Robin Williams",
 "movies": [
 {
 "title": "Popeye"
 }
]

Listing 1.3 Query results

7GraphQL

 },
 {
 "name": "Kirsten Dunst",
 "movies": [
 {
 "title": "Midnight Special"
 },
 {
 "title": "All Good Things"
 }
]
 }
]
 },
 {
 "title": "Grumpier Old Men",
 "actors": [
 {
 "name": "Walter Matthau",
 "movies": [
 {
 "title": "Cactus Flower"
 }
]
 },
 {
 "name": " Ann-Margret",
 "movies": [
 {
 "title": "Bye Bye Birdie"
 }
]
 }
]
 }
]
}

As you can see from the results, the response matches the form of the query—exactly
the fields requested in the query are returned.

 But where does the data come from? The data fetching logic for GraphQL APIs is
defined in functions called resolvers, which contain the logic for resolving the data for
an arbitrary GraphQL request from the data layer. GraphQL is data-layer agnostic so
the resolvers could query one or more databases or even fetch data from another API,
even a REST API. We cover resolvers in depth in the next chapter.

1.1.3 Advantages of GraphQL

Now that we’ve seen our first GraphQL query you may wonder, “OK that’s nice, but
I can fetch data about movies with REST, too. What’s so great about GraphQL?”. Let’s
review some of the benefits of GraphQL

8 CHAPTER 1 What’s the GRANDstack?

OVERFETCHING AND UNDERFETCHING

Overfetching refers to a pattern commonly associated with REST where unnecessary
and unused data is sent over the network in response to an API request. Because
REST is modeling resources, when we make a GET request for say /movie/tt0105265
we get back the representation of that movie, nothing more nothing less, as shown in
the following listing.

{
 "title": "A River Runs Through It",
 "year": 1992,
 "rated": "PG",
 "runtime": "123 min",
 "plot": "The story about two sons of a stern minister -- one reserved, one

rebellious -- growing up in rural Montana while devoted to fly
fishing.",

 "movieId": "tt0105265",
 "actors": ["nm0001729", "nm0000093", "nm0000643", "nm0000950"],
 "language": "English",
 "country": "USA",
 "production": "Sony Pictures Home Entertainment",
 "directors": ["nm0000602"],
 "writers": ["nm0533805", "nm0295030"],
 "genre": "Drama",
 "averageReviews": 7.3
}

But what if the view of our application only needs to render the title and year of the
movie? Then we’ve unnecessarily sent too much data over the wire. Further, several of
those movie fields may be expensive to compute. For example, if we need to calculate
averageReviews by aggregating across all movie reviews for each request, but we’re
not even showing that in the application view, that’s wasted compute time and unnec-
essarily impacts the performance of our API (in the real world we may cache this, but
this is an example).

 Similarly, underfetching is a pattern associated with REST where not enough data
is returned by the request.

 Let’s say our application view needs to render the name of each actor in a movie.
First, we make a GET request for /movie/tt0105265. As seen previously, we have an
array of IDs for the actors connected to this movie. Now to get the data required for
our application we need to iterate over this array of actor IDs to get the name of each
actor to render in our view:

/actor/nm0001729
/actor/nm0000093
/actor/nm0000643
/actor/nm0000950

With GraphQL we can accomplish this in a single request, solving both the overfetch-
ing and underfetching problems. This results in improved performance on the server

Listing 1.4 REST API response for GET /movie/tt0105265

9GraphQL

side because we’re spending less compute resources at the data layer, less overall data
sent over the wire, and reduced latency by being able to render our application view
with a single network request to the API service.

GRAPHQL SPECIFICATION

GraphQL is a specification for client-server communication that describes the fea-
tures, functionality, and capability of the GraphQL API query language. Having this
specification gives a clear guide of how to implement your GraphQL API and clearly
defines what is and what isn’t GraphQL.

 REST doesn’t have a specification, instead there are many different implementa-
tions, from REST-ish to Hypermedia As The Engine Of Application State
(HATEOAS). Having a specification as part of GraphQL simplifies debates over end-
points, status codes, and documentation. All this comes built in with GraphQL which
leads to productivity wins for developers an API designer. The specification provides a
clear path for API implementors.

WITH GRAPHQL IT’S GRAPHS ALL THE WAY DOWN

REST models itself as a hierarchy of resources, yet most interactions with APIs are
done in terms of relationships. For example, given our movie query, for this movie,
show me all of the actors connected to it, and for each actor show me all the other
movies they’ve acted in—we’re querying for relationships.

 GraphQL can also help unify data from disparate systems. Because GraphQL is
data-layer agnostic we can build GraphQL APIs that integrate data from multiple ser-
vices or microservices together and provide a clear way to integrate data from these
different system into a single GraphQL schema.

 GraphQL can also be used to compartmentalize data fetching in the application in
a component-based data interaction pattern. Because each GraphQL query can
describe exactly the graph traversal and fields to be returned, encapsulating these
queries with application components can help simplify application development and
testing. We’ll see how to apply this once we start building our React application.

INTROSPECTION

Introspection is a powerful feature of GraphQL that allows us to ask a GraphQL API
for the types and queries it supports. Introspection becomes a way of self-documenting
the API. Tools that make use of introspection can provide human readable API docu-
mentation, visualization tooling, and leverage code generation to create API clients.

1.1.4 Disadvantages of GraphQL

GraphQL isn’t a silver bullet, and we shouldn’t think of GraphQL as the solution to all
of our API-related problems. One of the most notable challenges of adopting
GraphQL is that several well-understood practices from REST don’t apply when using
GraphQL. For example, HTTP status codes are commonly used to convey success, fail-
ure, and other cases of a REST request: 200 OK means our request was successful and
404 Not Authorized means we forgot an auth token or don’t have the correct permis-

10 CHAPTER 1 What’s the GRANDstack?

sions for the resource requested. However, with GraphQL, each request returns 200
OK regardless if the request was a complete success or not. This makes error handling
a bit different in the GraphQL world. Instead of a single status code describing the
result of our request, GraphQL errors are typically returned at the field level of the
selection set. This means that we may have successfully retrieved a part of our
GraphQL query, while other fields returned errors.

 Web caching is another well understood area from REST that’s handled a bit differ-
ently with GraphQL. With REST, caching the response for /movie/123 is possible
because we can return the same exact result for each GET request. This isn’t possible
with GraphQL because each request could contain a different selection set, meaning we
can’t simply return a cached result. This is mitigated by most GraphQL clients imple-
menting client caches at the application level and in practice most of the time our
GraphQL requests are in an authenticated environment where caching isn’t applicable.

 Another challenge is that of exposing arbitrary complexity to the client and
related performance considerations. If the client is free to compose queries as they
wish, how can we ensure these queries don’t become so complex as to impact perfor-
mance significantly or overwhelm the computing resources of our backend infrastruc-
ture? Fortunately, GraphQL tooling allows us to restrict the depth of the queries used
and further restrict the queries that can be run to a whitelisted selection of queries
(known as persisted queries). A related challenge is implementing rate limiting. With
REST we could restrict the number of requests that can be made in a certain time
period; however, with GraphQL this becomes more complicated since the client could
be requesting multiple objects in a single query. This results in bespoke query costing
implementations to address rate limiting.

 Finally, the so called “n+1 query problem” is a common problem in GraphQL data
fetching implementations that can result in multiple round trips to the database and neg-
atively impact performance. Consider the case where we request information about a
movie and all actors of the movie. In the database we might store a list of actor IDs associ-
ated with each movie, which is returned with our request for the movie details. In a naive
GraphQL implementation we then need to retrieve the actor details, and we must make
a separate request to the database for each actor object, resulting in a total of n (the
number of actors) + 1 (the movie) queries to the database. To address the n+1 query
problem, tools such as DataLoader allow us to batch requests to the database, increasing
performance, and database integrations such as neo4j-graphql.js and PostGraphile allow
us to generate a single database query from an arbitrary GraphQL request.

GraphQL limitations
It’s important to understand that GraphQL is an API query language and not a data-
base query language. GraphQL lacks semantics for many complex operations
required of database query languages, such as aggregations, projects, and variable
length path traversals.

11GraphQL

1.1.5 GraphQL tooling

In this section we review GraphQL specific tooling that will help us build, test, and
query our GraphQL API.

GRAPHIQL
GraphiQL is an in-browser tool for exploring and querying GraphQL APIs. With
GraphQL we can execute GraphQL queries against a GraphQL API and view the
results. Thanks to GraphQL’s introspection feature we can view the types, fields, and
queries supported by the GraphQL API we’ve connected to. In addition, because of
the GraphQL type system we have immediate query validation as we construct our
query (figure 1.5).

Figure 1.5 GraphiQL screenshot.

GRAPHQL PLAYGROUND

Similar to GraphiQL, GraphQL Playground (figure 1.6) is an in-browser tool for exe-
cuting GraphQL queries, viewing the results, and exploring the GraphQL API’s
schema, powered by GraphQL’s introspection features. GraphQL Playground has a
few additional features such as viewing GraphQL type definitions, searching through
the GraphQL schema, and easily adding request headers (such as those required for
authentication). We include GraphQL Playground in addition to GraphiQL because
certain tools (such as Apollo Server) expose GraphQL Playground by default, while
others expose GraphiQL.

Figure 1.6 GraphQL Playground screenshot.

12 CHAPTER 1 What’s the GRANDstack?

1.2 React
React is a declarative, component-based library for building user interfaces using
JavaScript. React uses a virtual DOM (a copy of the actual Document Object Model) to
efficiently calculate DOM updates required to render views as state and data changes.
This means users design views that map to application data and React handles render-
ing the DOM updates efficiently. Components encapsulate data handling and user
interface rendering logic without exposing their internal structure so they can be eas-
ily composed together to build complex applications.

1.2.1 React components

Let’s examine a simple React component in the following listing.

class MovieTitleComponent extends React.Component {
 constructor() {
 super()
 this.state = {title: 'River Runs Through It, A'}
 }

 render() {
 return (

Listing 1.5 A simple GraphQL component

Components can be either class components or functional components. Here we
implement a class component, inheriting from the React.Component class.

The constructor for our class component is
called when our component is first initialized.

Class components can store data in state. We can
set the initial state value in the constructor.

The render method defines what user
interface elements the component will render.

13Apollo

 <div>{this.state.title}</div>
)
 }
}

COMPONENT LIBRARIES

Because components encapsulate data handling and user interface rendering logic
and are easily composable, it’s practical to distribute libraries of components that can
be used as dependencies of your project for quickly leveraging complex styling and
user interface design. We’ll use the Material-UI component library that will allow us to
import many popular common user interface components such as a grid layout, data
table, navigation, and inputs.

1.2.2 JSX

React is typically used with a JavaScript language extension called JSX. JSX looks simi-
lar to XML and is a powerful way of building user interfaces in React and composing
React components. It is possible to use React without JSX, but most users prefer the
readability and maintainability that JSX offers. We’ll introduce JSX in chapter 5.

 We’ll cover React concepts such as unidirectional data flow, props and state, and
data fetching in chapter 5.

1.2.3 React tooling

Here we review useful tooling that will help us build, develop, and troubleshoot React
applications.

CREATE REACT APP

Create React App is a command line tool that can be used to quickly create the scaf-
folding for a React application, taking care of configuring build settings, installing
dependencies, and templating a simple React application to get started.

REACT CHROME DEVTOOLS

React Chrome Devtools is a browser integration that lets us inspect a React applica-
tion, seeing under the hood the component hierarchy and the props and state of each
component while our application is running (figure 1.7).

1.3 Apollo
Apollo is a collection of tooling to make it easier to use GraphQL, both on the server
and the client. We’ll use Apollo Server, a Node.js library for building our GraphQL
API and Apollo Client, a client-side JavaScript library for querying our GraphQL API
from our application.

1.3.1 Apollo Server

Apollo Server allows us to easily spin up a Node.js server serving a GraphQL endpoint
by defining our type definitions and resolver functions. Apollo Server can be used
with many different web frameworks; however, the default and most popular is

Here we access the title value
from our component state and
render that inside a div tag.

Figure 1.7 React Chrome Devtool.

14 CHAPTER 1 What’s the GRANDstack?

Express.js. Apollo Server can also be used with serverless functions such as Amazon
Lambda and Google Cloud Functions.

 Apollo Server can be installed with npm: npm install apollo-server.

1.3.2 Apollo Client

Apollo Client is a JavaScript library for querying GraphQL APIs and has integrations
with many frontend frameworks, including React, Vue.js as well as native mobile ver-
sions for iOS and Android. We’ll use the React Apollo Client integration to imple-
ment data fetching via GraphQL in our React components. Apollo Client handles
client data caching and can also be used to manage local state data.

 The React Apollo Client library can be installed with npm: npm install react-
apollo.

1.4 Neo4j database
Neo4j is an open-source native graph database. Unlike other databases that use tables
or documents for the data model, the data model used with Neo4j is a graph, specifi-
cally known as the Property Graph data model, and allows us to model, store, and

15Neo4j database

query our data as a graph. Graph databases such as Neo4j are optimized for working
with graph data and executing complex graph traversals, such as those defined by
GraphQL queries.

 One of the benefits of using a graph database with GraphQL is that we maintain
the same data model throughout our application stack, working with graphs on both
the frontend, API, and backend. Another benefit has to do with the performance opti-
mizations graph databases make versus other database systems, such as relational data-
bases. Many GraphQL queries end up nested several levels deep—the equivalent of a
JOIN operation in a relational database. Graph databases are optimized for perform-
ing these graph traversal operations efficiently, so a graph database is a natural fit for
the backend of a GraphQL API.

NOTE It’s important to note that we aren’t querying the database directly
with GraphQL. While there are database integrations for GraphQL, it’s
important to realize the GraphQL API is a layer that sits between our applica-
tion and the database.

1.4.1 Property graph data model

Like many graph databases Neo4j uses a property graph model. The components of
the property graph model are (figure 1.8):

Nodes: The entities, or objects, in our data model
Relationships: Connections between nodes
Labels: A grouping semantic for nodes
Properties: Key-value pair attributes, stored on nodes and relationships

Figure 1.8 Property graph example modeling an order for a book placed by a user and how the data
is connected as a graph.

16 CHAPTER 1 What’s the GRANDstack?

The property graph data model allows us to express complex, connected data in a
flexible way. This data model also has the additional benefit of closely mapping to the
way we often think about data when dealing with a domain.

1.4.2 Cypher query language

Cypher is a declarative graph query language, used by Neo4j and other graph data-
bases and graph compute engines. You can think of Cypher as similar to SQL, but
instead designed for graph data. A major feature of Cypher is that of pattern match-
ing. With graph pattern matching in Cypher, we can define the graph pattern using
ASCII-art like notation. Cypher is an open standard through the openCypher project.
Let’s look at a simple Cypher example in the following listing, querying for movies
and actors connected to these movies.

In the RETURN clause we specify the data to be returned by the query. Here we specify
the variables m, r, and a, variables that were defined in the MATCH clause above.

MATCH (m:Movie)<-[r:ACTED_IN]-(a:Actor)
RETURN m,r,a #B

Cypher is an open source query language through the openCypher project and seve-
ral other graph databases and graph systems implement Cypher.

1.4.3 Neo4j tooling

We’ll use Neo4j Desktop for managing our Neo4j instances locally, and Neo4j
Browser, a developer tool for querying and interacting with our Neo4j database. For
querying Neo4j from our GraphQL API we will use the JavaScript Neo4j client driver
as well as neo4j-graphql.js, a GraphQL integration for Neo4j.

NEO4J DESKTOP

Neo4j Desktop is Neo4j’s command center. From Neo4j Desktop (figure 1.9) we can
manage Neo4j database instances, including editing configuration, installing plugins
and graph apps (such as visualization tools), and access admin level features such as
dump/load database. Neo4j Desktop is the default download experience for Neo4j.

NEO4J BROWSER

Neo4j Browser (figure 1.10) is a query workbench for Neo4j. With Neo4j Browser we
can query the database with Cypher and visualize the results, either as a graph visual-
ization or tabular results.

Listing 1.6 Simple Cypher query

MATCH is used to search for a graph pattern described using an ASCII-art like notation.
In the pattern, nodes are defined within parentheses, for example (m:Movie).

The :Movie indicates we should match nodes with the label Movie and the m before the
colon becomes a variable that is bound to any nodes that match the pattern. We can refer to

m later throughout the query. Relationships are defined by square brackets, for example
•[r:ACTED_IN]- and follow a similar convention where :ACTED_IN declares the

ACTED_IN relationship type and r becomes a variable we can refer to later in the query to
represent any relationships matching that pattern.

Figure 1.9 Neo4j Desktop.

Figure 1.10 Neo4j Browser.

17Neo4j database

18 CHAPTER 1 What’s the GRANDstack?

NEO4J CLIENT DRIVERS

Because our end goal is to build an application that talks to our Neo4j database, we’ll
use the language drivers for Neo4j. Client drivers are available in many languages (Java,
Python, .Net, JavaScript, etc.) but we’ll use the Neo4j JavaScript driver (listing 1.7).

NOTE The Neo4j JavaScript driver has both a node.js and browser version
(allowing connections to the database directly from the browser); however, in
this book we only use the node.js version.

npm install neo4j-driver

const neo4j = require("neo4j-driver");

const driver = neo4j.driver("bolt://localhost:7687",
 neo4j.auth.basic("neo4j", "letmein"),
 {encrypted: true});

const session = driver.session();

session.run("MATCH (n) RETURN COUNT(n) AS num")
 .then(result => {
 const record = result.records[0];
 console.log(`Your database has ${record['num']} nodes`);
 })
 .catch(error => {
 console.log(error);
 })
 .finally(() => {
 session.close();
)

We’ll learn how to use the Neo4j JavaScript client driver in our GraphQL resolver
functions to implement data fetching in our GraphQL API.

NEO4J-GRAPHQL.JS
The neo4j-graphql.js library is a GraphQL to Cypher query execution layer for Neo4j.
It works with any of the JavaScript GraphQL server implementations such as Apollo
Server. We’ll learn how to use this library to:

1 Use GraphQL type definitions to drive the Neo4j database schema.
2 Generate a full CRUD GraphQL API from GraphQL type definitions.
3 Generate a single Cypher database query for arbitrary GraphQL requests.
4 Implement custom logic defined in Cypher.

While GraphQL is data layer agnostic—you can implement a GraphQL API using any
data source or database—when used with a graph database, you have benefits such as

Listing 1.7 Basic Neo4j JavaScript driver usage

Importing
the module.

Creating a driver instance, specifying the database
connection string, using the bolt protocol.

Specifying the database
user and password.

Driver
configuration
options.

Sessions are more lightweight and should
be instantiated for a given block of work.

Run the query in an auto-commit
transaction, returns a Promise.

The promise
resolver to a
resultset.

Accessing
the records of
the resultset.

Be sure to close
the session.

19How it all fits together

reducing mapping and translation of the data model and performance optimizations
for addressing complex traversals defined with GraphQL.

1.5 How it all fits together
Now that we’ve taken a look at each individual piece of GRANDstack, let’s see how
everything fits together in the context of a full-stack application. Throughout this
chapter, as we’ve looked at examples of each technology, we’ve used simple movies
data related examples. Let’s see how a simple GRANDstack movies search application
would work behind the scenes.

 Our application has three simple requirements:

1 Allow the user to search for a movie by title
2 Display to the user any matching results and details (rating, genres, etc.) of

those movies
3 Show a list of similar movies that might be a good recommendation if the user

liked the matching movie

If this application were built using GRANDstack, here’s how the different components
would fit together following the flow of a request from the client application, search-
ing for movies by title, to the GraphQL API, then resolving data from the Neo4j data-
base, and back to the client, rendering the results in an updated user interface view
(figure 1.11).

1.5.1 React and Apollo Client—making the request

The frontend of our application is built in React; specifically we have a MovieSearch
React component that renders a text box that accepts user input (a movie search string
to be provided by the user). This MovieSearch component also contains the logic for
taking the user input, combining it with a GraphQL query, and sending this query to
the GraphQL server to resolve the data using the Apollo Client React integration.

 The following listing shows what the GraphQL query sent to the API might look
like if the user searched for “River Runs Through It”.

Other implementations of Neo4j-GraphQL
Similar features are available for the Java/JVM ecosystem with neo4j-graphql-java—
a library that can be used with Java- and JVM-based GraphQL servers—or language-
agnostic with the Neo4j GraphQL database plugin, an extension for neo4j that makes
available a GraphQL endpoint served by the database, as well as procedures for
GraphQL schema management.

Figure 1.11 Following a movie search request through a GRANDstack application.

20 CHAPTER 1 What’s the GRANDstack?

{
 moviesByTitle(title: "River Runs Through It") {
 title
 poster
 imdbRating
 genres {
 name
 }
 recommendedMovies {
 title
 poster
 }
 }
}

This data fetching logic is enabled by Apollo Client, which we use in the MovieSearch
component. Apollo Client implements a cache, so when the user enters their search
query, Apollo Client first checks the cache to see if a GraphQL query has previously
been handled for this search string. If not, then the query is sent to the GraphQL
server as an HTTP POST request to /graphql.

1.5.2 Apollo Server and GraphQL backend

The backend for our movies application is a Node.js application that uses Apollo Server
and the Express web server library to serve a /graphql endpoint over HTTP. An HTTP
GraphQL server is composed of a network layer and a GraphQL schema layer. The net-

Listing 1.8 GraphQL query searching for movies matching “River Runs Through It”

21How it all fits together

work layer is responsible for processing HTTP requests, extracting the GraphQL opera-
tion, and returning HTTP responses. The GraphQL schema layer includes the
GraphQL type definitions, which define the entry points and data structures for the
API, as well as resolver functions which are responsible for resolving the data from the
data layer. The data layer could be one or more databases, another service, other APIs
or any combination of these. By default, Apollo Server uses Express as the network layer.

 When Apollo Client makes its request our GraphQL server handles the request by
validating the query and then begins to resolve the request by first calling the root
level resolver function, which in this case is moviesByTitle. This resolver function is
passed the title argument—the value the user typed into the search text box. Inside
our resolver function we have the logic for querying the database to find movies
whose titles match the search query, retrieving the movie details, and for each match-
ing movie finding a list of other recommended movies.

Resolver functions (figure 1.12) are executed in a nested fashion, in this case starting
with the moviesByTitle Query field resolver, which is the root level resolver for this
operation. The moviesByTitle resolver will return a list of movies, then the resolver
for each field requested in the query will be called and passed an item from the list of
movies returned by moviesByTitle—essentially iterating over this list of movies.

Figure 1.12 GraphQL resolver functions are called in a nested fashion.

Resolver implementation
Throughout this book we show three methods for implementing resolver functions:

1 The “naive” approach of defining database queries inside resolvers
2 Using the Apollo DataSource library to collocate data fetching code, which has

the benefit of implementing server-side caching
3 Auto-generating resolvers using GraphQL “engine” libraries such as neo4j-graphql.js.

This example covers only the first case.

22 CHAPTER 1 What’s the GRANDstack?

Each resolver function contains logic for resolving data for a piece of the overall
GraphQL schema. For example, the recommendedMovies resolver when given a movie
has the logic to find similar movies that the viewer might also enjoy. In this case, this is
done by querying the database using a simple Cypher query to search for users that
have viewed the movie and traverses out to find other movies those users have viewed,
a simple collaborative filtering recommendation. This query is executed in Neo4j
using the Node.js JavaScript Neo4j client driver, as shown in the following listing.

MATCH (m:Movie {movieId: $movieID})<-[:RATED]-(:User)-[:RATED]->(rec:Movie)
WITH rec, COUNT(*) AS score ORDER BY score DESC
RETURN rec LIMIT 3

1.5.3 React and Apollo Client: handling the response

Once our data fetching is complete the data is sent back to Apollo Client, the cache is
updated so if this same search query is executed in the future, the data will be
retrieved from the cache, instead of requesting the data from the GraphQL server.

 Our MovieSearch React component passes the results of the GraphQL query to a
MovieList component as props, which in turn renders a series of Movie components,
updating the view to show the movie details for each matching movie, in this case,
one. And our user is presented with a list of movie search results (figure 1.13)!
The goal of the previous example is to show how GraphQL, React, Apollo, and Neo4j
Database are used together to build a simple full-stack application. We’ve omitted
many details, such as authentication, authorization, optimizing performance, but
don’t worry, we’ll cover all this in detail throughout the book.

Listing 1.9 A simple movie recommendation query

n+1 query problem
Here we have a perfect demonstration of the “n+1 query problem”. Our root-level
resolver is returning a list of movies. Now, to resolve our GraphQL query we need to
call the actors resolver, once for each movie. This results in multiple requests to the
database, which can impact performance.

Ideally, we instead make a single request to the database, which contains fetches
all data needed to resolve the GraphQL query in a single request. Here are a few solu-
tions to this problem:

1 The DataLoader library allows us to batch our requests together.
2 GraphQL “engine” libraries, such as neo4j-graphql.js can generate a single data-

base query from an arbitrary GraphQL request, leveraging the advantage of the
“graph” nature of GraphQL without negative performance impacts from multiple
database calls.

23What we will build

1.6 What we will build
The simple movie search example that we’ve used throughout the chapter was hope-
fully a decent introduction to the concepts we’ll learn throughout the book. Instead
of building a movie search application, let’s start from scratch and build a new appli-
cation, working through the requirements and GraphQL API design together as we
build our knowledge of GraphQL. To demonstrate the concepts covered in this book,
we’ll build a web application that uses GRANDstack. This web application will be a
simple business reviews application. The requirements of the application are:

List businesses and business details
Allow users to write reviews of businesses
Allow users to search for businesses and show personalized recommendations
to the user

To implement this application, we need to design our API, user interface, and data-
base considerations, including authentication and authorization.

Exercises
1 To familiarize yourself with GraphQL and writing GraphQL queries, explore

the public movies GraphQL API at https://movies.grandstack.io. Open the
URL in a web browser to access GraphQL Playground and explore the DOCS and
SCHEMA tab to see the type definitions.
Try writing queries to answer the following questions:

– Find the titles of the first 10 movies, ordered by title.
– Who acted in the movie “Jurassic Park”?

Figure 1.13 React components are composed together to build a complex user interface.

24 CHAPTER 1 What’s the GRANDstack?

– What are the genres of “Jurassic Park”? What other movies are in those genres?
– What movie has the highest imdbRating?

2 Consider the business reviews application we described earlier in the chapter. See
if you can create the GraphQL type definitions necessary for this application.

3 Download Neo4j and familiarize yourself with Neo4j Desktop and Neo4j
Browser. Work through a https://neo4jsandbox.com example dataset guide.

You can find solutions to the exercises, as well as code samples in the GitHub reposi-
tory for this book: https://github.com/johnymontana/fullstack-graphql-book

Summary
GRANDstack is a collection of technologies for building fullstack web applica-
tions with GraphQL and is composed of GraphQL, React, Apollo, and Neo4j
Database.
GraphQL is an API query language and runtime for fulfilling requests. We can
use GraphQL with any data layer. To build a GraphQL API we first define the
types, which includes the fields available on each type and how they are con-
nected, describing the data graph.
React is a JavaScript library for building user interfaces. We use JSX to construct
components which encapsulate data and logic. These components can be com-
posed together, allowing for building complex user interfaces.
Apollo is a collection of tools for working with GraphQL, both on the client and
the server. Apollo Server is a node.js library for building GraphQL APIs. Apollo
Client is a JavaScript GraphQL client that has integrations for many frontend
frameworks, including React.
Neo4j is an open-source graph database that uses the Property Graph data
model, which consists of nodes, relationships, labels, and properties. We use the
Cypher query language for interacting with Neo4j.

25

Graphs in the database

Fundamentally, a graph database is a software tool that allows the user to model,
store, and query data as a graph. Working with a graph at the database level is often
more intuitive for modeling complex connected data and can be more performant
when working with complex queries that require traversing many connected entities.

 In this chapter we begin the process of creating a property graph data model
using the business requirements from the previous chapter and show how to model
that in Neo4j. Then we compare that to the GraphQL model created in the previ-
ous chapter. We then explore the Cypher query language, focusing on how to write
Cypher queries to address the requirements of our application. Along the way, we
show how to install Neo4j, use Neo4j Desktop to create new Neo4j projects locally,
and use Neo4j Browser to query Neo4j, and visualize the results. Finally, we show
how to use the Neo4j JavaScript client driver to create a simple Node.js application
that queries Neo4j.

This chapter covers
Introducing graph databases with a focus on Neo4j

Understanding the property graph data model

Using the Cypher query language to create and query
data in Neo4j

Using client drivers for Neo4j, specifically the JavaScript
Node.js driver

26 CHAPTER 3 Graphs in the database

3.1 Neo4j overview
Neo4j is a native graph database that uses the property graph model for modeling
data and the Cypher query language for interacting with the database. Neo4j is a
transactional database with full ACID guarantees and can also be used for graph ana-
lytics. Graph databases such as Neo4j are optimized for working with highly con-
nected data and queries that traverse the graph (think of the equivalent of multiple
JOINs in a relational database) and are therefore the perfect backend for GraphQL
APIs that describe connected data and often result in complex, nested queries. Neo4j
is open-source and can be downloaded from https://neo4j.com/download.

 We’ll use Neo4j Desktop and Neo4j Browser in this chapter as we learn how to cre-
ate and query data in Neo4j, but first let’s dig into the property graph model used by
Neo4j and see how it relates to the model used to describe GraphQL APIs we reviewed
in the previous chapter.

3.2 Graph data modeling with Neo4j
Unlike other databases that use tables or documents to model data, graph databases
such as Neo4j model, store, and allow the user to query data as a graph. In a graph,
nodes are the entities and relationships connect them (see figure 3.1). In a relational
database, we represent relationships with foreign keys and join tables. In a document
database, we reference other entities using ids or even denormalizing and embedding
other entities in a single document.

Figure 3.1 Comparing datamodels across relational, document, and graph.

The first step when working with a database is to determine the datamodel that will be
used. In our case our datamodel will be driven from the business requirements we’ve
defined in the previous chapter, working with businesses, users, and reviews. Review

27Graph data modeling with Neo4j

the requirements listed in the first section of the previous chapter for a refresher.
Let’s take those requirements and our knowledge of the domain to create a “white-
board model” (figure 3.2).

How do we translate this mental model from the “whiteboard” model to the physical
data model used by the database? In other systems, this might involve creating an ER
diagram or defining the schema of the database. Neo4j is said to be “schema
optional”. While we can create database constraints to enforce data integrity, such as
property uniqueness, we can also use Neo4j without these constraints or a schema. But
the first step is to define a model using the Property Graph data model, which is the
model used by Neo4j and other graph databases. Let’s convert our simple whiteboard
model in figure 3.2 into a property graph model that we can use in the database.

3.2.1 The Property Graph model

We gave a brief overview of the property graph data model in chapter 1. Here we’ll go
through the process of taking our whiteboard model and converting it to a property
graph model used by the database.

Whiteboard model
We’ll use the term “whiteboard model” to refer to the diagram typically created when
first reasoning about a domain, which is often a graph of entities and how they relate,
drawn on a whiteboard.

The Property Graph datamodel
The property graph model is composed of:

Node Labels: Nodes are the entities or objects in our data model. Nodes can have
one or more labels that describe how nodes are grouped (think type or class).
Relationships: Relationships connect two nodes and have a single type and
direction.
Properties: Arbitrary key-value pair attributes, stored on either nodes or relation-
ships.

Figure 3.2 Building the Property
Graph model: whiteboard model.

28 CHAPTER 3 Graphs in the database

NODE LABELS

Nodes represent the objects in our whiteboard model. Each node can have one or
more labels, which is a way of grouping nodes. Adding node labels (figure 3.3) to a
whiteboard model is usually a simple process because a grouping will already have
been defined during the whiteboard process. Here, we formalize the descriptors used
to refer to our nodes into node labels (later we’ll add node aliases and multiple labels
so we use a colon as a separator to indicate the label).

Graph data model diagramming tools
There are many tools available for diagramming graph data models. Throughout this
book we use the Arrows tool, a simple web-based application that allows for creating
graph data models. Arrows is available online at http://www.apcjones.com/arrows/.

The Arrows user interface is minimal and is designed around creating property graph
data models:

Create new nodes with (+ Node).
Drag relationships out of the halo of a node, either to an empty space for a new
node or centered over an existing one to connect them.
Double-click nodes and relationships to edit them and set names and properties
(in a `key: “value” syntax).
You can show the Markdown and also replace it with a previously saved fragment
(useful for adding to documentation or checking into version control as your model
evolves).
You can export to SVG or take a screenshot.

For more on using Arrows, you can run the command :play arrows in Neo4j Browser
to load a Neo4j Browser Guide showing how to use arrows or watch this quick video:
bit.ly/33Nv9Mq.

Figure 3.3 Building the Property Graph model: node labels.

29Graph data modeling with Neo4j

The convention used for casing node labels is PascalCase. See the openCypher style
guide for more examples of naming convention. Nodes can have multiple labels and
allow us to represent type hierarchies, roles in different contexts, or even multi-tenancy.

 Later on, we’ll see how to use multiple node labels with GraphQL abstract types
such as interface and union types.

RELATIONSHIPS

Once we’ve identified our nodes labels, the next step is to identify the relationships in
our data model. Relationships have a single type and direction but can be queried in
either direction (figure 3.4).

A good guideline for naming relationships is that the traversal from a node along a
relationship to another node should read as a somewhat comprehensible sentence
(figure 3.5). For example, “User wrote review” and “Review reviews business”. You can
read more about best practices for naming and conventions in the Cypher Style guide:
https://neo4j.com/developer/cypher-style-guide

PROPERTIES

Properties are arbitrary key-value pairs stored on nodes and relationships. These are
the attributes or fields of entities in our datamodel. Here we store userId and name as
string properties on the User node, as well as other relevant properties on the Review
and Business nodes.

Dealing with undirected relationships
While every relationship has a single direction, we can treat the relationship as undi-
rected at query time by not specifying a direction.

Figure 3.4 Building the Property Graph model: relationship types.

30 CHAPTER 3 Graphs in the database

3.2.2 Database constraints and indexes

Now that we’ve defined our data model, how do we use it in the database? As men-
tioned earlier, unlike other databases that require us to define a complete schema
before inserting data, Neo4j is said to be schema optional and doesn’t require the use
of a pre-defined schema. We can define database constraints that ensure the data
adheres to the rules of the domain. We can create uniqueness constraints that ensure
property values are unique across a node label (for example, guaranteeing that no
two users have a duplicate id property value), property existence constraints (ensur-
ing that a set of properties exist when a node or relationship is created or modified),
and node key constraints that are similar to a composite key.

 Database constraints are backed by indexes, which can be created separately as
well. In a graph database indexes are used to find the starting point for a traversal, not

Property types
The following property types are supported by Neo4j:

String
Float
Long
Date
DateTime
LocalDateTime
Time
Point
Lists of the above types

Figure 3.5 Building the Property Graph model: properties.

31Data modeling considerations

to traverse the graph. We’ll cover database constraints and indexes in more detail in
the following section introducing Cypher.

3.3 Data modeling considerations
Graph data modeling can be an iterative process. In general, this is the process fol-
lowed:

1 What are the entities? How are they grouped? These become nodes and node
labels.

2 How are these entities connected? These become relationships.
3 What are the attributes of the nodes and relationships? These become properties.
4 Can you identify the graph traversal that answers your questions? These become

Cypher queries. If not, iterate on the graph model.

However, there are often nuances not covered by this general approach. In the follow-
ing sections, we address several common graph data modeling questions.

3.3.1 Node vs. property

Sometimes it’s difficult to determine if a value should be modeled as a node or as a
property on the node. A good guideline to follow here is to ask yourself the question,
“Can I discover something useful by traversing through it if it was a node?” If the
answer is yes, then it should be modeled as a node; if not, then treat it as a property.
For example, consider if we were to add the category of business to our model. Find-
ing businesses with overlapping categories is potentially useful and easier to discover if
category is modeled as a node.

3.3.2 Node vs. relationship

In the case where we have a piece of data that seemingly connects two nodes (such as a
review of a business, written by a user), should we model this data as a node or as a rela-
tionship? At first glance it seems as if we might want to create a REVIEWS relationship
connecting the user and business, storing the review information, such as stars and
text as relationship properties. However, we might want to extract data from the review,
such as keywords mentioned through some natural language processing technique and
connect that extracted data to the review. Or perhaps we want to use the review nodes as
the starting point for a traversal query? These are two examples of why we may want to
choose to model this data as an intermediate node instead of a relationship.

3.3.3 Indexes

Indexes are used in graph databases to find the starting point of a traversal, and not
during the actual traversal. This is an important performance characteristic of graph
databases such as Neo4j known as index-free adjacency. Only create indexes for prop-
erties that will be used to find the starting point of a traversal, such as a username or
business id.

32 CHAPTER 3 Graphs in the database

3.3.4 Specificity of relationship types

Relationship types are a way of grouping relationships and should convey just enough
information to make it clear how two nodes are connected without being overly spe-
cific. For example, REVIEWS is a good relationship type connecting Review and Busi-
ness nodes, REVIEW_WRITTEN_BY_BOB_FOR_PIZZA is an overly specific relationship
type, the name of the user and restaurant are stored elsewhere and don’t need to be
duplicated in the relationship type.

3.3.5 Choosing a relationship direction

All relationships in the property graph model have a single direction, but can be que-
ried in either direction, or queried without consideration of direction. There’s no
need to create duplicate relationships to model bidirectionality. In general, you should
choose relationship directions that allow for a consistent reading of the data model.

3.4 Tooling: Neo4j Desktop
Now that we understand the property graph data model and have defined a simple
version of the model we’ll use for our business reviews application, let’s create a Neo4j
database and start executing Cypher queries. To do this we’ll use Neo4j Desktop,
which is the mission control center for Neo4j. In Neo4j Desktop (figure 3.6)

Figure 3.6 Neo4j Desktop: “Mission Control” for Neo4j.

, we can
create projects and instances of Neo4j. We can start, stop, and configure Neo4j data-
base instances in Neo4j Desktop, as well as install optional database plugins, such as
GraphQL Algorithms, and APOC (a standard library of database procedures for

33Cypher

Neo4j). Neo4j Desktop also includes functionality for installing “Graph Apps”, which
are applications that run in Neo4j Desktop and connect to the active Neo4j instance.
Neo4j Browser, installed by default, is an example of one of these Graph Apps. See
https://install.graphapp.io for examples of other Graph Apps.

 If you haven’t yet downloaded Neo4j Desktop do so now at https://neo4j.com
/download. Neo4j Desktop is available to download for Mac, Windows, and Linux
systems. Other options for downloading and running Neo4j, such as Docker, Debian
package, or standalone Neo4j Server options can be found at neo4j.com/download-
center although the remaining instructions will assume Neo4j Desktop is used.

 Once you have downloaded and installed Neo4j, create a new local Neo4j instance
by selecting Add Graph. You’ll be prompted for a database name and password. The
password can be anything you want, just be sure to remember it for later. Once you’ve
created the graph, click the Start button to activate it, then we’ll use Neo4j Browser to
start querying the database we just created.

3.5 Tooling: Neo4j Browser
Neo4j Browser is a query workbench for Neo4j that allows developers to interact with the
database by writing Cypher queries and visualizing the results (figure 3.7). Start Neo4j
Browser by selecting its application icon in the Application section of Neo4j Browser.

Neo4j Browser allows us to run Cypher queries in Neo4j, but first let’s review the
Cypher query language.

3.6 Cypher
Cypher is a declarative graph query language with features that may be familiar from
SQL. In fact, a good way to think of Cypher is as “SQL for graphs”. Cypher uses pattern

Figure 3.7 Neo4j Browser: A query workbench for Cypher and Neo4j.

34 CHAPTER 3 Graphs in the database

matching, using an ASCII-art like notation for describing graph patterns. In this section,
we’ll look at basic Cypher functionality for creating and querying data, including making
use of predicates and aggregations. We’ll only cover a small part of the Cypher language.
See the Cypher refcard https://r.neo4j.com/refcard for a through reference or consult
the documentation at https://neo4j.com/docs/cypher-manual/current/.

3.6.1 Pattern matching

As a declarative graph query language, pattern matching is a fundamental tool used in
Cypher, both for creating and querying data. Instead of telling the database the exact
operations, we want it to take (an imperative approach); with Cypher, we describe the
pattern we’re looking for or want to create and the database figures out the series of
operations that satisfies the statement in the most efficient way possible. Describing
graph patterns using an ASCII-art like notation (also called motifs) is at the heart of
this declarative functionality.

NODES

Nodes are defined within parentheses (). Optionally, we can specify node label(s)
using a colon as a separator, for example (:User).

RELATIONSHIPS

Relationships are defined within square brackets []. Optionally we can specify type
and direction: (:Review)-[:REVIEWS] (:Business).

3.6.2 Properties

Properties are specified as comma-separated name: value pairs within braces “{}”, like
the name of a business or user.

ALIASES

Graph elements can be bound to aliases that can be referred to later in the query:
(r:Review)-[a:REVIEWS] (b:Business). The alias r becomes a variable bound to
the review node matched in the pattern, a is bound to the REVIEWS relationship, and b
is bound to the business node. These variables are only in scope for the Cypher query
in which they’re used.

 Follow along by running the Cypher queries in Neo4j browser as we introduce
Cypher commands for creating and querying data that matches the data model we
built throughout this chapter.

3.6.3 CREATE

The first thing we need to do is create data in our database. Here’s a look back at the
objects we used in the previous chapter:

 First, to create a single Business node in the graph, we start with the CREATE state-
ment because we want to add data to the database. The CREATE clause takes a graph
pattern upon which it operates:

35Cypher

CREATE
 (b
 :Business
 {name:
 "Bob's Pizza"
 }
)

This is our graph pattern, in this case
a node identified by the parenthesis ().

And the result of running in Neo4j Browser shows:

Added 1 label, created 1 node, set 1 property, completed after 4 ms.

which means we’ve created 1 node with a new label in the database and set 1 node
property value, in this case the name property on a node with the label Business.

 Alternatively, we can use the SET command. This is equivalent:

CREATE (b:Business)
SET b.name = "Bob's Pizza"

To visualize the data being created we can add a RETURN clause to the Cypher state-
ment, which will be rendered in Neo4j browser as a graph visualization. Running

CREATE (b:Business)
SET b.name = "Bob's Pizza"
RETURN b

gives the following visualization in Neo4j Browser (figure 3.8).

Figure 3.8 Creating data with Cypher and Neo4j Browser.

The CREATE
command is
used to
create data in
the database.

b becomes an alias that can be used
to refer to this node later in the query.

Here we specify
the label of the
node we want
to create.

'name' is a property of the Business
node that specifies its value.

36 CHAPTER 3 Graphs in the database

We can specify more complex patterns in the CREATE statement, such as relationships.
Note the ASCII-art notation of defining a relationship using square brackets []-,
including the direction of the relationship (figure 3.9).

CREATE (b:Business {name: "Bob's Pizza"})<-[:REVIEWS]-(r:Review {stars: 4,
text: "Great pizza"})

RETURN b, r

Figure 3.9 Creating data with Cypher and Neo4j Browser.

and even arbitrarily complex graph patterns (figure 3.10):

CREATE p=(b:Business {name: "Bob's Pizza"})<-[:REVIEWS]-(r:Review {stars: 4,
text: "Great pizza"})<-[:WROTE]-(u:User {name: "Willie"})

RETURN p

Note that in the previous Cypher query we bind the entire graph pattern to a variable
p and return that variable. In this case, p takes on the value of the entire path (a com-
bination of nodes and relationships) being created.

 Up to now we’ve returned only the data we’ve created in each Cypher statement.
How do we query and visualize the rest of the data in the database? To do this, we use
the MATCH keyword. Let’s match on all nodes in the database and return them:

MATCH (a) RETURN a

and we should see a graph that looks something like figure 3.11.

Figure 3.10 Creating data with Cypher and Neo4j Browser.

Figure 3.11 Creating data with Cypher and Neo4j Browser.

37Cypher

38 CHAPTER 3 Graphs in the database

Right away, we can see something is wrong; we’ve created many duplicate nodes in our
graph! Let’s delete all data in the database:

MATCH (a) DETACH DELETE a

This will match on all nodes and delete both the nodes and any relationships.
 We should see output that tells us what we’ve deleted:

Deleted 11 nodes, deleted 4 relationships, completed after 23 ms.

Now let’s start over and learn how to create data in the database without creating
duplicates.

3.6.4 MERGE

To avoid creating duplicates, we can use the MERGE command. MERGE acts as an upset:
only creating data specified in the pattern if it doesn’t already exist in the database.
When using MERGE, it’s best to create a uniqueness constraint on the property that
identifies uniqueness—often an id field. By creating a uniqueness constraint, this will
also create an index in the database. See the next section for example of creating
uniqueness constraints. For simple examples, it’s fine to use MERGE without these con-
straints, so let’s revisit our Cypher statement that created a business, a review and user,
but this time we’ll use MERGE:

MERGE (b:Business {name: "Bob's Pizza"})
MERGE (r:Review {stars: 4, text: "Great pizza!"})
MERGE (u:User {name: "Willie"})
MERGE (b)<-[:REVIEWS]-(r)<-[:WROTE]-(u)
RETURN *

And the resulting graph visualization, showing the data we’ve created in figure 3.12.

Figure 3.12 Using MERGE to create data.

39Cypher

The results of this Cypher statement look identical to the version using CREATE; how-
ever, there’s an important difference: this query is now idempotent. No matter how
many times we run the query, we won’t create duplicate nodes, because we’re using
MERGE instead of CREATE. We’ll revisit MERGE again in the next chapter when we show
how to create data in the database via our GraphQL API.

3.6.5 Defining database constraints with Cypher

We mentioned database constraints and how they relate to (optionally) defining a
schema in Neo4j earlier in the chapter as we built up our data model. Here we show
the Cypher syntax for creating database constraints relevant to our data model.

 Uniqueness constraints are used to assert that the database will never contain
more than one node with a specific label and property value. In this case we create a
uniqueness constraint ensuring that the value of the businessId property on nodes
with the label Business is unique.

CREATE CONSTRAINT ON (b:Business) ASSERT b.businessId IS UNIQUE;

Property existence constraints ensure that all nodes with a certain label have a certain
property. Here we create a constraint to guarantee that all Business nodes will have a
name property, however the value for this property does not need to be unique across
all Business nodes.

CREATE CONSTRAINT ON (b:Business) ASSERT exists(b.name);

Node key constraints ensure that all nodes with a certain label have a set of defined
properties whose combined value is unique and that all properties in this set exist on
the node. Here we create a node key constraint ensuring that the combination of
firstName and lastName is unique for Person nodes, and that every Person node has
both firstName and lastName properties.

CREATE CONSTRAINT ON (p:Person) ASSERT (p.firstName, p.lastName) IS NODE KEY;

Note that if you still have duplicate data in the database that conflict with any of these
constraints, then you’ll receive an error message saying the constraint cannot be
created.

Indexes In Neo4j
It’s important to understand how indexes are used in a graph database like Neo4j.
We said earlier that Neo4j has a property called index-free adjacency, which means
that traversing from a node to any other connected node does not require an index
lookup. How are indexes used in Neo4j? Indexes are used to find the starting point
for a traversal only, unlike relational databases that use an index to compute set
(table) overlap, graph databases are simply computing offsets in the file store, essen-
tially chasing pointers, which we know computers are good at doing quickly.

40 CHAPTER 3 Graphs in the database

3.6.6 MATCH

Now that we’ve created our data in the graph, we can start to write queries to address
several of the business requirements of our application.

 The MATCH clause is similar to CREATE in that it takes a graph pattern; however, we
can also use a WHERE clause for specifying predicates to be applied in the pattern.

MATCH (u:User)
RETURN u

We can, of course, use more complex graph patterns in a MATCH clause:

MATCH (u:User)-[:WROTE]->(r:Review)-[:REVIEWS]->(b:Business)
RETURN u, r, b

The previous query matches on all users that have written a review of any business.
What if instead we only want to query for reviews of a certain business? In that case, we
need to introduce predicates into our query. Notice how the relationship arrows are
reversed here.

WHERE
The WHERE clause can be used to add predicates to a MATCH statement. To search for
the business named "Bob’s Pizza”:

MATCH (b:Business)
WHERE b.name = "Bob's Pizza"
RETURN b

For equality comparisons, an equivalent shorthand notation is available:

MATCH (b:Business {name: "Bob's Pizza"})
RETURN b

3.6.7 Aggregations

Often, we want to compute an aggregation across a set of results. For example, we may
want to calculate the average rating of all the reviews of Bob’s Pizza. To do this, we use
the avg aggregation function:

MATCH (b:Business {name: "Bob's Pizza"})<-[:REVIEWS]-(r:Review)
RETURN avg(r.stars)

Now in Neo4j Browser because we’re not returning graph data, and rather tabular
data, instead of a graph visualization, we’re presented with a table showing the results
of our query:

"avg(r.stars)"

4.0

What if we wanted to calculate the average rating of each business? In SQL, we might
use a GROUP BY operator to group the reviews by business name and calculate the

41Using the client drivers

aggregation across each group, but there’s no GROUP BY operator in Cypher. Instead,
with Cypher there’s an implicit group by when returning the results of an aggregation
function along with non-aggregated results. For example, to compute the average rat-
ing of each business:

MATCH (b:Business)<-[:REVIEWS]-(r:Review)
RETURN b.name, avg(r.stars)

and the results table:

"b.name" "avg(r.stars)"

"Bob's Pizza" 4.0

Of course, this isn’t too exciting because we only have one business and one review.
In the exercise section of this chapter, we’ll work with a larger dataset.

3.7 Using the client drivers
Until now we’ve used Neo4j Browser to execute our Cypher queries, which is usual for
ad-hoc analysis or prototyping; however, typically we want to create an application that
interacts with the database. To do this, we use the Neo4j client drivers. These client
drivers are available in many languages such as JavaScript, Java, Python, .NET, and Go,
and allow the developer to execute Cypher queries against a Neo4j instance with a
consistent API that is idiomatic to the language. In chapter 1 we saw an example of
using the Neo4j JavaScript driver to execute a Cypher query and work with the results.
Neo4j client drivers also provide a fundamental building block for building frame-
work-specific integrations with Neo4j, such as neo4j-graphql.js, which we’ll explore in
future chapters. Refer to the Drivers & Language guides for more information on
Neo4j client drivers: https://neo4j.com/developer/language-guides/.

 In the next chapter, we’ll see how to build a GraphQL API that connects to
Neo4j using the Neo4j JavaScript driver and the neo4j-graphql.js library.

Exercises
To complete the following exercises, first run the following command in Neo4j
Browser: :play grandstack to load a browser guide with embedded queries. This
browser guide will walk you through the process of loading a larger, more complete
sample dataset of businesses and reviews. After running the query to load the data in
Neo4j:

1 Run the command CALL db.schema() to inspect the data model. What are the
node labels used? What are the relationship types?

2 Write a Cypher query to find all the users in the database. How many users are
there? What are their names?

42 CHAPTER 3 Graphs in the database

3 Find all the reviews written by the user named “Will”. What’s the average rating
given by this user?

4 Find all the businesses reviewed by the user named “Will”. What’s the most com-
mon category?

5 Write a query to recommend businesses to the user named “Will” that he hasn’t
previously reviewed.

You can find solutions to the exercises, as well as code samples, in the GitHub reposi-
tory for this book: https://github.com/johnymontana/fullstack-graphql-book.

Summary
A graph database allows you to model, store, and query data as a graph.
The property graph data model is used by graph databases and consists of node
labels, relationships, and properties.
The Cypher query language is a declarative graph query language focused
around pattern matching and is used for querying graph databases, including
Neo4j.
Client drivers are used for building applications that interact with Neo4j. These
drivers enable application to send Cypher queries to the database and work
with the results.

43

A GraphQL API for
our graph database

GraphQL backend implementations commonly run into a set of issues that nega-
tively impact performance and developer productivity. We’ve identified several of
these problems previously (such as the ”n+1 query problem”), and in this chapter
we look deeper at the common issues that arise and discuss how they can be miti-
gated using database integrations for GraphQL that make it easier to build efficient
GraphQL APIs backed by databases.

This chapter covers
Reviewing common issues that arise when building
GraphQL backends

Introducing database integrations for GraphQL that
address common problems

Building a GraphQL endpoint backed by Neo4j

Extending the functionality of our GraphQL API with
custom logic

Inferring a GraphQL endpoint from an existing Neo4j
database

44 CHAPTER 4 A GraphQL API for our graph database

 Specifically, we look at using neo4j-graphql.js, a Node.js library designed to work
with JavaScript GraphQL implementations such as Apollo Server for building
GraphQL APIs backed by Neo4j. neo4j-graphql.js allows us to generate GraphQL APIs
from type definitions, driving the database data model from GraphQL, auto-generate
resolvers for data fetching and mutations, including complex filtering, ordering, and
pagination. neo4j-graphql.js also enables adding custom logic.

 In this chapter, we look at using neo4j-graphql.js to integrate our business reviews
GraphQL API with Neo4j, adding a persistence layer to our API. In this initial look at
neo4j-graphql.js, we focus on querying existing data, using the sample dataset in
Neo4j used in the previous chapter. We’ll explore creating and updating data
(GraphQL mutations), as well as more complex GraphQL querying semantics, such as
interfaces and fragments in future chapters, introducing these concepts in the con-
text of building out our user interface. Figure 4.1 shows how neo4j-graphql.js fits into
the larger architecture of our application. The goal of neo4j-graphql.js is to make it
easy to build an API backed by Neo4j.

4.1 Common GraphQL problems
When building GraphQL APIs, two types of common problems occur that developers
can face: poor performance and writing lots of boilerplate code that can impact devel-
oper productivity.

4.1.1 Poor performance and the N+1 query problem

We’ve described the N+1 query problem previously. Because of the nested way that
GraphQL resolvers are called, multiple database requests are often required to resolve
a GraphQL query from the data layer. For example, imagine a query searching for

Figure 4.1 neo4j-graphql.js helps build the API layer between client and database.

45The neo4j-graphql.js library

businesses by name as well as all reviews for each business. A naive implementation
would first query the database for all businesses matching the search phrase. Then for
each matching business they send an additional query to the database to find any
reviews for the business. Each query to the database incurs network and query latency,
which can significantly impact performance.

 A common solution for this is to use a caching and batching pattern known as Dat-
aLoader. This can alleviate part of the performance issues; however, it can still require
multiple database requests and cannot be used in all cases, such as when the ID of an
object isn’t known.

4.1.2 Boilerplate and developer productivity

The term boilerplate is used to describe repetitive code that’s written to accomplish a
common task. In the case of implementing GraphQL APIs, often writing boilerplate
code to implement data fetching logic in resolvers is required. This can negatively
impact developer productivity, slowing down development as the developer is
required to write simple data fetching logic for each type and field instead of focusing
on the key components of their application. In the context of our business reviews
application, this means manually writing the logic for finding businesses by name in
the database, as well as finding reviews associated with each business and each user
connected to each review, and so on, until we’ve manually defined the logic for fetch-
ing all fields of our GraphQL schema.

4.2 Introducing GraphQL database integrations
GraphQL database integrations are a class of tools that enable building GraphQL
APIs that interact with databases. A handful of these tools exist with different feature
sets and levels of integration—in this book we focus on neo4j-graphql.js. However, in
general, the goal of these GraphQL “engines” is to address the common GraphQL
problems identified previously in a consistent way by reducing boilerplate and
addressing data fetching performance.

 Throughout the rest of this chapter, we focus on using neo4j-graphql.js to build a
GraphQL API backed by Neo4j. It’s important to note that our GraphQL API serves as
a layer between the client and the database; we don’t want to directly query our data-
base from the client. The API layer serves an important function where we can imple-
ment features such as authorization and custom logic that we don’t want to expose to
the client. Also, because GraphQL is an API query language (not a database query lan-
guage), it lacks many semantics (such as aggregations and projections) that we expect
in a database query language.

4.3 The neo4j-graphql.js library
Neo4j-graphql.js is a Node.js library that works with any JavaScript GraphQL imple-
mentation, such as GraphQL.js and Apollo Server, designed to make it as easy as possi-
ble to build GraphQL APIs backed by a Neo4j database. The two main functions of
neo4j-graphql.js are schema augmentation and GraphQL transpilation (figure 4.2).

Figure 4.2 The two main functions of neo4j-graphql.js.

46 CHAPTER 4 A GraphQL API for our graph database

The schema augmentation process takes GraphQL type definitions and generates a
GraphQL API with CRUD (Create, Read, Update, Delete) operations for the types
defined. In GraphQL semantics, this includes adding a Query and Mutation type to
the schema and generating resolvers for these queries and mutations. The generated
API includes support for filtering, ordering, pagination, and native database types
such as spatial and temporal types, without having to define these manually in the type
definitions. The result of this process is a GraphQL executable schema object that can
then be passed to a GraphQL server implementation, such as Apollo Server, to serve
the API and handle networking and GraphQL execution processes. The schema aug-
mentation process eliminates the need to write boilerplate code for data fetching and
mapping the GraphQL and database schemas.

 The GraphQL transpilation process happens at query time. When a GraphQL
request is received, a single Cypher query is generated that can resolve the request
and is sent to the database. Generating a single database query solves the n+1 query
problem, assuring only one round trip to the database per GraphQL request.

 You can find the documentation for neo4j-graphql.js at https://grand-
stack.io/docs.

4.3.1 Project setup

Throughout the rest of the chapter, we’ll explore the features of neo4j-graphql.js by
creating a new GraphQL API for Neo4j that uses the sample dataset of businesses and
reviews from the Exercise section of the previous chapter. We’ll first create a new
Node.js project that uses neo4j-graphql.js and the Neo4j JavaScript driver to fetch data
from Neo4j. Then we’ll explore the various features of neo4j-graphql.js, adding addi-
tional code as we move along.

NEO4J

First, make sure a Neo4j instance is running (you can use Neo4j Desktop, Neo4j Sand-
box, or Neo4j Aura, but we’ll assume Neo4j Desktop for the purposes of this chapter).
If using Neo4j Desktop, you need to install the APOC standard library plugin. Don’t
worry about this step if using Neo4j Sandbox or Neo4j Aura, because APOC is included

47The neo4j-graphql.js library

by default in those services. To install APOC in Neo4j Desktop, click the “Plugins” tab
in your project, then look for APOC in the list of available plugins, and click “Install”.

 Next, make sure your Neo4j database is empty by running the Cypher statement in
listing 4.1.

CAUTION This statement will delete all data in your Neo4j database so make
sure this is the instance you want to use and not a database you don’t want to
delete.

MATCH (a) DETACH DELETE a;

Now we’re ready to load our sample dataset (figure 4.3), which you may have done
already if you completed the exercise section in the previous chapter. Run the follow-
ing command in Neo4j Browser:

:play grandstack

This will load a sample dataset into Neo4j that we’ll use as the basis for our GraphQL
API. Next, we can explore the data a bit by running a command in the following listing
that will give us a visual overview of the data included in the sample dataset (figure 4.4).

CALL db.schema.visualization();

We see that we have four node labels: Business, Review, Category, and User con-
nected by three relationship types: IN_CATEGORY (connecting businesses to the catego-
ries to which they belong), REVIEWS (connecting reviews to businesses), and WROTE
(connecting users to reviews they have authored).

Listing 4.1 Clearing out our Neo4j database

Listing 4.2 Visualizing the graph schema in Neo4j

Figure 4.3 Loading the sample dataset into Neo4j.

Figure 4.4 The graph schema of our sample dataset.

48 CHAPTER 4 A GraphQL API for our graph database

 We can also view the node properties stored on the various node labels.

CALL db.schema.nodeTypeProperties()

This command renders a table showing us the property names, their types and
whether or not they’re found on all nodes of that label.

"nodeType" "nodeLabels" "propertyName" "propertyTypes" "mandatory"

":`User`" ["User"] "name" ["String"] true

":`User`" ["User"] "userId" ["String"] true

":`Review`" ["Review"] "reviewId" ["String"] true

":`Review`" ["Review"] "text" ["String"] false

":`Review`" ["Review"] "stars" ["Double"] true

":`Review`" ["Review"] "date" ["Date"] true

":`Category`" ["Category"] "name" ["String"] true

":`Business`" ["Business"] "name" ["String"] true

":`Business`" ["Business"] "city" ["String"] true

Listing 4.3 Inspect the node properties stored in Neo4j

49The neo4j-graphql.js library

":`Business`" ["Business"] "state" ["String"] true

":`Business`" ["Business"] "address" ["String"] true

":`Business`" ["Business"] "location" ["Point"] true

":`Business`" ["Business"] "businessId" ["String"] true

We’ll use this table in a few moments when we construct GraphQL type definitions
that describes this graph.

NODE.JS APP

Now that we have our Neo4j database loaded with our sample dataset let’s set up a new
node.js project for our GraphQL API:

npm init -y

And install our dependencies:

neo4j-graphql.js: A package that makes it easier to use GraphQL and Neo4j
together. neo4j-graphql-js translates GraphQL queries to a single Cypher query,
eliminating the need to write queries in GraphQL resolvers and for batching
queries. It also exposes the Cypher query language through GraphQL via the
@cypher schema directive.
apollo-server: Apollo Server is an open-source GraphQL server that works with
any GraphQL schema built with graphql.js, including neo4j-graphql.js. It also
has options for working with many different Node.js webserver frameworks, or
the default Express.js.
neo4j-driver: The Neo4j drivers allow for connecting to a Neo4j instance, either
local or remote, and executing Cypher queries over the Bolt protocol. Neo4j
drivers are available in many different languages and here we use the Neo4j
JavaScript driver.

npm install neo4j-graphql-js apollo-server neo4j-driver

Now create a new file index.js and let’s add initial code in the following listing.

const { ApolloServer } = require("apollo-server");
const neo4j = require("neo4j-driver");
const { makeAugmentedSchema } = require("neo4j-graphql-js");

const typeDefs = /* GraphQL */ ``;

const schema = makeAugmentedSchema({
 typeDefs
});

Listing 4.4 index.js: Initial GraphQL API code

Here we pull in our
dependencies.

This line serves as a placeholder for our
GraphQL type definitions to be filled in later.

makeAugmentedSchema generates
resolvers for our type definitions.

50 CHAPTER 4 A GraphQL API for our graph database

const server = new ApolloServer({
 schema
});

server.listen().then(({ url }) => {
 console.log(`GraphQL server ready at ${url}`);
});

This is the basic structure for our GraphQL API application code. We can run it on
the command line using the node command:

node index.js

However, we’ll quickly see an error message complaining that we haven’t provided
GraphQL type definitions.

 node index.js
/Users/lyonwj/api/node_modules/neo4j-graphql-js/dist/index.js:293
 if (!typeDefs) throw new Error('Must provide typeDefs');
 ...

We must provide either GraphQL type definitions or a GraphQL schema object to
makeAugmentedSchema that defines the GraphQL API, so the next step is to fill in our
GraphQL type definitions.

4.3.2 Generated GraphQL schema from type definitions

Following the GraphQL-First approach described previously, our GraphQL type defi-
nitions drive the API specification. In this case, we know what data we want to expose
(our sample dataset loaded in Neo4j), so we can refer to the table of node properties
above and apply a simple rule as we create our GraphQL type definitions: node labels
become types, taking on the node properties as fields. We also need to define relation-
ship fields in our GraphQL type definitions. Let’s first look at the complete type defi-
nitions and then explore how we define relationship fields in the following listing.

const typeDefs = /* GraphQL */ `
 type Business {
 businessId: ID!
 name: String!
 city: String!
 state: String!
 address: String!
 location: Point!
 reviews: [Review] @relation(name: "REVIEWS", direction: "IN")
 categories: [Category] @relation(name: "IN_CATEGORY", direction: "OUT")
 }

 type User {
 userID: ID!
 name: String!
 reviews: [Review] @relation(name: "WROTE", direction: "OUT")
 }

Listing 4.5 index.js: GraphQL type definitions

Our generated GraphQL schema
is passed to Apollo Server.

Here we
start the
GraphQL
server.

51The neo4j-graphql.js library

 type Review {
 reviewId: ID!
 stars: Float!
 date: Date!
 text: String
 user: User @relation(name:"WROTE", direction: "IN")
 business: Business @relation(name: "REVIEWS", direction: "OUT")
 }

 type Category {
 name: String!
 businesses: [Business] @relation(name: "IN_CATEGORY", direction: "IN")
 }
`;

@RELATION GRAPHQL SCHEMA DIRECTIVE

In the property graph model used by Neo4j, every relationship has a direction and
type. To represent this in GraphQL, we use GraphQL schema directives, specifically
the @relation schema directive. A directive is like an annotation in our GraphQL
type definitions. It’s an identifier preceded by the @ character, which may then option-
ally contain a list of named arguments. Schema directives are GraphQL’s built-in
extension mechanism, indicating some custom logic on the server.

 When defining relationship fields using the @relation directive, the name argu-
ment indicates the relationship type stored in Neo4j and the direction argument
indicates the relationship direction.

 In addition to schema directives, directives can also be used in GraphQL queries to
indicate specific behavior. We’ll see examples of query directives when we explore
GraphQL clients.

4.3.3 Generated data fetching

The autogenerated resolvers in our GraphQL schema need to access our Neo4j data-
base using the Neo4j JavaScript driver and they expect a driver instance to be injected
into the context object that’s passed to each resolver. By convention, the driver is
injected under the key driver in the context object, as shown in the following listing.

const driver = neo4j.driver(
 "bolt://localhost:7687",
 neo4j.auth.basic("neo4j", "letmein")
);

const server = new ApolloServer({
 schema,
 context: { driver }
});

4.3.4 Configuring the generated API

We mentioned that the schema augmentation process adds queries and mutations for
each type defined in the type definitions. We can configure the generated API, dis-
abling queries or mutations altogether, or specify that certain types be excluded.

Listing 4.6 index.js: Creating a Neo4j driver instance

Creating a Neo4j driver instance using
credentials for our Neo4j database.

We inject this driver instance
into the context object.

52 CHAPTER 4 A GraphQL API for our graph database

DISABLING AUTO-GENERATED QUERIES AND MUTATIONS

Because we’re initially only focusing on the query API, let’s disable all generated
mutations in the following listing.

const schema = makeAugmentedSchema({
 typeDefs,
 resolvers,
 config: {

mutation: false
 }
});

EXCLUDING TYPES

We can also pass an array of types to be excluded from the generated queries or muta-
tions, as shown in the following listing.

const schema = makeAugmentedSchema({
 typeDefs,
 resolvers,
 config: {

mutation: false,
query: {
 exclude: ["MySecretType"]

}
 }
});

Now, let’s run our API application:

node index.js

As output, we should see the address where our API application is listening, in this
case on port 4000 on localhost.

node index.js
GraphQL server ready at http://localhost:4000/

Navigate to http://localhost:4000 in your web browser and you should see the fami-
liar GraphQL Playground interface. Open the “Docs” tab in GraphQL to see the gene-
rated API (figure 4.5). Spend a few minutes looking through the Query field
descriptions, and you’ll notice arguments have been added to types for things such as
ordering, pagination, and filtering.

4.4 Basic queries
Now that we have our GraphQL server powered by Apollo Server and neo4j-graphql.js
up and running, let’s start querying our API using GraphQL Playground. Looking at
the Docs tab in GraphQL Playground, we can see the API entrypoints (in GraphQL

Listing 4.7 index.js: Disabling mutations

Listing 4.8 index.js: Disabling specific types

Figure 4.5 GraphQL Playground showing our generated API.

53Basic queries

parlance, each Query type field is an entry point to the API) available to us: Business,
User, Review, Category, one for each type defined in our type definitions.

 Let’s start by querying for all businesses and return only the name field, as shown
in the following listing.

{
 Business {
 name
 }
}

If we run this query in GraphQL Playground, we should see the following results list-
ing businesses and their names only.

{
 "data": {
 "Business": [
 {
 "name": "Missoula Public Library"
 },
 {
 "name": "Ninja Mike's"
 },
 {
 "name": "KettleHouse Brewing Co."
 },

Listing 4.9 GraphQL query

54 CHAPTER 4 A GraphQL API for our graph database

 {
 "name": "Imagine Nation Brewing"
 },
 {
 "name": "Market on Front"
 },
 {
 "name": "Hanabi"
 },
 {
 "name": "Zootown Brew"
 },
 {
 "name": "Ducky's Car Wash"
 },
 {
 "name": "Neo4j"
 }
]
 }
}

Neat! This data has been fetched from our Neo4j instance for us, and we didn’t even
need to write any resolvers!

 If we check the console output in the terminal, we can see the generated Cypher
query logged to the terminal in the following listing.

MATCH (`business`:`Business`) RETURN `business` { .name } AS `business`

We can add additional fields to the GraphQL query and those fields will be added to
the generated Cypher query, returning only the data needed.

 For example, the following GraphQL query adds the address of the business as
well as the name field, as shown in the following listing.

{
 Business {
 name
 address
 }
}

The Cypher translation of the GraphQL query also now includes the address field, as
shown in the following listing.

MATCH (`business`:`Business`) RETURN `business` { .name , .address } AS
`business`

Listing 4.10 Generated Cypher query

Listing 4.11 GraphQL query

Listing 4.12 Generated Cypher query

55Ordering and pagination

And finally, when we examine the results of the GraphQL query, we now see an
address listed for each business.

{
 "data": {
 "Business": [
 {
 "name": "Missoula Public Library",
 "address": "301 E Main St"
 },
 {
 "name": "Ninja Mike's",
 "address": "200 W Pine St"
 },
 {
 "name": "KettleHouse Brewing Co.",
 "address": "313 N 1st St W"
 },
 {
 "name": "Imagine Nation Brewing",
 "address": "1151 W Broadway St"
 },
 {
 "name": "Market on Front",
 "address": "201 E Front St"
 },
 {
 "name": "Hanabi",
 "address": "723 California Dr"
 },
 {
 "name": "Zootown Brew",
 "address": "121 W Broadway St"
 },
 {
 "name": "Ducky's Car Wash",
 "address": "716 N San Mateo Dr"
 },
 {
 "name": "Neo4j",
 "address": "111 E 5th Ave"
 }
]
 }
}

Next, let’s take advantage of several of the features of the generated GraphQL API.

4.5 Ordering and pagination
Each input type field includes first, offset and orderBy arguments to enable order-
ing and pagination. In the next listing, we search for the first three businesses,
ordered by the value of the name field.

56 CHAPTER 4 A GraphQL API for our graph database

{
 Business(first: 3, orderBy: name_asc) {
 name
 }
}

Ordering enums are generated for each type, offering ascending and descending
options for each field. For example, in the next listing we see the ordering enum
generated for the Business type.

enum _BusinessOrdering {
 businessId_asc
 businessId_desc
 name_asc
 name_desc
 city_asc
 city_desc
 state_asc
 state_desc
 address_asc
 address_desc
 _id_asc
 _id_desc
}

Running our query returns businesses now ordered by name, as shown in the follow-
ing listing.

{
 "data": {
 "Business": [
 {
 "name": "Ducky's Car Wash"
 },
 {
 "name": "Hanabi"
 },
 {
 "name": "Imagine Nation Brewing"
 }
]
 }
}

If we switch to the terminal, we can see the Cypher query generated from our
GraphQL query, which now includes ORDER BY and LIMIT clauses that map to our
first and orderBy GraphQL arguments. The ordering and limiting is executed in

Listing 4.13 Initial GraphQL API code

Listing 4.14 Initial GraphQL API code

Listing 4.15 Initial GraphQL API code

57Nested queries

the database, rather than in the client, so only the necessary data is returned from the
database query. See the following listing.

MATCH (`business`:`Business`) WITH `business` ORDER BY business.name ASC
RETURN `business` { .name } AS `business` LIMIT toInteger($first)

Note that this query includes a $first parameter, rather than including the value 3
inline in the query. Parameter usage is important here because it ensures a user can’t
inject potentially malicious Cypher code into the generated query and also it ensures
the query plan generated by Neo4j can be reused, increasing performance.

 To run this query in Neo4j Browser first set a value for the first parameter with
the :param command:

:param first => 3

4.6 Nested queries
Cypher can easily express the types of graph traversals in our GraphQL queries, and
neo4j-graphql.js is capable of generating the equivalent Cypher queries for arbitrary
GraphQL requests, including nested queries.

 In the following listing, we traverse from businesses to their categories.

{
 Business(first: 3, orderBy: name_asc) {
 name
 categories {
 name
 }
 }
}

And the result shows each business is connected to one or more categories.

{
 "data": {
 "Business": [
 {
 "name": "Ducky's Car Wash",
 "categories": [
 {
 "name": "Car Wash"
 }
]
 },
 {
 "name": "Hanabi",
 "categories": [
 {
 "name": "Restaurant"
 },

Listing 4.16 Generated Cypher query

Listing 4.17 GraphQL query

58 CHAPTER 4 A GraphQL API for our graph database

 {
 "name": "Ramen"
 }
]
 },
 {
 "name": "Imagine Nation Brewing",
 "categories": [
 {
 "name": "Beer"
 },
 {
 "name": "Brewery"
 }
]
 }
]
 }
}

4.7 Filtering
The filter functionality is exposed by adding a filter argument with associated inputs
based on the GraphQL type definitions that expose filtering criteria. You can see the
full list of filtering criteria in the documentation at https://grandstack
.io/docs/graphql-filtering.html.

4.7.1 Filter argument

In the following listing we use the filter argument to search for business names that
contain “Brew”.

{
 Business(filter: { name_contains: "Brew" }) {
 name
 address
 }
}

Our results now show businesses that match the filtering criteria and only businesses
that contain the string “Brew” in their name are returned.

{
 "data": {
 "Business": [
 {
 "name": "KettleHouse Brewing Co.",
 "address": "313 N 1st St W"
 },
 {
 "name": "Imagine Nation Brewing",
 "address": "1151 W Broadway St"
 },

Listing 4.18 GraphQL query

59Filtering

 {
 "name": "Zootown Brew",
 "address": "121 W Broadway St"
 }
]
 }
}

4.7.2 Nested filter

To filter based on the results of nested fields applied to the root, we can nest our filter
arguments. In the following listing we search for businesses where the name contains
“Brew” and have at least one review with at least a 4.75 rating.

{
 Business(
 filter: { name_contains: "Brew", reviews_some: { stars_gte: 4.75 } }
) {
 name
 address
 }
}

If we inspect the results of this GraphQL query we can see two matching businesses.

{
 "data": {
 "Business": [
 {
 "name": "KettleHouse Brewing Co.",
 "address": "313 N 1st St W"
 },
 {
 "name": "Zootown Brew",
 "address": "121 W Broadway St"
 }
]
 }
}

4.7.3 Logical operators: AND, OR

Filters can be wrapped in logical operators OR and AND. For example, we can search for
businesses in either the Coffee or Breakfast category by using an OR operator in the fil-
ter argument, as shown in the following listing.

{
 Business(
 filter: {
 OR: [
 { categories_some: { name: "Coffee" } }

Listing 4.19 GraphQL query

Listing 4.20 GraphQL query

60 CHAPTER 4 A GraphQL API for our graph database

 { categories_some: { name: "Breakfast" } }
]
 }
) {
 name
 address
 categories {
 name
 }
 }
}

This GraphQL query yields businesses that are connected to either the Coffee or
Breakfast category.

{
 "data": {
 "Business": [
 {
 "name": "Ninja Mike's",
 "address": "200 W Pine St",
 "categories": [
 {
 "name": "Restaurant"
 },
 {
 "name": "Breakfast"
 }
]
 },
 {
 "name": "Market on Front",
 "address": "201 E Front St",
 "categories": [
 {
 "name": "Coffee"
 },
 {
 "name": "Restaurant"
 },
 {
 "name": "Cafe"
 },
 {
 "name": "Deli"
 },
 {
 "name": "Breakfast"
 }
]
 },
 {
 "name": "Zootown Brew",
 "address": "121 W Broadway St",
 "categories": [
 {

61Filtering

 "name": "Coffee"
 }
]
 }
]
 }
}

4.7.4 Filtering in selections

Filters can also be used throughout the selection set to apply the filter at the level of
the selection. For example, let’s say we want to find all Coffee or Breakfast businesses,
but only view reviews containing the phrase “breakfast sandwich”. See the following
listing.

{
 Business(
 filter: {
 OR: [
 { categories_some: { name: "Coffee" } }
 { categories_some: { name: "Breakfast" } }
]
 }
) {
 name
 address
 reviews(filter: { text_contains: "breakfast sandwich" }) {
 stars
 text
 }
 }
}

Because the filter was applied at the reviews selection, businesses that don’t have any
reviews containing the phrase “breakfast sandwich” are still shown in the results; how-
ever, only reviews containing that phrase are shown.

{
 "data": {
 "Business": [
 {
 "name": "Ninja Mike's",
 "address": "200 W Pine St",
 "reviews": [
 {
 "stars": 4,
 "text": "Best breakfast sandwich at the Farmer's Market. Always

get the works."
 }
]
 },
 {

Listing 4.21 GraphQL query

62 CHAPTER 4 A GraphQL API for our graph database

 "name": "Market on Front",
 "address": "201 E Front St",
 "reviews": []
 },
 {
 "name": "Zootown Brew",
 "address": "121 W Broadway St",
 "reviews": []
 }
]
 }
}

4.8 Working with temporal fields
Neo4j supports native temporal types as properties on nodes and relationships. These
types include Date, DateTime, and LocalDateTime. With neo4j-graphql.js you can use
these temporal types in your GraphQL schema.

4.8.1 Using temporal fields in queries

Temporal types expose their date components (such as day, month, year, hour, etc.) as
fields, as well as a formatted field which is the ISO-8601 string representation of the
temporal value. The specific fields available vary depending on which temporal is
used. See the following listing.

{
 Review(first: 3, orderBy: date_desc) {
 stars
 date {
 formatted
 }
 business {
 name
 }
 }
}

Because we specified the formatted field on our date property, we see that in the
results.

{
 "data": {
 "Review": [
 {
 "stars": 3,
 "date": {
 "formatted": "2018-09-10"
 },
 "business": {
 "name": "Imagine Nation Brewing"
 }
 },

Listing 4.22 GraphQL query

63Working with temporal fields

 {
 "stars": 5,
 "date": {
 "formatted": "2018-08-11"
 },
 "business": {
 "name": "Zootown Brew"
 }
 },
 {
 "stars": 4,
 "date": {
 "formatted": "2018-03-24"
 },
 "business": {
 "name": "Market on Front"
 }
 }
]
 }
}

4.8.2 DateTime filters

Temporal fields are also included in the generated filtering enums, allowing for filter-
ing using dates and date ranges. In the following listing we search for reviews created
before January 1, 2017.

{
 Review(
 first: 3
 orderBy: date_desc
 filter: { date_lte: { year: 2017, month: 1, day: 1 } }
) {
 stars
 date {
 formatted
 }
 business {
 name
 }
 }
}

We can see the results are now ordered by the date field.

{
 "data": {
 "Review": [
 {
 "stars": 5,
 "date": {
 "formatted": "2016-11-21"
 },

Listing 4.23 GraphQL query

64 CHAPTER 4 A GraphQL API for our graph database

 "business": {
 "name": "Hanabi"
 }
 },
 {
 "stars": 5,
 "date": {
 "formatted": "2016-07-14"
 },
 "business": {
 "name": "KettleHouse Brewing Co."
 }
 },
 {
 "stars": 4,
 "date": {
 "formatted": "2016-01-03"
 },
 "business": {
 "name": "KettleHouse Brewing Co."
 }
 }
]
 }
}

4.9 Working with spatial data
Neo4j currently supports the spatial Point type, which can represent both 2D (such as
latitude and longitude) and 3D (such as x,y,z or latitude, longitude, height) points.
neo4j-graphql.js makes available the Point type for use in your GraphQL type defini-
tions. The GraphQL schema augmentation process will translate the location field to
a _Neo4jPoint type in the augmented schema.

4.9.1 The point type in selections

Point type fields are object fields in the GraphQL schema, so let’s retrieve the latitude
and longitude fields for our matching businesses by adding those fields to our selec-
tion set as shown in the following listing.

{
 Business(first: 3, orderBy: name_asc) {
 name
 location {
 latitude
 longitude
 }
 }
}

Listing 4.24 GraphQL query

65Working with spatial data

Now, in the GraphQL query result we see longitude and latitude included for each
business.

{
 "data": {
 "Business": [
 {
 "name": "Ducky's Car Wash",
 "location": {
 "latitude": 37.575968,
 "longitude": -122.336041
 }
 },
 {
 "name": "Hanabi",
 "location": {
 "latitude": 37.582598,
 "longitude": -122.351519
 }
 },
 {
 "name": "Imagine Nation Brewing",
 "location": {
 "latitude": 46.876672,
 "longitude": -114.009628
 }
 }
]
 }
}

4.9.2 Distance filter

When querying using point data, often we want to find things that are close to other
things. For example, what businesses are within 1.5km of me? We can accomplish this
using the auto-generated filter argument in the following listing.

{
 Business(
 filter: {
 location_distance_lt: {
 point: { latitude: 37.563675, longitude: -122.322243 }
 distance: 3500
 }
 }
) {
 name
 address
 city
 state
 }
}

Listing 4.25 GraphQL query

66 CHAPTER 4 A GraphQL API for our graph database

For points using the Geographic coordinate reference system (latitude and longi-
tude), distance is measured in meters.

{
 "data": {
 "Business": [
 {
 "name": "Hanabi",
 "address": "723 California Dr",
 "city": "Burlingame",
 "state": "CA"
 },
 {
 "name": "Ducky's Car Wash",
 "address": "716 N San Mateo Dr",
 "city": "San Mateo",
 "state": "CA"
 },
 {
 "name": "Neo4j",
 "address": "111 E 5th Ave",
 "city": "San Mateo",
 "state": "CA"
 }
]
 }
}

4.10 Adding custom logic
We’ve seen basic querying operations created by neo4j-graphql.js. Often, we want to
add custom logic to our API. For example, we may want to calculate the most popular
business or recommend businesses to users. There are two options for adding custom
logic to your API using neo4j-graphql.js: 1) the @cypher schema directive, and 2) by
implementing custom resolvers.

4.10.1 The @cypher directive

We expose Cypher through GraphQL via the @cypher directive. Annotate a field in
your schema with the @cypher directive to map the results of that query to the anno-
tated GraphQL field. The @cypher directive takes a single argument statement which
is a Cypher statement. Parameters are passed into this query at runtime, including
this which is the currently resolved node as well as any field-level arguments defined
in the GraphQL type definition.

NOTE The @cypher directive feature requires the use of the APOC standard
library plugin. Be sure you follow the steps to install APOC in the Project
Setup section of this chapter.

COMPUTED SCALAR FIELDS

We can use the @cypher directive to define a custom scalar field, defining a computed
field in our schema. Here we add an averageStars field to the Business type, which

67Adding custom logic

calculates the average stars of all reviews for the business using this variable, as shown
in the following listing.

type Business {
 businessId: ID!
 averageStars: Float! @cypher(statement:"MATCH (this)<-[:REVIEWS]-

(r:Review) RETURN avg(r.stars)")
 name: String!
 city: String!
 state: String!
 address: String!
 location: Point!
 reviews: [Review] @relation(name: "REVIEWS", direction: "IN")
 categories: [Category] @relation(name: "IN_CATEGORY", direction: "OUT")
}

We need to restart our GraphQL server because we have modified the type definitions:

node index.js

Now, let’s include the averageStars field in our GraphQL query, as shown in the fol-
lowing listing.

{
 Business {
 name
 averageStars
 }
}

And we see in the results that the computed value for averageStars is now included.

{
 "data": {
 "Business": [
 {
 "name": "Hanabi",
 "averageStars": 5
 },
 {
 "name": "Zootown Brew",
 "averageStars": 5
 },
 {
 "name": "Ninja Mike's",
 "averageStars": 4.5
 }
]
 }
}

The generated Cypher query includes the annotated Cypher query as a sub-query,
preserving the single database call to resolve the GraphQL request.

Listing 4.26 index.js: GraphQL type definitions

Listing 4.27 GraphQL query including averageStars field

68 CHAPTER 4 A GraphQL API for our graph database

COMPUTED OBJECT AND ARRAY FIELDS

We can also use the @cypher schema directive to resolve object and array fields. Let’s
add a recommended business field to the Business type. We’ll use a simple Cypher
query to find common businesses that other users reviewed. For example, if a user
likes “Market on Front”, we could recommend other businesses that users who
reviewed “Market on Front” also reviewed, as shown in the following listing.

MATCH (b:Business {name: "Market on Front"})<-[:REVIEWS]-(:Review)<-[:WROTE]-
(:User)-[:WROTE]->(:Review)-[:REVIEWS]->(rec:Business)

WITH rec, COUNT(*) AS score
RETURN rec ORDER BY score DESC

We can use this Cypher query in our GraphQL schema by including it in a @cypher
directive on the recommended field in our Business type definition, as shown in the
following listing.

type Business {
 businessId: ID!
 averageStars: Float! @cypher(statement:"MATCH (this)<-[:REVIEWS]-

(r:Review) RETURN avg(r.stars)")
 recommended(first: Int = 1): [Business] @cypher(statement: """
 MATCH (this)<-[:REVIEWS]-(:Review)<-[:WROTE]-(:User)-[:WROTE]-

>(:Review)-[:REVIEWS]->(rec:Business)
 WITH rec, COUNT(*) AS score
 RETURN rec ORDER BY score DESC LIMIT $first
 """)
 name: String!
 city: String!
 state: String!
 address: String!
 location: Point!
 reviews: [Review] @relation(name: "REVIEWS", direction: "IN")
 categories: [Category] @relation(name: "IN_CATEGORY", direction: "OUT")
}

We also define a first field argument, which is passed to the Cypher query included
in the @cypher directive and acts as a limit on the number of recommended busi-
nesses returned.

CUSTOM TOP-LEVEL QUERY FIELDS

Another helpful way to use the @cypher directive is as a custom query or mutation
field. For example, let’s see how we can add full-text query support to search for busi-
nesses. Applications often use full-text search to correct for things such as misspellings
in user input using fuzzy matching.

 In Neo4j, we can use full-text search by first creating a full-text index, as shown in
the following listing.

Listing 4.28 Cypher

Listing 4.29 index.js: GraphQL type definitions

69Adding custom logic

CALL db.index.fulltext.createNodeIndex("businessNameIndex",
["Business"],["name"])

Then to query the index, in this case we misspell “coffee” but including the ~ charac-
ter enables fuzzy matching, ensuring we still find what we’re looking for, as shown in
the following listing.

CALL db.index.fulltext.queryNodes("businessNameIndex", "cofee~")

Wouldn’t it be nice to include this fuzzy matching full-text search in our GraphQL
API? To do that let’s create a Query field called fuzzyBusinessByName that takes a
search string and searches for businesses, as shown in the following listing.

type Query {
 fuzzyBusinessByName(searchString: String): [Business] @cypher(
 statement: """
 CALL db.index.fulltext.queryNodes('businessNameIndex',

$searchString+'~')
 YIELD node RETURN node
 """
)
}

Again, since we’ve updated the type definitions, we must restart the GraphQL API
application:

node index.js

If we check the Docs tab in GraphQL Playground, we’ll see a new Query field fuzzy-
BusinessByName, and we can now search for business names using this fuzzy match-
ing (see the following listing).

{
 fuzzyBusinessByName(searchString: "libary") {
 name
 }
}

Because we’re using full-text search, even though we spell “library” incorrectly, we still
find matching results.

{
 "data": {
 "fuzzyBusinessByName": [
 {
 "name": "Missoula Public Library"

Listing 4.30 Cypher: create full-text index

Listing 4.31 Cypher: querying the full-text index

Listing 4.32 index.js: GraphQL type definitions

Listing 4.33 GraphQL query

70 CHAPTER 4 A GraphQL API for our graph database

 }
]
 }
}

The @cypher schema directive is a powerful way to add custom logic and advanced
functionality to our GraphQL API. We can also use the @cypher directive for authori-
zation features, accessing values such as authorization tokens from the request object,
a pattern that will be discussed in a later chapter when we explore different options
for adding authorization to our API.

4.10.2 Implementing custom resolvers

While the @cypher directive is one way to add custom logic, in some cases we may
need to implement custom resolvers that implement logic not able to be expressed in
Cypher. For example, we may need to fetch data from another system, or apply cus-
tom validation rules. In these cases, we can implement a custom resolver and attach it
to the GraphQL schema so that resolver is called to resolve our custom field instead of
relying on the generated Cypher query by neo4j-graphql.js to resolve the field.

 In our example, let’s imagine there is an external system that can be used to deter-
mine current wait times at businesses. We want to add an additional waitTime field to
the Business type in our schema and implement the resolver logic for this field to use
this external system.

 To do this, we first add the field to our schema, adding the @neo4j_ignore direc-
tive to ensure the field is excluded from the generated Cypher query. This is our way
of telling neo4j-graphql.js that a custom resolver will be responsible for resolving this
field and we don’t expect it to be fetched from the database automatically, as shown in
the following listing.

type Business {
 businessId: ID!
 waitTime: Int! @neo4j_ignore
 averageStars: Float!
 @cypher(
 statement: "MATCH (this)<-[:REVIEWS]-(r:Review) RETURN avg(r.stars)"
)
 name: String!
 city: String!
 state: String!
 address: String!
 location: Point!
 reviews: [Review] @relation(name: "REVIEWS", direction: "IN")
 categories: [Category] @relation(name: "IN_CATEGORY", direction: "OUT")
 }

Next, we create a resolver map with our custom resolver. We didn’t have to create this
previously because neo4j-graphql.js generated our resolvers for us. Our wait time cal-
culation will be selecting a value at random, but we could implement any custom logic

Listing 4.34 index.js: GraphQL type definitions

71Adding custom logic

here to determine the waitTime value, such as making a request to a third-party API,
as shown in the following listing.

const resolvers = {
 Business: {
 waitTime: (obj, args, context, info) => {
 const options = [0, 5, 10, 15, 30, 45];
 return options[Math.floor(Math.random() * options.length)];
 }
 }
};

Then we add this resolver map to the parameters passed to makeAugmentedSchema, as
shown in the following listing.

const schema = makeAugmentedSchema({
 typeDefs,
 resolvers
});

Now we restart the GraphQL API application because we’ve updated the code:
node index.js

After restarting, in GraphQL Playground if we check the Docs for the Business type,
we’ll see our new field waitTime on the Business type.

 Now, let’s search for restaurants and see what their wait times are by including the
waitTime field in the selection set in the following listing.

{
 Business(filter: { categories_some: { name: "Restaurant" } }) {
 name
 waitTime
 }
}

In the results we now see a value for the wait time. Your results will of course vary
because the value is randomized.

{
 "data": {
 "Business": [
 {
 "name": "Ninja Mike's",
 "waitTime": 5
 },
 {
 "name": "Market on Front",
 "waitTime": 45
 },

Listing 4.35 index.js: creating a resolver map

Listing 4.36 index.js: generating the GraphQL schema

Listing 4.37 GraphQL query

72 CHAPTER 4 A GraphQL API for our graph database

 {
 "name": "Hanabi",
 "waitTime": 45
 }
]
 }
}

4.11 Inferring GraphQL schema from an existing database
Typically, when we start a new application, we don’t have an existing database and fol-
low the GraphQL-First development paradigm by starting with type definitions. How-
ever, in certain cases we may have an existing Neo4j database populated with data. In
those cases, it can be convenient to generate GraphQL type definitions based on the
existing database that can then be fed into makeAugmentedSchema to generate a
GraphQL API for the existing database. We can do this with the use of the infer-
Schema functionality in neo4j-graphql.js.

 This Node.js script will connect to our Neo4j database and infer the GraphQL type
definitions that describe this data, then write those type definitions to a file named
schema.graphql, as shown in the following listing.

const neo4j = require("neo4j-driver");
const { inferSchema } = require("neo4j-graphql-js");
const fs = require("fs");

const driver = neo4j.driver(
 "bolt://localhost:7687",
 neo4j.auth.basic("neo4j", "letmein")
);

const schemaInferenceOptions = {
 alwaysIncludeRelationships: false
};

inferSchema(driver, schemaInferenceOptions).then(result => {
 fs.writeFile("schema.graphql", result.typeDefs, err => {
 if (err) throw err;
 console.log("Updated schema.graphql");
 process.exit(0);
 });
});

Then we can load this schema.graphql file in the following listing and pass the type
definitions into makeAugmentedSchema.

// Load GraphQL type definitions from schema.graphql file
const typeDefs =

fs.readFileSync(path.join(__dirname,"schema.graphql")).toString("utf-8");

Listing 4.38 infer.js: inferring GraphQL type definitions

Listing 4.39 Initial GraphQL API code

73Inferring GraphQL schema from an existing database

Up to now, all of our GraphQL querying has been done using GraphQL Playground,
which is great for testing and development, but typically our goal is to build an appli-
cation that queries the GraphQL API. In the next few chapters, we’ll start to build out
the user interface for our business reviews application using React and Apollo Client.
Along the way, we’ll learn more about GraphQL concepts such as mutations, frag-
ments, interface types, and more!

Exercises
1 Query the GraphQL API we created in this chapter using GraphQL Playground

to find:
– Which users have reviewed the business named “Hanabi”?
– Find any reviews that contain the word “comfortable”. What business(es) are

they reviewing?
– Which users have given no five-star reviews?

2 Add a @cypher directive field to the Category type that computes the number of
businesses in each category. How many businesses are in the “Coffee” category?

3 Create a Neo4j Sandbox instance at https://sandbox.neo4j.com choosing from
any of the pre-populated datasets. Using the inferSchema method from neo4j-
graphql.js, create a GraphQL API for this Neo4j Sandbox instance without man-
ually writing GraphQL type definitions. What data can you query for using
GraphQL?

Refer to the book’s GitHub repository to see the exercise solutions: https://
github.com/johnymontana/fullstack-graphql-book.

Summary
Common problems that arise when building GraphQL APIs include the n+1
query problem, schema duplication, and a large amount of boilerplate data-
fetching code.
GraphQL database integrations like neo4j-graphql.js can help mitigate these
problems by generating database queries from GraphQL requests, driving data-
base schema from GraphQL type definitions, and auto-generating a GraphQL
API from GraphQL type definitions.
neo4j-graphql.js makes it easy to build GraphQL APIs backed by a Neo4j data-
base by generating resolvers for data fetching and adding filtering, ordering,
and pagination to the generated API.
Custom logic can be added by using the @cypher schema directive to define cus-
tom logic for fields, or by implementing custom resolvers and attaching them to
the GraphQL schema.
If we have an existing Neo4j database, we can use the inferSchema functionality
of neo4j-graphql.js to generate GraphQL type definitions and a GraphQL API
on top of the existing database.

74

Symbols

@cypher schema directive 49
@relation schema directive 51
/graphql endpoint 20

A

Amazon Lambda, Apollo Server and 14
Apollo 13–14

described 24
Apollo Client 14
Apollo Server

and Express.js 14
and neo4j-graphql.js library 18
described 13

Arrows tool 28

C

client drivers 41
component libraries, React and 13
Create React App, command line tool 13
custom logic, adding 66–73

@cypher directive 66–70
implementation of custom revolvers 70–72

Cypher
aggregations 40
CREATE statement 34–38
defining database constraints with 39
described 42
MATCH clause 39
MERGE command 38–39
pattern matching 33–34
properties 34
WHERE clause 40

Cypher query language 16
Cypher statement 47

D

data
Cypher statement 47
fetching generated 44, 51
graph data modeling, considerations 31–32
GraphQL and complete description of 3
spatial 64–66

distance filter 65–66
Point type in selections 64–65

database constraints
defining with Cypher 39
indexes and 30–31

DataLoader 10, 45
datamodel, determining 26
direction argument 51
document database 26

E

error handling, GraphQL and 10

F

fields
computed object and array field 68
custom query filed 68
optional 4
required 4
temporal 62–64

DateTime filters 63–64
in queries 62–63

index

75INDEX

filtering 58–62
filter argument 58–59
in selections 61–62
nested filter 59
OR and AND logical operators 59–61

frontend frameworks, Apollo Client and 14

G

Google Cloud Functions, Apollo Server and 14
GRANDstack

and example of application built with 19–20
components of 2
defined 1, 24
fitting different components together 19–22

graph
described 4
Property Graph data model 14, 27–30

node labels 28–29
relationships 29

graph database
benefits of using with GraphQL 15
defined 25
Neo4j 26

GraphiQL, in-browser tool 11
GraphQL 2–12

advantages of 7–9
and lack of semantics 10
as alternative to REST 3
as data-layer agnostic 3, 7
common problems

boilerplate and developer productivity 45
n+1 query problem and poor

performance 44
data fetching compartmentalization 9
database integrations 45
defined 3
described 2, 24
disadvantages of 9–10
limitations 10
possible issues during backend

implementations 43
queries and 5–7

results 6–7
simple 5

tooling 11–12
type definitions 3–5

expressed as graph 4
fields 4
simple 4

GraphQL API
and GraphQL database integrations 45
application code, example of basic structure 50

neo4j-graphql.js 44
type definitions and 2

GraphQL database integrations
and mitigation of common problems when

building GraphQL APIs 73
and mitigation of common problems while

building GraphQL APIs 43
GraphQL Playground, in-browser tool 11–12

example of generated API 53
features of 11

GraphQL schema
inferring from existing database 72–73

GraphQL specification 9
GraphQL transpilation 45–46

H

Hypermedia As The Engine Of Application State
(HATEOAS) 9

I

indexes 31
inferSchema functionality 72–73
introspection, as GraphQL feature 9

M

makeAugmentedSchema 50, 72

N

n+1 query problem 10, 22, 43
name argument 51
Neo4j

as transactional database 26
described 24
drivers 49
graph data modeling with 26–31
indexes in 39
loading sample dataset into 47
overview 26
schema optional 27
tooling

Neo4j Browser 16
Neo4j Desktop 16

Neo4j Browser 26
tooling 33

Neo4j database 14–19
and Cypher query language 16
Property Graph data model 15–16
tooling 16–19

76 INDEX

Neo4j client drivers 18
neo4j-graphql.js library 18

Neo4j Desktop 26
tooling 32–33

Neo4j JavaScript driver, usage 18
neo4j-graphql.js

and building API layer between client and
database 44

configuration of generated API
disabling auto-generated queries and

mutations 51
exclusion of specific types 52

described 44–45
main functions of 45
neo4j

graph schema visualization 47
inspection of stored node properties 48–49

Neo4j driver instance 51
node.js app 49

neo4j-graphql-java 19
network layer, GraphQL server 20
nodes

as graph components 26
defined 27
node labels 28–29
vs. properties 31
vs. relationships 31

O

ordering 55–57
overfetching, GraphQL and 8–9

P

pagination 55–57
PascalCase 29
pattern matching 34
performance considerations, GraphQL and 10
properties

defined 27
types 30

Q

queries
basic 52

Cypher query 54
complex, and working with graphs 25

nested 57–58
querying with GraphQL 5–7

R

React 12–14
components of 12

example of simple 12–13
defined 12
described 24
JSX 13
tooling 13–14

React Chrome Devtools 13–14
relational database 26
relationships

choosing direction 32
defined 27
specifity of relationship types 32
undirected 29

resolvers
GraphQL and 7
nested 21
resolver functions and implementation

methods 21
response handling, React and Apollo Client 22
revolvers, implementation of custom 70–72

S

schema augmentation
and configuration of generated data 51
and working with spatial data 64
described 46
Query and Mutation type and 46

Schema Definition Language (SDL), GraphQL
type definition and 3

serverless functions, Apollo Server and 14

T

tools, diagramming graph data models and 28

U

underfetching, GraphQL and 8–9

W

Web caching, GraphQL and 10
whiteboard model 27

