

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://neo4j.com

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Graph
Databases

Neo4j Special Edition

by Dr. Jim Webber
and Rik Van Bruggen

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Graph Databases For Dummies, Neo4j Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not
be used without written permission. Neo4j and the Neo4j logo are registered trademarks of
Neo4j. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc.,
is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department in the
U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub. For
information about licensing the For Dummies brand for products or services, contact Branded
Rights&Licenses@Wiley.com.

ISBN: 978-1-119-74602-7 (pbk); ISBN: 978-1-119-74579-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the
following:

Project Editor:
Carrie Burchfield-Leighton

Sr. Managing Editor: Rev Mengle

Acquisitions Editor: Steve Hayes

Production Editor:
Mohammed Zafar Ali

Business Development
Representative: Molly Daugherty

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
mailto:Branded
Rights&Licenses@Wiley.com
mailto:Branded
Rights&Licenses@Wiley.com

Table of Contents iii

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 1
Icons Used in This Book ... 1
Beyond the Book .. 2

CHAPTER 1: Introducing Graph Databases ... 3
Exploring Graph Database Basics .. 4

Understanding who uses graph databases and why 4
Seeing the benefits of graph databases 4

Explaining Labeled Property Graphs ... 5
Defining nodes .. 5
Explaining relationships ... 6
Enforcing constraints.. 6

Building a Sample Graph ... 7
Climbing the Graph Learning Curve .. 9

CHAPTER 2:	 Building	Rich	Graph	Data Models 11
A Whiteboard Works Wonders! .. 12
Refining the Model with Questions .. 14

CHAPTER 3: Importing Graph Data into Your Graph 17
Starting with the Model ... 17
Importing Made Easy ... 19

Online CSV importing ... 20
Offline CSV importing ... 23

CHAPTER 4: Querying Your Graph ... 25
De-Cyphering Graphs .. 25
Building Bigger Patterns .. 28
Updating the Graph ... 29
Filtering with Predicates .. 30
Aggregating Data .. 31
Returning Insight .. 32

iv Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 5: Using Graphs in Production with Neo4j 33
Connecting to the Database ... 33

Neo4j Browser ... 33
Neo4j drivers ... 35

Keeping Data Safe with Neo4j Servers .. 36
Core Servers .. 36
Read Replicas .. 37

Monitoring Systems ... 37
Performing Regular Backups .. 38
Integrating with Other Systems .. 38

ETL tools ... 38
Streaming ... 39

CHAPTER 6: Ten Tips for Creating Successful Graphs 41
Use the Right Tool for the Right Job ... 41
Make Connections .. 41
Take Advantage of Speed .. 42
Use Graphs for Obvious Use Cases ... 42
Begin with Modeling .. 43
Start Small, Scale Next ... 43
Model for Questions .. 43
Focus on Value .. 43
Explore Hidden Insights... 44
Connect with the Graph Community ... 44

Introduction 1

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Graph databases have been the fastest growing database
technology for almost a decade. Some people are drawn to
graph databases for technical or performance reasons;

others become interested because of the intuitive data model. One
thing is clear: Graphs represent a departure from the relational
and NoSQL models, but this departure is inherently worthwhile.

About This Book
This book is all about getting started with graph databases. We
give you the basics so you can get started quickly. We want to
make this a short, easy, and enjoyable journey so you feel confi-
dent building applications using graph data. We also use the Neo4j
graph database for all our examples. You can run those examples,
too, after downloading the Neo4j desktop app, which you can also
use to build your own graph-based applications.

This book has digestible information that’s aimed at the curious
technical or managerial reader who wants to get started with, or
wants to help others get started with, graph database technol-
ogy. We hope you feel right at home and are able to find what
you’re looking for as quickly as possible. We hope you finish read-
ing this book with a basic understanding of how to apply graphs
to a handful of use cases and with enthusiasm for the technology.

Icons Used in This Book
Throughout this book, we occasionally use special icons to call
attention to important information. Here’s what to expect:

When you see this icon, we give you important points to remem-
ber when designing or querying your graphs.

The Technical Stuff icon is used when we dive deeper into techni-
cal context and internals that the avid technical reader may enjoy.
If you aren’t that technical reader, feel free to skip over these.

2 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

For extra help on any common gotchas, tips guide you around
those little annoyances while getting started.

Watch out for this info. Steer clear of roadblocks, errors, and other
issues with the information found here.

Beyond the Book
This book may not be the only resource you need when you dig
down in to the details, but we hope to start you off in the right
direction. To level-up your graph skills beyond what you find in
this book, we recommend these resources:

 » graphdatabases.com: Download a free copy of Graph
Databases, coauthored by Dr. Jim Webber, coauthor of
this book.

 » neo4j.com/sandbox: Experience Neo4j for yourself. Get
started with built-in guides and sample datasets for popular
use cases.

 » community.neo4j.com: Visit the Neo4j community website.

 » neo4j.com/graphacademy: Neo4j offers free online training
and certification for you to consume at your own pace.

 » neo4j.com/developer: Find developer resources.

 » neo4j.com/resources: Visit the Neo4j resources library for
developers.

 » neo4j.com/use-cases: Learn about several different graph
database use cases.

 » neo4j.com/customers: Find out what Neo4j customers
have to say about graph databases.

Also, if you read through the pages of this book, please keep in
mind that we’d love to hear from you and learn about your graph
project success. Tweet us @neo4j.

https://graphdatabases.com/
https://neo4j.com/sandbox
https://community.neo4j.com/
https://neo4j.com/graphacademy
https://neo4j.com/developer
https://neo4j.com/resources
https://neo4j.com/use-cases/
https://neo4j.com/customers/
https://twitter.com/neo4j

CHAPTER 1 Introducing Graph Databases 3

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Introducing graph database basics

 » Following the graph learning curve

Introducing Graph
Databases

Since the turn of the century, an explosion of new database
technologies has ended the prior dominance of relational
systems. These various new kinds of databases distinguished

themselves with the umbrella term NoSQL. While the terminology
is debatable, NoSQL technology really is different from the rela-
tional world. Instead of storing data in rows in tables, databases
store nested documents, key-value pairs, or columnar form data.

There are good reasons for the emergence of new data models.
Document databases optimize for ease of storage and retrieval
with a file cabinet metaphor of document-in, document-out.
Column store databases optimize for scale and the ability to scan
many records rapidly. In optimizing for their use cases though,
the new databases opted for simplistic data models. For example,
understanding how two records are related is part of the relational
model via joins, but no equivalent mechanism exists in document,
key-value, or column store databases.

In this chapter, you discover the fundamental building blocks of
graphs and how to use them to create sophisticated, high-fidelity
data models.

4 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Exploring Graph Database Basics
A graph database uses highly inter-linked data structures built
from nodes, relationships, and properties. In turn, these graph
structures support sophisticated, semantically rich queries at
scale.

Graph databases turn NoSQL thinking on its head: Relationships
between data are just as important as the data itself. A graph
database builds a network of interconnected entities to represent
its domain. Like relational databases, you can query that model
to gain insight, but unlike relational databases, the data model
is intuitive. Using graph data models doesn’t require a semester
of classes on normalization and years of system administration
experience on how to denormalize relational data for perfor-
mance. Instead, with a handful of simple tools, you can build
expressive and understandable data models that are highly per-
formant. In this section, you explore the new data model basics.

Understanding who uses graph
databases and why
Graph databases are general-purpose data technology. They can
be used by a wide variety of domains from healthcare to finance,
and energy to disaster response. The key to understanding when
to use a graph database is the value of links. If your data is con-
nected, whether it supports an online mobile app or an offline
machine learning framework, then a graph is going to be a good
choice.

Conversely if your data is bulk storage, blob storage, time-
series, or logs, then a graph may not be the best choice because
there aren’t many links between the data to exploit. Graphs are
general-purpose, but they are not the only useful data model.
Graphs are broadly useful, and we give you a range of examples
throughout this book.

Seeing the benefits of graph databases
Graphs bring several benefits across the whole life cycle of a sys-
tem. For the production lifetime of a system, graphs offer superior
querying of complex models, enabling business to ask pertinent
questions with high performance. This alone is enough to put

CHAPTER 1 Introducing Graph Databases 5

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

graphs on your to-do list. But graphs also offer ease of develop-
ment, where combining simple patterns allows you to build large
sophisticated networks that represent your problem domain in
high-fidelity.

Explaining Labeled Property Graphs
The most widely used model for graph databases is the labeled
property graph model. To experts, this shorthand is useful to dis-
tinguish between this model and other more mathematically
inclined models, such as hypergraphs. But if you aren’t an expert,
this description may need a little unpacking.

The fundamental components of the labeled property graph model
are nodes and relationships (you may also know these as vertices
and edges) and constraints.

In the labeled property graph model, we use naming conventions
to distinguish elements at a glance. When reading this chapter or
others, the following helps describe the naming conventions:

 » Node labels are PascalCase. Every word starts with an
uppercase letter with no spaces.

 » Relationships are SNAKE_CASE_ALL_CAPS. Replace all the
spaces with an underlined character and convert all the
letters to capitals.

 » Properties on nodes and relationships are snake_case.
Replace all spaces with an underlined character and
lowercase all the words.

Defining nodes
A node typically represents some entity, such as a person, prod-
uct, electrical junction, mouse click, or patient diagnosis. You can
optionally add labels to a node, which indicates the node’s role
in the graph. For example, you could label a node representing
a corporate customer as Business and Customer, while labeling a
private individual as a Person and Customer. With these labels, you
can easily find all customers, all individual customers, or all busi-
ness customers and use them as starting points in graph queries.
We cover graph queries more in Chapter 4.

6 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can add data properties to nodes. For example, you could add
first_name and last_name properties to a node labeled Person or
add an invoice_address property to a node labeled Business.

Explaining relationships
To link nodes together, you use relationships. Relationships
are singly-typed, directed, and can optionally have properties
attached to them. The type of a relationship provides a predicate
(for example, MANAGES) while the direction of the relationship
shows the subject and object (for example, Rosa manages Karl,
not the other way around).

Any number of relationships of any type, in any direction can
be attached to a node. Some nodes are sparsely connected, some
densely. This distribution is quite normal, and the model allows
for infinite variation.

Enforcing constraints
After you have the basic structures in place, you may want to
structure how the graph evolves. By declaring constraints, you
can ask the database to enforce that certain properties must be
present for certain node labels or relationship types — for exam-
ple, that first_name and last_name must be present on nodes with
Person labels or a power_rating must be present on POWER_LINE
relationships. You can also ask the database to ensure that fields
are unique when adding a Social Security Number (SSN) to Person
nodes, for example.

Unlike traditional databases where an up-front schema is required,
we like to take the approach that data should grow organically
where it can, and be constrained where it must. Constraints act as
a schema for parts of the graph that require stronger governance,
while other parts of the graph can change in a less constrained
way. We call it less-schema rather than schema-less. This approach
gives both flexibility and good governance.

If your query violates a constraint, it will be rolled back, keeping
the data consistent.

CHAPTER 1 Introducing Graph Databases 7

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Building a Sample Graph
In the preceding section, “Explaining labeled property graphs,”
we laid out the basic parts of graphs for you. In this section, you
can put those tools and knowledge to work and build a simple
graph. The example we provide is of an atomic family, which con-
sists of two parents and their offspring.

Figure 1-1 shows you three nodes labeled Person. Inside the nodes,
you see first_name and last_name properties for Alice, Bob, and
Charlotte.

FIGURE 1-1: A graph showing a family with its home and vehicles.

8 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You may infer some relationship between the three people in
Figure 1-1 by their common last names, but the relationships
between them make it explicit. Charlotte has two outgoing rela-
tionships: MOTHER joins her to Alice, and FATHER joins her to Bob.
Those relationships are read as Charlotte’s MOTHER is Alice, and
Charlotte’s FATHER is Bob.

If you read from a node along an outgoing relationship to another
node, you get a sensible sentence. A good spot-check to see if the
model is sound is that the nodes and relationships make logi-
cal sense. If you had made errors in this model (for example, Car
DRIVES Person), you’d know that you had some work to do.

You can see in Figure 1-1 where each family member lives by
following the outgoing LIVES_AT relationship from each. Fol-
low those lines, and you see they all live at the same address.
But what’s really useful about graphs is that you can ask the
reverse question: Who lives at this address? And you can expect
the answer in the same amount of time, which is faster when
compared to other kinds of databases.

Following lines between circles doesn’t seem sophisticated at
first glance. But it’s an example of how Neo4j, a graph database,
works. Given a starting point, the database engine chases point-
ers around the graph until it finds the answer to your queries.
Pointer chasing is a cheap and fast way of navigating data because
it avoids heavyweight joins and slow index lookups that are com-
mon in relational systems.

Pointer chasing even has its own special jargon: index-free adja-
cency. Informally, it means that it’s possible to traverse from a
node to any of its neighbors at a low, constant cost, and from
there to any of its neighbors, and so on, all at a low, constant cost
per hop. This means that query time is proportional to how much
of the graph the query traverses. Query latency — how long a query
takes to run — is decoupled from the overall size of the data.

In Figure 1-1, you also see that Alice and Bob each OWN cars and
each is the DRIVER of both their own and each-other’s vehicles.
So if Charlotte needs a ride, she can ask either Mom or Dad and be
taken in either car.

You can solve several other queries with the graph in Figure 1-1.
These queries include knowing who’s legally allowed to drive a
car, knowing where a car normally resides, and so on. You can

CHAPTER 1 Introducing Graph Databases 9

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

scale this model up to a street, town, city, or country, as well.
Then add in schools, hospitals, businesses, and more to produce
a much bigger and richer graph, all by repeating the same simple
idioms.

Climbing the Graph Learning Curve
In a graph database, nodes can be connected by any number and
type of relationship in any direction. You can use as many or as
few as needed to model the domain accurately. There is no nor-
malized form to which you must adhere: If many paths between
two nodes exist, that’s quite normal, just like in real life. Many
folks, including us authors, have initially found this hard coming
from a relational background. If this model seems too loose right
now, don’t despair. We help you with some modeling patterns in
Chapter 2.

In a graph database, each node represents a single entity and each
relationship joins two specific nodes. That means if you have a lot
of products to store in the database, there will be a lot of product
nodes, and if you have a lot of customers for those products, there
will be a lot of relationships linking them together.

Initially, the instance-oriented view of data in graph databases
seems messy. After all, a relational database collects all similar
data items into their own tables and permits joins between those
tables. This seems to keep complexity down, in principle. But
graph databases also have abstractions that can help minimize
complexity.

For example, labels are similar to tables or views, grouping
together similar entities. Nodes are like rows where individual
properties are grouped together. Relationships dictate which joins
are legal — not at the table level like in the relational model, but
at a finer granularity. So you can say that Product nodes are linked
to Customer nodes via BOUGHT and LIKED relationships.

Entity-relationship diagrams from the relational world often
make good design diagrams for labeled nodes and their connec-
tions in a graph model. If you can draw an Entity Relationship
Diagram (ERD) to model a relational database, you can create a
graph data model.

10 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In practice, graphs are simpler than relational models. Over time,
thinking in graphs becomes quite natural. We found that over-
whelmingly the hardest part is letting go of relational modeling
and trusting that a network of nodes and relationships can be
even better.

Too good to be true? We don’t think so. Head to Chapter 2 to find
out how to build graph models.

GOING ALL-IN ON GRAPHS
Graphs are simple to build and highly expressive, so we think you
should be using them everywhere. Well, perhaps eventually, but in
today’s environment, there are places where other databases are a
better choice. That might seem strange coming from graph aficiona-
dos, but we think graphs follow the 80-20 rule. They’re great for 80
percent of tasks because they’re a general-purpose database, and
they’re not directly helpful for 20 percent of the tasks that have spe-
cialized needs.

But sometimes graphs can be helpful for that 20 percent, too. As an
example, imagine you have a bulk storage system. It may be a data
lake or perhaps an object store like Amazon’s S3. These storage sys-
tems work for storing large amounts of items, but they’re not great
systems for reasoning about data. The data model simply doesn’t
care about connections; it cares about volume.

In this case, graph databases can be used as the index over the bulk
store. The graph can be used to link together related items to provide
curated views of the underlying items. You don’t have any more of
those intensive batch processing jobs needed just to find linkage
between records; just search paths in the graph in real time, and then
go down to bulk storage to pick out only those records you need.
Adding graphs to bulk storage systems adds value.

CHAPTER 2 Building Rich Graph Data Models 11

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Starting at the whiteboard

 » Working with indirect connections

 » Refining the model with questions

Building Rich Graph
Data Models

We cover the basics of graphs in Chapter 1. By assembling
nodes, relationships, and properties, you can create
graphs that are intuitive, high-fidelity representations

of your domains. Graph models are easily understood by humans,
and that is a big part of what makes graphs so powerful. Our
brains are wired to think associatively, so we easily understand a
network of concepts connected to other concepts. It’s simple
enough that you can even explain it to the boss!

In this chapter, we outline the approach that underpins the utility
of graphs. By understanding connectivity and refining the net-
work through answering questions, you can achieve clean, under-
standable models. You don’t produce mysterious models that only
specialists can understand; instead, your models, once visualized,
can readily be understood by others who aren’t technical special-
ists. By using this simple, powerful approach, you can

 » Quickly develop your graph data models based on a natural
understanding and visual representation of these
relationships

 » Easily refine the model by focusing on the added-value
questions to which you want answers

12 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A Whiteboard Works Wonders!
The best way to start developing a graph data model is to ask
your business domain experts to use a whiteboard to explain their
problem. Chances are they’ll start drawing circles and arrows
explaining the flow of information, processes, and key entities
and the relationships between them. Business domain experts
build the model right before your eyes.

Take a look at Figure 2-1. This graph shows you an example of a
motor insurance fraud detection model. Domain experts in “crash
for cash,” “car ditching,” or “phantom vehicle” schemes find it
natural to draw links between the different entities in this model.

In Figure 2-1, nodes are labeled with their roles and are struc-
tured with named, directed relationships. For example, a Person
LIVES_AT a Location, and a Person DRIVES a Car that HAS_INSURANCE
and was INVOLVED_IN an Accident. This is a rich model but one
that’s easy to understand.

FIGURE 2-1: A graph model for car insurance fraud investigation.

CHAPTER 2 Building Rich Graph Data Models 13

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Figure 2-1 is like a schema for a graph. We often talk about
“schema” for a graph at the modeling level, but at the implemen-
tation level, graphs are populated by instances of data. There will
be as many Person nodes and Car nodes as there are people and
cars in the system. There will be as many DRIVES relationships as
necessary to show the people who are car drivers.

People naturally think about their data in this way, so the first
iteration of your graph model is rarely difficult. It requires only a
whiteboard, pens, and time for discussion.

DISCOVERING INDIRECT
CONNECTIONS
You may already know the direct connections among things, such as
the things you buy, your friends, and the payments you make. But
there’s real value in going deeper in the graph, following transitive
(indirect) connections — known as paths — through the graph.

Friends-of-friends are your biggest influencers; the fastest journey on
the London Underground may involve line changes and may pass
through many stations; an offshore account several times removed
from a potential fraudster raises our suspicions. These examples are
indirect connections.

Based on the model in Figure 2-1 (see the first section in this chapter,
“A Whiteboard Works Wonders!”), a suspicious pattern may be where
Alice drives a car that’s in an accident witnessed by Bob and where
Bob drives a car in an accident witnessed by Alice. This example of a
fraud ring may seem trivial, but it’s easily uncovered by graphs, even
when they’re scaled up to large criminal organizations.

Patterns are where hidden value lies, obscured from sight by other
data models, but for graph models it is just a few hops away. This is
why we often say that graphs are everywhere because these connec-
tions are of ever-increasing interest.

14 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Refining the Model with Questions
After you have an initial version of your data model, you refine
it by answering questions from your domain experts. Often the
questions you want to answer involve many nodes and relation-
ships where you look for patterns or traverse deeply into the
graph to look for paths connecting interesting nodes.

For example, in a social recommendation system, shown in
Figure 2-2, you could search for the pattern of immediate friends
and friends-of-friends, then identify the products they’ve bought.
You can omit the products you’ve already directly purchased, and
you have a set of products ready to recommend.

With path searches, you may query a transport network so you
can deliver products not only based on recommendations but also
on delivery time, cost, and carbon footprint. In network science,
designs such as Figure 2-3 are known as layered graphs. In this
case, one layer deals with products, and another deals with logis-
tics, which is a helpful separation of concerns for data modelers.

When you query the graph, you can choose which of these layers
will be involved. For example, if you don’t care about shipping
logistics, you can leave out those labels and relationship types.
Equally, if you don’t care about product hierarchies but want to
know the cheapest cost of shipping, then use only those layers.
You don’t pay additional penalties for storing a rich model, and
when you want to combine all the layers, you can.

FIGURE 2-2: Following a social recommendation system that leads a user to a
potential purchase.

CHAPTER 2 Building Rich Graph Data Models 15

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Combining layers that contain entities such as customers or
the classification of the product for which they’re searching is
obviously useful. What’s less obviously useful are the interme-
diate entities that provide connectivity across a graph between
friends and logistics hubs. This is the data you want to discover,
and you use questions to refine and enrich the initial version of
the graph data model. By asking, “What is the cheapest way we
can ship mid-market headphones from Brisbane to Melbourne?”
you drive out another part of your graph model. As you get more
sophisticated, you can ask even more complex questions of your
supply chain like “How much revenue do we potentially lose if our
Sydney warehouse is out of action for two weeks?” all using the
same question-driven method.

This isn’t the end of your evolution. You continue to refine your
model as your business needs evolve. Refining your model is safe
because the previous queries you’ve written act as regression
tests, so your model is kept fit for the future.

FIGURE 2-3: A simple logistics network.

CHAPTER 3 Importing Graph Data into Your Graph 17

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Knowing where to start

 » Importing data into a graph database

Importing Graph Data
into Your Graph

After you understand how to create and refine a model,
which we cover in Chapter 2, you can import data into your
database, ready to serve queries.

Starting with the Model
In Chapter 2, we show you how to design a graph model and refine
it as you discover other queries that are needed. Sometimes you’re
building a completely new system, where the data comes from
your new application. But often, you’re building new systems
alongside existing ones, or replacing old systems that already
have data, just not yet in a graph.

As an example, imagine you have a single table of product pur-
chases (a comma-separated values, or CSV, in a file works simi-
larly). You want to import this table structure into a graph so you
can query it. Your example looks like the tabular data in Figure 3-1.

Taking into consideration your data in Figure 3-1, your target
graph model will look like Figure 3-2.

18 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To import your data, follow this strategy:

1. Convert the Person entities in the first column into
Person nodes.

2. Convert the Product entities in the second column to
Product nodes.

3. Create a BUYS relationship from Person to Product for
every row in the table and assign the date in the third
column to the date property on that relationship.

After you fill the model with your data, you get the graph, as
shown in Figure 3-3.

Victory! You’ve successfully loaded data into a graph from a tab-
ular data source.

FIGURE 3-1: A tabular dataset of people buying products.

FIGURE 3-2: A graph model for people buying products.

CHAPTER 3 Importing Graph Data into Your Graph 19

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Life is never that simple, and there are a few gotchas to avoid.
Importing data sounds easy enough, but to be successful, keep in
mind a couple of details:

 » Start small; scale later: Test your import strategy on
reasonable data sizes (think thousands, not billions of
entities to be imported) before you scale them. Check out
the later section “Importing Made Easy” for more informa-
tion on import strategies.

 » Get rid of the duplicates: Most useful datasets have some
data quality problems, but importing even the cleanest
datasets may cause duplicate data in your models if you
aren’t careful.

Importing Made Easy
Importing data into a graph database, like any data-intensive
operation, requires some wrangling: The data has to move from
one (tabular) data model to a graph data model, requiring trans-
formations in the process. In Neo4j, for example, import tooling
has two variants:

 » Online CSV import: Starts from a CSV file and imports the
data in a file into a running (online) graph database

 » Offline CSV import: Starts from a CSV file and imports a file
into a graph database file structure, offline, ready for the
database to be started

FIGURE 3-3: The final graph representation of people buying products.

20 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Online and offline CSV imports have pros and cons, which we
cover in this section.

Online CSV importing
Good graph databases have a built-in ability to import data from
CSV files on your filesystem or over the network. In Neo4j, the
LOAD CSV command takes the data in your import file and maps
it to nodes, relationships, and properties in a running database.
The LOAD CSV command performs a transactional update: It will
either completely commit or rollback, so it’s simple to use. For
example, the following snippet loads CSV data into a graph of
people who bought products:

LOAD CSV WITH HEADERS FROM
 "personbuysproduct.csv" as csv
CREATE (p:Person {name: csv.Person})
 -[b:BUYS {date: csv.Date}]->
 (pr:Product {name: csv.Product})
RETURN "Import Successful!"

This import creates a number of unique, disconnected Person BUYS
Product subgraphs, as shown in Figure 3-4. The Neo4j Browser
displays light gray nodes that represent people and dark gray
nodes represent the products they’ve bought. There’s massive
duplication and little connectivity — sure signs of a poor graph.

This graph isn’t quite right because there are duplicated people
and products due to the CREATE statement always creating new
nodes and relationships regardless of the current state of the
graph. Instead, you should use the MERGE command, which does
a combination of two things:

 » It will try to find the pattern that you’re specifying (a node, a
relationship, or a combination of both), like a MATCH
statement (see Chapter 4 for more information).

 » If MERGE finds existing matches, it leaves them alone. If no
matches are found, MERGE creates new elements in the
database.

CHAPTER 3 Importing Graph Data into Your Graph 21

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

By modifying the import statement to use MERGE, you get the
following:

LOAD CSV WITH HEADERS FROM
 "personbuysproduct.csv" AS csv
MERGE (p:Person {name: csv.Person})
MERGE (pr:Product {name: csv.Product})
CREATE (p)-[b:BUYS {date: csv.Date}]->(pr)
RETURN "Import Successful!"

In this case, you have to split the query into three key parts:

 » MERGE: The first MERGE either matches an existing Person
node, or it fails to match an existing Person node and
creates one.

FIGURE 3-4: An online import of data.

22 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » MERGE: The second MERGE either matches an existing
Product node, or it fails to match an existing Product node
and creates one.

 » CREATE: This part creates a relationship between the person
and product. Duplicates are allowed here because a person
can buy multiple products.

Figure 3-5 shows you the correct graph. The light gray Person
nodes connect to dark gray Product nodes in a connected, de-
duplicated graph as intended.

MERGE is a tricky concept. Naively trying MERGE (:Person)-[:BUYS]-
>(:Product) will create a lot of new people and products. The reason
is that MERGE matches the whole pattern, and if it can’t match the
whole pattern, it creates the whole pattern (we cover more about
patterns in Chapter 4). For this reason, we recommend having
several MERGE statements with smaller patterns — for example,
just a single node, instead of a single MERGE with a large pattern.

FIGURE 3-5: Correctly importing data without duplicates.

CHAPTER 3 Importing Graph Data into Your Graph 23

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Offline CSV importing
LOAD CSV (see the preceding section) is fine for small- to
medium-sized data import jobs. The transactional behavior means
you can use it alongside your regular queries. But when your import
job becomes too large, switching to a non-transactional, offline
import method may be the way forward. For large import jobs,
such as commissioning a database, using an offline import tool is
faster. Offline CSV import is fast, but to get the best out of it, you
need to wrangle data before using it. Create separate CSV files for

 » Every node type that you want to import

 » Every relationship type that you want to import

For each import file, you must also create a header file that
describes the structure of the corresponding node/relationship
file. For example, that means you need six CSV files to import the
people-buying-products data, as shown in Figure 3-6.

In this Neo4j example, you invoke the offline CSV importer by
using the Neo4j admin tool (neo4j-admin) to perform the import:

bin/neo4j-admin import
--nodes import/persons_header.csv,import/persons.

csv
--nodes import/products_header.csv,import/

products.csv

FIGURE 3-6: Six files prepared for offline import.

24 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

--relationships import/relations_header.
csv,import/relations.csv

--database offlineimport

This import command works in an all-or-nothing fashion: It
either completely succeeds or completely fails. It will also com-
pletely replace the structure and data of any existing database
that you may already have in place. You’ll find that this command
is also fast — billions of records per hour.

CHAPTER 4 Querying Your Graph 25

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Learning the Cypher query language

 » Building more sophisticated patterns

 » Managing graph updates

 » Pruning the search space with predicates

 » Supporting aggregate functions

 » Returning insight to the user

Querying Your Graph

I
n this chapter, we show you how to query your graphs using the
Cypher query language.

De-Cyphering Graphs
You may be used to writing SQL for relational databases. The
equivalent of SQL for graph databases is Cypher, a de-facto stand-
ard originally developed by Neo4j, Inc., and a driver behind the
International Organization for Standardization (ISO) Graph Query
Language (GQL) project.

Cypher is a friendly declarative, pattern-matching language. Users
draw pictures of what they want to find by using ASCII art. At the
heart of Cypher is the MATCH clause. With MATCH, you draw ASCII
art pictures of patterns that you want the database to find in your
graph — for example, if you have a social network with Person nodes
connected by directed FRIEND_OF relationships. You can find your
direct friends in a social network by running the following query:

MATCH (:Person {name:'Alice'})
 -[:FRIEND_OF]->(p:Person)
RETURN p

26 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Let us break down this query:

 » MATCH: Tells the database that it has to look for a pattern

 » (:Person {name:’Alice’}): Any node with (at least) the Person
label and a property with key name and value Alice

This part of the query binds the rest of the query to a
starting point (or points, if there’s more than one Alice) in the
graph.

 » -[:FRIEND_OF]->: Any outgoing relationship typed
FRIEND_OF, where the > specifies the direction

 » (p:Person). Any node with (at least) the Person label, bound
to the variable p, which can be referenced at any later point
in the query

 » RETURN p: Returns any matching Person nodes to which p
was bound

The query tells the database to first find all Person nodes with a
name:Alice property, and from there, find all the outgoing FRIEND_
OF relationships that terminate at another Person node. Figure 4-1
gives you the result — Alice’s friends, those who are one “hop”
away from her: Rosa, Antonio (who doesn’t consider Alice a
friend), and Bob.

FIGURE 4-1: Finding Alice’s direct (depth-one) friends.

CHAPTER 4 Querying Your Graph 27

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can extend this query to one and two hops away from Alice to
include her friends and friends-of-friends:

MATCH (a:Person {name:'Alice'})
 -[:FRIEND_OF*1..2]->(p:Person)
WHERE a <> p
RETURN p

For finding friends-of-friends, there are three modest changes:

 » -[:FRIEND_OF*1..2]-> : Any outgoing relationship
typed FRIEND_OF at exactly 1 or 2 hops from the originating
node

 » (a:Person {name:'Alice'}): Binds Alice nodes to the
variable a so they can be referred to later in the query

 » WHERE a <> p: Excludes Alice from the results because
Alice is a friend of Rosa, who is a friend of Alice, which means
Alice is a friend-of-friend to herself

Figure 4-2 shows you the results. This extended query shows
Alice’s friends of friends that extend to Karl. You can also restrict
the query to only friends-of-friends by changing the relationship
depth to exactly two: -[:FRIEND_OF*2]->.

FIGURE 4-2: An extended query to show Alice’s friends of friends.

28 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Building Bigger Patterns
After you know the MATCH syntax (see the preceding section), you
can start to build much more sophisticated patterns. For instance,
in a social recommendation system, you could look for products
that your network of friends have bought through running this
query:

MATCH (a:Person {name:'Alice'})
 -[:FRIEND_OF*1..2]->(p:Person)
 -[:BOUGHT]->(prod:Product)
WHERE a <> p
RETURN prod

To turn the social network into a simple recommendation graph,
you make a small number of simple changes:

 » -[:FRIEND_OF*1..2]-> : Any outgoing relationship typed
FRIEND_OF at depth 1 to 2 from the originating node,
meaning direct friends and their direct friends only

 » (:Person)-[:BOUGHT]->(prod:Product): Matches any
outgoing BOUGHT relationships from the friend or friend of
friend that terminate in a Product node; also binds that node
to the variable prod for later use in the query.

 » RETURN prod: Returns any matched Product nodes bound
to variable prod at the end of the query

Graph databases use indexes to find starting points for your pat-
tern matching queries. In Neo4j, any node labels are automatically
indexed, but you may also choose to add other indexes on impor-
tant properties in your graph. Lacking an index on a frequently
searched property is a common reason why queries run slowly.

After you understand basic patterns, you can adapt them in many
ways. For example, Cypher has an OPTIONAL MATCH clause that
matches patterns against your graph, just like a MATCH does (see
“De-Cyphering Graphs” earlier in this chapter). The difference
is that if no matches are found, OPTIONAL MATCH uses an empty
space for missing parts of the pattern. Be aware that OPTIONAL
MATCH often takes more time to process than MATCH because it’s
less strict, so use it sparingly.

CHAPTER 4 Querying Your Graph 29

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The more specific you can make a pattern the better. If you know
a relationship’s type and direction, include them in your query
pattern. If you know a specific node label, include that too. In
fact, the more specific you are with your queries, the less work
the database will have to perform to retrieve the answer because
it will need to explore fewer items, shrinking the search space so
queries run faster. In building bigger patterns, you can also

 » Loosen the MATCH pattern by loosening the constraints.

 » Change the direction of relationships or omit direction
altogether (which matches either direction).

 » Specify several relationship types or none at all (which
matches any), and do the same with node labels.

 » Specify a depth on relationships, or use the * wildcard to
allow any depth depending on your needs.

These processes are all quite flexible and natural:

 » () matches any node

 » -- matches any relationship

 » (:Person)-->() matches any relationship that’s outgoing
from a Person node to any other node

 » (:Person)-[:A|B]->() matches either A or B relationship
types outgoing from any Person node to any other node

Updating the Graph
In Chapter 3, you create a graph from scratch using CREATE and
MERGE. To update the graph, you can also use

 » SET: Allows you to change or add a property. For example,
the following query sets any Person nodes in the graph with
the property key name and value Rosa to create or update a
property with key surname to value Luxemburg:

MATCH (p:Person {name:'Rosa'})
SET p.surname='Luxemburg'

30 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » REMOVE: Does the opposite of SET:

MATCH (p:Person {name:'Rosa'})
REMOVE p.surname

 » DELETE: Removes detached nodes and relationships along
with their properties. For example, the following query
removes a FRIEND_OF relationship from Rosa to Karl:

MATCH (:Person {name:'Rosa'})
 -[f:FRIEND_OF]->(:Person {name:'Karl'})
DELETE f

 » DELETE is safe by default. If you try to delete a node that’s still
attached to relationships, it will fail. There’s also DETACH
DELETE, which removes the entire matched pattern and any
dangling relationships (so use it carefully). The query looks
like this:

MATCH (k:Person {name:'Karl'})
DETACH DELETE k

Filtering with Predicates
Predicates are functions that return true or false results for a set
of non-empty input. They’re used to focus a query as part of a
WHERE clause. For example, you may want to send an invitation to
a party, leaving out friends who are too young, because your party
is at a bar. To perform this query, you use a predicate on the age
property of Person nodes:

WHERE a <> b AND b.age > 20

If you know any values for properties, make sure to include them
as predicates. The database query planner can use them to reduce
the search space, which makes your queries run faster.

Alternately, you may want to invite only married members of
your social network by specifying a pattern for married folks. To
do this, you use the EXISTS function to specify that nodes bound
to the variable b should have a MARRIED_TO relationship in any
direction — so no < or > in the pattern — to any other node with
label Person. That query looks like this:

CHAPTER 4 Querying Your Graph 31

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

WHERE a <> b AND
 EXISTS ((b)-[:MARRIED_TO]-(:Person))

You can rewrite this query for all the unmarried folks, too, by
replacing EXISTS with its logical opposite, NOT:

WHERE a <> b AND
 NOT ((b)-[:MARRIED_TO]-(:Person))

A twist on this query would be where you’d match only if all the
friends in your network were able to attend:

WHERE a <> b AND
 NONE (x IN nodes(b) WHERE x.age < 21)

The NONE predicate function in the above query ensures that no
matches at all will be returned if any of the social network mem-
bers are minors (under 21 years of age), so either everyone gets
invited, or no one does.

Aggregating Data
After you’ve received matches back from a graph query, you may
want to further process that data. For example, you want to know
the number of friends in your social network rather than the indi-
viduals, or the price range of a number of products that you’re
being recommended. To do this, the graph database supports
aggregate functions such as count, which in the following query
returns the number of people in Alice’s social network:

MATCH (a:Person {name:'Alice'})
 -[:FRIEND_OF _OF*1..2]->(p:Person)
WHERE a <> p
RETURN count(p)

If you want to know the average age of Alice’s social network,
swap count for avg on any age properties in Person nodes:

MATCH (a:Person {name:'Alice'})
 -[:FRIEND_OF _OF*1..2]->(p:Person)
WHERE a <> p
RETURN avg(p.age)

32 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In addition, the graph database supports many other common
aggregate functions like MIN, MAX, and some statistical functions
as well as lists aggregates, such as reduce:

RETURN reduce(totalAge = 0,
 n IN nodes(p)|totalAge + n.age)
 AS totalAges

The reduce function allows you to add the ages of people in Alice’s
social network, or you can more generally add a property value
over a list.

Returning Insight
After you’re done with matching, predicates, and aggregate func-
tions, the final step is to return answers to the user. If you’ve been
reading this book to this point, you may recall that the social net-
work query example ends with RETURN p to return all matching
Person nodes. You can easily send those matches back in ascend-
ing order by using ORDER BY:

RETURN p
ORDER BY p.age ASC

ORDER BY is computationally heavy because it must sort all
matched records on the server before returning results to the
user. Use it sparingly.

Matches can also be ordered in descending order by adding DESC.
If you want to limit the number of results returned, then use
LIMIT.

RETURN p
ORDER BY p.age DESC
LIMIT 10

CHAPTER 5 Using Graphs in Production with Neo4j 33

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Connecting to the database

 » Using Neo4j clusters for availability

 » Monitoring systems and performing
backups

 » Coexisting with other systems

Using Graphs in
Production with Neo4j

I
n this chapter, we show you how to move your graph into a
production setting by using the Neo4j graph database.

Connecting to the Database
Broadly speaking, you run queries on your graphs in two ways:

 » When you’re prototyping in development or running ad-hoc
queries on a stable system

 » From your application, where you have a known set of
queries that you want to send to the database

In each case in this section, we use Neo4j as the example to help
bridge the gap.

Neo4j Browser
The first piece of software that you come across when using Neo4j
is the Neo4j Browser. It’s a graphical user interface (GUI) tool

34 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

that allows you to rapidly prototype Cypher queries and display
the resulting graphs. (We cover Cypher queries in more detail in
Chapter 4.) Neo4j Browser, shown in Figure 5-1, comes bundled
with Neo4j.

With the Neo4j Browser, you can try out various data models and
prototype Cypher queries. You simply write your Cypher query in
the box at the top of the browser and execute the query, which
visualizes your results as a graph. You repeat this until you’re
happy with the results.

If you’re doing data science or performing a lot of ad-hoc queries,
try the Neo4j Bloom visualization tool for natural-language graph
searches and the Neo4j Graph Data Science library for high per-
formance graph analytics algorithms.

After you’re happy with your query, the next step is to embed it
into your application.

FIGURE 5-1: The Neo4j Browser.

CHAPTER 5 Using Graphs in Production with Neo4j 35

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Neo4j drivers
Most of the time, databases aren’t exposed directly to end-users —
they’re encapsulated behind applications or services.

Like most databases, Neo4j is a client-server system. A client
application or service sends messages containing Cypher queries
to the database server that evaluates those queries and responds
with a stream of results.

You can run Neo4j embedded in your own application process, if
you’re running on the JVM to avoid a client-server setup. This
isn’t common though. It tends to be used mostly by embedded
systems.

Neo4j is mostly written in Java and Scala running on the Java Vir-
tual Machine (JVM), but the drivers present an interface to the
database that looks how you may expect in your preferred pro-
gramming language. For example, you can query your graph eas-
ily from Python, as shown in Figure 5-2.

In the process shown in Figure 5-2, you import the Neo4j com-
ponents from the GraphDatabase Python package and initialize
the driver with its connection string and security parameters.
Then, you create a session to the database through which you
send (write) transactions that invoke the create_friend_of method
to create Cypher that creates nodes and relationships in the data-
base. The same operation in Java code is shown in Figure 5-3.

FIGURE 5-2: Writing a social graph via the Python driver.

36 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Neo4j provides drivers for .NET, Java, JavaScript, Go, and
Python — each of which gives you easy access to the database
using Cypher. In addition, the Neo4j open source community has
written drivers for Ruby, PHP, R, Erlang / Elixir, C/C++, Clojure,
Perl, Haskell, and others.

There are integrations of these drivers with popular programming
frameworks, too. For example, there’s tight integration with the
Spring framework, including object-graph mapping (OGM) to
make development simpler.

Keeping Data Safe with Neo4j Servers
A single Neo4j server is fine for development or ad-hoc queries,
but it’s not robust enough for production systems that require
continuous availability or to sustain high workloads. To handle
this, you run a cluster of Neo4j servers. Neo4j clustering has two
roles for machines in the cluster: Core Servers and Read Replicas.

Core Servers
Core Servers process transactions and are responsible for keeping
your data safe. Neo4j Core Server clusters are simple to under-
stand: If a majority of servers are working, the cluster is working;
otherwise, it becomes read-only for safety.

Setting up a cluster works on physical servers, cloud instances,
and in containers. You choose how many servers to deploy based

FIGURE 5-3: Writing a social graph with the Java driver.

CHAPTER 5 Using Graphs in Production with Neo4j 37

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

on your workload and redundancy requirements. For example,
a high-workload, highly resilient cluster may need nine servers
across three data centers, so it can lose up to four servers and
continue processing (albeit with reduced capacity). A more mod-
est workload and redundancy requirement might be just three
servers, where you can lose one and continue processing.

After you have a cluster set up, the drivers connect to it in the
usual way. There’s nothing special to set up: Just point your driver
at a cluster member, and the cluster topology is automatically
discovered, and queries are load-balanced transparently.

Neo4j clusters are easy to use from a development point of view.
You don’t have to worry about the timing of server replication
because Neo4j ensures that the results of your writes are always
visible when you read, even if you write and read from servers on
opposite sides of the world.

Read Replicas
Read Replicas are responsible for scaling out to process more que-
ries. You can add Read Replicas to the cluster to scale out oper-
ations like analytics or reporting workloads. These read-only
servers aren’t involved in cluster management; instead, they act
like a continuously refreshed copy of your graph.

Monitoring Systems
Neo4j clusters support a variety of monitoring capabilities:

 » A range of cluster metrics, such as threads, requests,
memory, and so on

 » Individual database metrics, such as transactions and
checkpoints, that are exposed through the Graphite
protocol, a Prometheus endpoint, CSV files, and
JMX MBeans

 » User-facing logs for general communications, security, and
queries

 » Query management — including termination of errant
queries

 » Client connection management

38 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Performing Regular Backups
Even with a highly available cluster, disasters can happen. No
amount of clever Java code can prevent a database from becom-
ing unavailable when its network connection is physically cut. To
keep data safe, perform regular backups — frequency determined
by your disaster response policy — and potentially invest in a dis-
aster recovery site.

By using the neo4j-admin tool, shown in Figure 5-4, you can
take full or incremental backups of your Neo4j server (including a
server that’s a member of a cluster) while that server is still run-
ning regular queries.

We recommend running backup from another machine so the
process doesn’t contend for resources with the running database.

Integrating with Other Systems
Graph databases in production have to co-exist with other sys-
tems in production as sources and destinations for data flows that
power modern enterprises. At a technical level, many patterns for
data integration are available, but we show you two in this section
that we see often.

ETL tools
Data integration is a key topic for many enterprises. To address
the challenge, an entire category of tools exists that specialize
in ETL:

FIGURE 5-4: A neo4j-admin backup example.

CHAPTER 5 Using Graphs in Production with Neo4j 39

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Extracting data from existing formats and systems

 » Transforming data from an existing format to a new format

 » Loading the newly formatted data into a target system

Most ETL tools are able to connect to Neo4j as both a source and
a target system. The idea behind ETL tools is that they can — in
batch or real time — take data from one system and load it
into another, performing any computations or transformations
needed along the way. By using these tools, it’s possible to take,
for example, data from a web server log, transform and load it
into a graph for behavioral analysis, and then extract some of that
data for loading into a data lake.

Streaming
Many organizations have adopted streaming platforms as a means
of integrating systems. With streaming integration, your graph
can be updated in response to a variety of events received from
around your enterprise. It can also trigger events for downstream
systems to handle. From a systems architecture perspective, graph
becomes a standard event-processing module, fitting cleanly into
a modern architecture.

Apache Kafka is a popular choice for asynchronous systems inte-
gration, and it integrates well with Neo4j. Neo4j Streams and
Kafka Connect are the two libraries that support streaming inte-
gration. You’d use Neo4j Streams if you’re more comfortable
operating Neo4j, and you’d choose Kafka Connect if you’re more
comfortable administrating Kafka.

Neo4j Streams integrates Neo4j with Apache Kafka event streams
to serve as a source of data — for instance, change data capture
(CDC) — or to ingest any kind of Kafka event into your graph.
Kafka Connect does the same but is limited to treating Neo4j as a
store for data at the moment.

CHAPTER 6 Ten Tips for Creating Successful Graphs 41

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

 » Picking the right tool for the job

 » Starting small and scaling up

 » Answering hard questions about data
modeling

 » Connecting with the graph community

Ten Tips for Creating
Successful Graphs

You’ve arrived at the famous For Dummies Part of Tens chap-
ter. In this chapter, we give you our top ten tips for creating
successful graph applications.

Use the Right Tool for the Right Job
Stepping outside of your comfort zone isn’t always easy. You
already know how relational databases work, and you can create
amazing, brilliant workarounds for their limitations. But one day,
you realize that problems that are really hard for relational data-
bases are actually simple if you only change the data model. So,
make sure to use the right tool for the right job — if you’re query-
ing paths, trees, or networks, then a graph database will make your
life easier. Look for tips on finding the right tools in Chapter 1.

Make Connections
Most problems are conveniently and intuitively modeled as
graphs, but until you’re into graphs, you don’t necessarily see it.
We call this the “graph problem-problem.” You can’t easily spot

42 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

graph problems until you’re an expert, but you can’t become an
expert without spotting graph problems. As a short-cut to get you
started, graphs work best where you have a lot of connections and
where you can derive useful insights from these connections.

Take Advantage of Speed
You can functionally solve most problems in a number of alter-
native ways. Have you ever heard the saying, “If all you have is
a hammer, everything looks like a nail”? Oh, and there’s its cor-
ollary: “If all you have is a hammer, everything looks like your
thumb.” You can find a host of tools that allow you to process
graphs, but the question is whether you can do this at speed.

Speed changes everything: It allows you to iterate and experi-
ment more quickly, it allows you to do things in real time that
you thought were only possible to do in overnight batches, and
it allows you to save hardware, software, and operational costs
because you can do more with less.

Make sure to use tools that can process vast numbers of con-
nections at high speed. If you’re only looking at a few dozens of
nodes and relations, then fine, but as soon as you need to treat
thousands/millions/billions of entities and their connections, be
sure to use a graph database.

Use Graphs for Obvious Use Cases
Value in connections is abundant. Graphs are everywhere, but
leveraging them efficiently often starts with obvious use cases
that have been tried and tested. When you or your organization
thinks about anything like social networks, knowledge graphs,
real-time fraud detection, hyper-personal recommendation
engines, or master data management, consider graphs. They’re
excellently suited for the job — and there are plenty of proof
points from existing systems to back up that claim.

CHAPTER 6 Ten Tips for Creating Successful Graphs 43

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Begin with Modeling
Good graph-based systems begin with modeling. Your tried and
true modeling techniques have served you well throughout your
career, and we know they’re hard to let go. But graph modeling
is different, and perhaps a bit daunting at first, yet it has more
degrees of freedom. If you push through the initial hurdles, you’ll
find it will feel natural and liberating in no time.

Start Small, Scale Next
After you have a graph data model, think about how you’re going
to write data into it. You have several different choices, but eval-
uate those options, and choose the most appropriate one for your
task. We recommend starting small by using tools that offer fast
feedback on your model and scaling later by using tools that sup-
port large data ingestion.

Model for Questions
Think about the questions that you want to ask of the graph
data — that process is a prerequisite for good modeling and que-
rying. Look for questions that you would struggle to answer in
traditional data models. A lot of joins, recursion, and unknown-
depth pathfinding are examples of graph queries that can get you
to value quickly. Chapter 2 gives you tips on modeling, and Chap-
ters 3 and 4 tell you how to get started modeling.

Focus on Value
IT systems provide value when they enter production. Put-
ting graphs into production is delivering value into the hands
of business users. Graph databases provide many techniques for
ensuring performance, efficiency, and availability but need to be
appropriately operationalized. Chapter 5 gives you helpful advice
on how to get your graph-based system into production.

44 Graph Databases For Dummies, Neo4j Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Explore Hidden Insights
Graphs are most valuable when you use them to find patterns and
make predictions about future dynamics of the network. Graph
data science is a sensible next step: Graph algorithms that tell you
about the similarity, connectivity, and importance of different
graph elements can give you useful predictions about the future
state of your model, while graph data science can expose these
hidden insights.

Connect with the Graph Community
You aren’t alone in wanting to use graphs. Organizations, big
and small, are adopting graph technology, and this community
is rapidly growing. Connect with your graph community and get
involved. You can learn from others and realize the value much
more quickly.

Visit the Neo4j community website at community.neo4j.com to
start making connections.

https://community.neo4j.com/

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://r.neo4j.com/sandbox

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book

	Chapter 1 Introducing Graph Databases
	Exploring Graph Database Basics
	Understanding who uses graph databases and why
	Seeing the benefits of graph databases

	Explaining Labeled Property Graphs
	Defining nodes
	Explaining relationships
	Enforcing constraints

	Building a Sample Graph
	Climbing the Graph Learning Curve

	Chapter 2 Building Rich Graph Data Models
	A Whiteboard Works Wonders!
	Refining the Model with Questions

	Chapter 3 Importing Graph Data into Your Graph
	Starting with the Model
	Importing Made Easy
	Online CSV importing
	Offline CSV importing

	Chapter 4 Querying Your Graph
	De-Cyphering Graphs
	Building Bigger Patterns
	Updating the Graph
	Filtering with Predicates
	Aggregating Data
	Returning Insight

	Chapter 5 Using Graphs in Production with Neo4j
	Connecting to the Database
	Neo4j Browser
	Neo4j drivers

	Keeping Data Safe with Neo4j Servers
	Core Servers
	Read Replicas

	Monitoring Systems
	Performing Regular Backups
	Integrating with Other Systems
	ETL tools
	Streaming

	Chapter 6 Ten Tips for Creating Successful Graphs
	Use the Right Tool for the Right Job
	Make Connections
	Take Advantage of Speed
	Use Graphs for Obvious Use Cases
	Begin with Modeling
	Start Small, Scale Next
	Model for Questions
	Focus on Value
	Explore Hidden Insights
	Connect with the Graph Community

	EULA

