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Foreword

The winners in the data industry know where the puck is going:
making data smarter. This can be accomplished by integrating data
with knowledge at scale, and this is where knowledge graphs come
in. This book is a practical guide to understand what knowledge
graphs are and why you should care. Importantly, it strikes the right
balance between technical aspects and corresponding business value
for an organization. If you need to make the business case for
knowledge graphs, this is the book for you!

Let’s first talk about the elephant in the room: RDF versus property
graphs. Over the years, I’ve enjoyed my conversations with Jesús
Barrasa on this topic. We have always been strong believers that
these technologies will converge because at the end of the day, it’s all
just a graph! This book is evidence of this convergence: enriching
the property graph model with taxonomies, ontologies, and seman‐
tics in order to create knowledge graphs. And don’t forget that the
conversation should focus on the business value and not just the
technology.

How do you get started on your knowledge graph journey?

First, one of my mantras is don’t boil the ocean. This means that your
knowledge graph journey should start simple, be practical, and focus
on the business return coming from the right amount of semantics.
Second, I always say that you need to crawl, walk, and run. Crawling
means to start by creating a knowledge graph of your metadata that
catalogs the data within your organization. I’m thrilled to see that we
are fully aligned: effective data integration solutions rely on under‐
standing the relationships between data assets, which is at the heart of
knowledge graphs. Furthermore, in the AI and ML era that we live
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in, understanding the quality and governance is key for effective
decision-making.

Speaking of AI, knowledge graphs are changing AI by providing
context. This leads to explainability, diversification, and improved
processing. If AI is changing the future and knowledge graphs are
changing AI, then by transitivity, knowledge graphs are also chang‐
ing the future.

If you are still asking yourself “why knowledge graphs?,” guess
what...your competitors aren’t! Don’t be that person! Jesús, Amy, and
Jim have written this book just for you.

— Juan Sequeda, PhD
Principal Scientist, data.world

July 2021
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CHAPTER 1

Introduction

Graph data has become ubiquitous in the last decade. Graphs
underpin everything from consumer-facing systems like navigation
and social networks, to critical infrastructure like supply chains and
policing. A consistent theme has emerged that applying knowledge
in context is the single most powerful tool that most businesses
have. Through research and experience, a set of patterns and practi‐
ces called knowledge graphs has been developed to support extract‐
ing knowledge from data.

This report is for information technology professionals who are
interested in managing and exploiting data for value. For the CIO or
CDO, the report is brief yet thorough enough to provide an over‐
view of the techniques and how they are delivered. For the data pro‐
fessional, data scientist, or software professional, this report
provides an easy on-ramp to the world of knowledge graphs, and a
language for discussing their implementation with peers and
management.

Our fundamental tenet is that knowledge graphs are useful because
they provide contextualized understanding of data. They achieve
this by adding a layer of metadata that imposes rules for structure
and interpretation. We’ll illustrate how using knowledge graphs can
help extract greater value from existing data, drive automation and
process optimization, improve predictions, and enable an agile
response to changing business environments.

This chapter explains the background and motivation behind
knowledge graphs. To do so, we’ll discuss graphs and graph data and
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show how we can build systems with smarter data using knowledge
graph techniques.

What Are Graphs?
Knowledge graphs are a type of graph, so it’s important to have a
basic understanding of graphs before we go much further. Graphs
are simple structures where we use nodes (or vertices) connected by
relationships (or edges) to create high-fidelity models of a domain.
To avoid any confusion, the graphs we talk about in this book have
nothing to do with visualizing data as histograms or plotting a func‐
tion, which we consider to be charts, as shown in Figure 1-1.

Figure 1-1. Graphs versus charts

The graphs we talk about in this book are sometimes referred to as
networks. They are a simple but powerful way of describing how
things connect.

Graphs are not new. In fact, graph theory was invented by the Swiss
mathematician Leonhard Euler in the 18th century. It was created to
help compute the minimum distance that the emperor of Prussia
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had to walk to see the town of Königsberg (modern-day Kalinin‐
grad) by ensuring that each of its seven bridges was crossed only
once, as shown in Figure 1-2.

Figure 1-2. A graphical representation of Königsberg and its seven
bridges crossing the River Pregel

Euler’s insight was that the problem shown in Figure 1-2 could be
reduced to a logical form, stripping out all the noise of the real
world and concentrating solely on how things are connected. He
was able to demonstrate that the problem didn’t need to involve
bridges, islands, or emperors. He proved that in fact the physical
geography of Königsberg was completely irrelevant.

Using the superimposed graph in Figure 1-2, you can try to figure
out the shortest route for walking around Königsberg without hav‐
ing to put on your walking boots and try it for real. In fact, Euler
proved that the emperor could not walk the whole town crossing
each bridge only once, since there would have needed to be (at least)
one island (node) with an even number of connecting bridges (rela‐
tionships) from which the emperor could start his walk. No such
island existed in Königsberg.

What Are Graphs? | 3



Building on Euler’s work, mathematicians have studied various
graph models, all variations on the theme of nodes connected by
relationships. Some models allow relationships to be directed, where
they have an explicit start and end node, while some have undirected
relationships connecting nodes. Some models, like hypergraphs,
allow relationships to connect more than one node.

Some graph models like the property graph model allow both nodes
and relationships to contain properties. A property consists of a
name (also called a key) and a value. Properties on a node can be
used, for example, to give a name to a node representing a person or
coordinates to a node representing a vehicle. Properties on relation‐
ships can be used to store distances between road junctions or the
number of times an algorithm has processed a relationship.

The Property Graph Model
The property graph model is the most popular model for modern
graph databases, and by implication, a popular method for creating
knowledge grah. It consists of the following:

Nodes representing entities in the domain
• Nodes can contain zero or more properties, which are key-

value pairs representing entity data such as price or date of
birth.

• Nodes can have zero or more labels, which declare the node’s
purpose in the graph, such as representing customers or
products.

Relationships representing how entities interrelate
• Relationships have a type, such as bought or liked.
• Relationships have a direction, going from one node to another

(or back to the same node).
• Relationships can contain zero or more properties, which are

key-value pairs representing some characteristic of the link
such as a timestamp or distance.

• Relationships never dangle—there is always a start and end
node (which can be the same node).

These primitives—nodes, relationships, and properties—and rules
can be used to assemble sophisticated, high-fidelity graph data
models with relative ease.
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Each of the graph models has its own quirks and benefits. In con‐
temporary IT systems, enterprises have mostly settled on the prop‐
erty graph model. It’s a model that is well suited to common data
management problems and straightforward for software and data
professionals to work with. To illustrate the property graph model,
we’ve created a tiny social graph in Figure 1-3, but compared to the
example in Figure 1-2, this graph is far richer.

Figure 1-3. A graph representing people, their friendships, and their
locations

In Figure 1-3 each node has a label that represents its role in the
graph. Some nodes are labeled Person and some labeled Place, rep‐
resenting people and places respectively. Stored inside those nodes
are properties. For example, one node has name:'Rosa' and gen
der:'f' that we can interpret as being a female person called Rosa.
Note that the Karl and Fred nodes have slightly different properties
on them, which is perfectly fine too. If we need to ensure that all
Person nodes have the same property keys, we can apply constraints
to the label to ensure those properties exist, are unique, and so on.

Between the nodes in Figure 1-3 we have relationships. The relation‐
ships are richer than in Figure 1-2, since they have a type, a direc‐
tion, and can have optional properties on them. The Person node
with the name:'Rosa' property has an outgoing LIVES_IN relation‐
ship with property since: 2020 to the Place node with city:'Ber
lin' property. We read this in slightly poor English as “Rosa lives in
Berlin since 2020” and definitely not that Berlin lives in Rosa! We
also see that Fred is a FRIEND of Karl and that Karl is a FRIEND of
FRED. Rosa and Karl are also friends, but Rosa and Fred are not.

What Are Graphs? | 5



1 Human relationships such as love are often symmetric, but we express that symmetry
with two relationships.

Relationships in property graphs are not symmetric.1 In most
domains, relationships apply in one direction such that people own
cars and cars do not own people.

In the property graph model, there are no limits on the number of
nodes or the relationships that connect them. Some nodes are
densely and intricately connected while others are sparsely connec‐
ted, to match the problem domain. Similarly, some nodes have lots
of properties, while some have few or none at all. Some relationships
have lots of properties, but many tend to have none.

Graph Databases
Finding connections between data points is a natural and powerful
way of making information discoveries. Graphs and graph theory
are amazing tools in their own right for modeling and analyzing
data. Graph Databases, 2nd Edition (O’Reilly, 2015) by Ian Robin‐
son, Jim Webber, and Emil Eifrem can help you understand how to
use a graph database to power your systems.

It’s easy to see how the graph in Figure 1-3 can answer questions
about friendships and who lives where. Extending the model to
include other important data items like interests, publications, or
jobs is also straightforward. Just keep adding nodes and relation‐
ships to match your problem domain. Creating large, complex
graphs with many millions or billions of connections is not a prob‐
lem for modern graph databases and graph-processing software, so
building even very large knowledge graphs is possible.

Graph data models are uniquely able to represent complex, indirect
relationships in a way that is both human readable, and machine
friendly. Data structures like graphs might seem computerish and
off-putting, but in reality they are created from very simple primi‐
tives and patterns. The combination of a humane data model and
ease of algorithmic processing to discover otherwise hidden patterns
and characteristics is what has made graphs so popular. It’s a combi‐
nation we will exploit in our knowledge graphs.

6 | Chapter 1: Introduction
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Now that we’re comfortable with graphs, we move forward to inter‐
preting connected data as knowledge.

The Motivation for Knowledge Graphs
There has been a recent explosion of interest in knowledge graphs,
with a myriad of research papers, solutions, analyst reports, groups,
and conferences. Knowledge graphs have become so popular partly
because graph technology has accelerated in recent years but also
because there is strong demand to make sense of data.

External factors have undoubtedly accelerated knowledge graphs to
greater prominence. Stresses from the COVID-19 pandemic have
strained some organizations to the point of breaking. Decision mak‐
ing has needed to be rapid, but businesses have been hampered by
the lack of timely and accurate insight.

Businesses are reconfiguring their operations and processes to be
ready to flex rapidly. As historical knowledge ages faster and is inva‐
lidated by market dynamics, many organizations need new ways of
capturing, analyzing, and learning from data. We need to fuel rapid
insights and recommendations across the business, from customer
experience and patient outcomes to product innovation, fraud
detection, and automation: we need contextualized data to generate
knowledge.

Knowledge Graphs: A Definition
We now have an understanding of graphs and the motivation for
using knowledge graphs. But clearly not all graphs are knowledge
graphs. Knowledge graphs are a specific type of graph with an
emphasis on contextual understanding. Knowledge graphs are inter‐
linked sets of facts that describe real-world entities, events, or things
and their interrelations in a human- and machine-understandable
format.

Knowledge graphs use an organizing principle so that a user (or a
computer system) can reason about the underlying data. The organ‐
izing principle gives us an additional layer of organizing data (meta‐
data) that adds connected context to support reasoning and
knowledge discovery. The organizing principle makes the data itself
smarter, rather than locking away the tools to understand data

The Motivation for Knowledge Graphs | 7



inside application code. In turn this both simplifies systems and
encourages broad reuse.

Where’s the Data?
A knowledge graph can be a self-contained unit living in a single
graph data store, or it can involve several coordinated graph stores
forming a federation of graphs. A knowledge graph can also be a
logical layer providing structure and insight over multiple data
sources of different kinds (graph or nongraph) so that data con‐
sumers get a contextualized and integrated view of the data. These
are all different ways in which knowledge graphs can materialize,
and we will discuss even more in the following chapters.

Knowledge graphs are agnostic on the physical storage of the
underlying data and support different types of architectural
approaches, from the more virtualized ones where the knowledge
graph is a smart index over externally stored data to the fully mate‐
rialized ones where the external data is fully replicated in a graph
platform—and any hybrid approach in between the two.

Organizing principles, reasoning, and knowledge discovery might
seem intimidating and complicated at first. But in reality, we can
think of knowledge graphs as an index over data that provides cura‐
tion like a skilled librarian recommending pertinent books and jour‐
nals to a researcher. An organizing principle acts as a contract
between the provider and user of a knowledge graph, and Chapter 2
explores the options for organizing principles that we might use.

8 | Chapter 1: Introduction



CHAPTER 2

Building Knowledge Graphs

Graphs are common in modern computer systems. They’re a pleas‐
ant and flexible data model for supporting interactive queries, real-
time analytics, and data science. But what transforms a graph into a
knowledge graph is the application of an organizing principle that
helps human and software users to understand it. Sometimes this is
loftily called semantics, but we just think of it as making the data
smarter.

Knowledge graphs are the result of decades of research in semantic
computing but with modern graph technology, we can modernize
and generalize that research so that it can be applied to contempo‐
rary real-world problems. In this chapter, we introduce common
organizing principles for knowledge graphs—how to add metadata
to a graph to make it smarter. Once you’ve finished reading this
chapter, you will be able to choose from different organizing princi‐
ples that best suit your predicament.

Organizing Principles of a Knowledge Graph
We like the notion that knowledge graphs help make data smarter.
Rather than having to repeatedly encode smart behavior into appli‐
cations, we encode it once, directly into the data. Smarter data bene‐
fits knowledge reuse and reduces duplication and discrepancies.
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There are several different approaches to organizing data in a graph,
each with its own benefits and quirks. We’re free to pick and choose
the ones that are best suited to our problem, and we’re free to com‐
pose them together too. Starting with a basic (but useful) graph,
we’ll show how to add successive layers of organization, demonstrat‐
ing how knowledge graphs can be used to solve increasingly sophis‐
ticated problems.

Plain Old Graphs
We use the term graph when we’re thinking about graphs in general,
and in particular those graphs that haven’t had organizing principles
applied to them. But as graph enthusiasts, we know that regular
graphs are very useful. They underpin some very important systems.
The difference is that the interpretation of the information they con‐
tain is encoded into the systems that use the graph. In other words,
the organizing principle is “hidden” in the logic of the queries and
programs that consume the data in the graph.

As a familiar example, think about the sales data of a typical online
store. Sales data is typically large and dynamic, and it combines cus‐
tomer shopping information with product catalog, including a
product descriptions, categories, and manufacturers.

Figure 2-1 shows a small fragment of a sales and product catalog
graph.

Figure 2-1. A snapshot of customers and their purchases as a plain old
graph

10 | Chapter 2: Building Knowledge Graphs



You may not find it intuitive at first. But a program where an engi‐
neer has encoded the knowledge that the P nodes represent prod‐
ucts and C nodes represent customers, and that connections
between nodes represent purchases, will be able to answer straight‐
forward questions like “What products did this customer buy?” and
the reciprocal “Which customers bought this product?” which are
valuable to the retailer.

Such a program would also be able to compute a product’s popular‐
ity by adding the number of incoming edges (calculating the degree
of the node) and see that one product is quite popular, the others
less so.

A graph algorithm encoding the same interpretation of the informa‐
tion in the graph could even reveal customers’ buying behavior. It
could also segment them (roughly) into most buying a few popular
products and the others spread among many less popular products.

There is no doubt that there is a lot of value in the graph, but what
would happen if a data scientist with no previous knowledge of the
domain wanted to try to run, for example, some basket analysis
(what products are purchased together) to build a recommendation
system? Well, someone would have to explain how to interpret the
data in the graph because there is no organizing principle that can
help them to make sense of it. The knowledge of how to interpret
the data in the graph is encoded into the algorithms that perform
the processing.

There’s also a real problem if whoever created the graph has left the
business. The data scientist now has to reverse engineer the code in
the algorithms in order to interpret the graph. For many mature
businesses, this scenario is a frequent occurrence.

Of course, once we understand the meaning of the data in the graph,
we could continue to build new algorithms to process knowledge
out of that graph, but a better solution is to make the data in the
graph smarter by applying an organizing principle. The organizing
principle surfaces the latent and implicit knowledge in a graph,
turning it into a knowledge graph.

Organizing Principles of a Knowledge Graph | 11



Richer Graph Models
As it happens, we have already seen a first organizing principle: the
property graph model itself! Compared to the austere lines-and-
circles graphs in the sales and product catalog graph in “Plain Old
Graphs” on page 10, the property graph model is richer and far
more organized: it supports labeled nodes, type and direction for
relationships, and properties (key-value pairs) on both nodes and
relationships. Any software that understands the property graph
model can process it in accordance with that simple organizing
principle.

Figure 2-2 shows an enriched view of the sales and product catalog
graph, including labels, properties, and named relationships.

Figure 2-2. A snapshot of customers and their purchases as a property
graph
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A property graph gives human and machine agents a set of essential
clues about the information it contains: node labels, relationship
types and direction, and the types and names of property data stored
on them. It is even possible to get a formal description of the shape
of the graph (its schema) via introspection. Effectively, this organiz‐
ing principle makes a graph self-describing to a certain extent and is
a clear first step toward making data smarter. Just by using node
labels, software can extract all similar types of entities from a graph.

And what about our data scientist? They would definitely have a
much better (and more productive) time working on this graph
compared to more austere data models.

Importantly, some processing can be done without knowledge of the
domain, just by leveraging the features of the property graph model
(the organizing principle). A common example is visualization.
Figure 2-3 shows how nodes with the same labels will be displayed
with similar visual style in two popular visualization tools, Linkuri‐
ous and Bloom. No domain knowledge is needed for these tools to
render the data in a helpful, visual manner, just an understanding of
the organizing principle. Moreover, Bloom uses the metadata inher‐
ent in the organizing principle to provide a curated, domain-affined,
Google-query style exploration interface atop the graph, again with
no understanding of the domain.

To a consumer application, and a visualization tool is an excellent
example, the organizing principle is a contract. It sets out that the
tool can expect to find labeled nodes, connected by directed and
typed relationships with properties on both. As long as the graph
and the tools both honor this contract, the software can work with
any graph.

Organizing Principles of a Knowledge Graph | 13
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Figure 2-3. Bloom (top) and Linkurious (bottom) visualize property
graph data using the model’s organizing principles
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Organizing Principles Are Contracts
The organizing principle provides a contract between the graph and
its users. But this doesn’t only apply to human developers or users
—it also applies to software agents.

With the property graph model, consuming software can expect to
find labeled nodes and directed, labeled relationships in the data.
The property graph model is a contract, and software tools that
uphold this contract can process, visualize, transform, and transmit
the data in a manner that is consistent with its intent.

Although it’s commonplace and powerful, the property graph
model is a relatively low-level organizing principle. The property
graph model becomes even more useful if it’s composed with other
higher-order organizing principles like the taxonomies and ontolo‐
gies we shall discuss later in the chapter.

In Figure 2-2 we’ve used the organizing principle from the property
graph model to showcase various product features. A competent
user could extract all wireless headphones from the data as easily as
they could extract all audio products. With only slightly more effort,
aggregate sales data per product or per product type could also be
computed. But the way the data is set up does not provide much
scope for reasoning: labels don’t provide enough information to
know that, for example, one product is substitutable for another. For
that we need a stronger organizing principle.

Knowledge Graph Using Taxonomies for Hierarchy
Creating categories of nodes using labels is clearly useful. In
Figure 2-2, we saw that the connection between customers and the
products they’ve bought is explicit in the graph in the form of a rela‐
tionship. The same applies to the labels that categorize products. But
the associativity between labels is missing.

Labels don’t tell us, for example, that one category is broader than
another one, or that certain products are compatible with one
another or even substitutable for one another based on the cate‐
gories to which they belong. At a business level, that means lost sales
opportunities. Better product catalogs mean better shopping
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1 Depending on the framework/vocabulary used, these could also be called nar‐
rower_than or subclass_of.

experiences for the customer and more revenue for the retailer, so a
richer way of categorizing products is a worthwhile investment.

As savvy buyers, we know that headphones and earphones are both
part of the more general category of personal audio. We also know
that there are specific styles of wireless and wired headphones and
earphones, and we know that some personal audio can be both
wired and wireless. In order to meet customer expectations, the
retailer needs to be able to use this associative information. It might
also be useful to mix product information with historic customer
preferences, stock levels, profit margins, and so on in order to pro‐
vide an even richer set of data to guide customers’ buying decisions.

In the example of a product catalog, those questions aren’t limited to
buying specific headphones but also include higher-order questions
like “What’s good equipment for me to listen to classical music on
the move?” These kinds of questions cannot be answered with algo‐
rithms alone. We need smarter data.

A good place to start is to enrich the way products are classified with
a higher-order organizing principle so that we can better reason
about products’ substitutability. That is, if the retailer is out of stock
of a specific item, it might still win a sale if it is able to offer similar
items.

To support x is a kind of y reasoning, we need a more hierarchical
view called a taxonomy. A taxonomy is a classification scheme that
organizes categories in a broader-narrower hierarchy. Items that
share similar qualities are grouped into the same category, and the
taxonomy provides a global organization by relating categories to
one another. This kind of hierarchical organization places more spe‐
cific things like products (which are numerous) toward the bottom
of the hierarchy while more general things like brands or product
families (which are less numerous) are placed toward the top of the
hierarchy.

The hierarchy is constructed with category nodes connected by sub‐
category_of relationships.1 Subsequently, products can be connected
to the appropriate part of the taxonomy to classify them as ready for
sale. This is shown in Figure 2-4, where you can see how customers
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can be better served by offering alternative products in the same cat‐
egory and in nearby categories.

Figure 2-4. A product catalog hierarchy layered on top of the customer
and sales data depicted in Figure 2-2
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But the beauty of knowledge graphs is that we can choose to use
multiple hierarchical organizations simultaneously to provide even
more insight. In Figure 2-5 we see how different taxonomies can
coexist in a single knowledge graph. Currently, the Bose QC35II
headphones are classified under Half Price Products, a subcate‐
gory of Black Friday Deals, which is a seasonal promotion. They
are also connected to both the wired and wireless categories and
would potentially be presented to customers browsing in those cate‐
gories too. The same pair of headphones would at other times of the
year be classified differently, for example in a high-end audio cate‐
gory. This is possible because classification is totally dynamic in a
knowledge graph. The new categories and their associativity as well
as the linkage of products to the categories are just additional nodes
and relationships in the knowledge graph, which gives us extreme
flexibility.

Just as in the previous section we achieved a first level of domain
independence by using the property graph as organizing principle,
we are taking it one step further when using a taxonomy. Any appli‐
cation aware of the semantics of a taxonomical organization (the
meaning of broader-narrower) could exploit the graph in a much
richer way without knowledge of the domain, for example by using
the taxonomy to compute semantic similarity between products
applying standard taxonomy metrics like path similarity, Leacock-
Chodorow, or Wu & Palmer.

Using multiple categories makes the data more expressive and
allows for more sophisticated exploitation of the data in the graph.
Even with this relatively modest organization of data using taxo‐
nomical hierarchies, we get immediate benefits in terms of the
knowledge that can be extracted. But this is not the end of our
options for organizing knowledge; there are still higher-order
organizing principles we can use.
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Figure 2-5. Multiple hierarchies can be dynamically layered on top of
the customer and sales data; this diagram adds one more level to the
contents of Figure 2-4
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2 Strictly speaking, taxonomies are also ontologies, but they only use the basic constructs
of categories and hierarchical relationships.

Knowledge Graph Using Ontologies for Multilevel
Relationships
While taxonomies represent collections of topics with subcate‐
gory_of relationships between them, we might want to enrich our
organizing principle with additional constructs using an ontology.2

Ontologies are also classification schemes that describe the cate‐
gories in a domain and the relationships between them. But ontolo‐
gies are not restricted to just the hierarchical (broader-narrower)
structures.

Ontologies allow for the definition of more complex types of rela‐
tionships between categories, such as part_of, compatible_with, or
depends_on. They also allow for the definition of hierarchies of rela‐
tionships and for further characterization of relationships (transi‐
tive, symmetric, etc.).

Following the instructions in an ontology, we can explore the cate‐
gories in a domain not just vertically (hierarchically) but also hori‐
zontally, where we can address cross-cutting concerns. For example,
we could reason that an iPhone 12 is a valid search result for a cus‐
tomer looking for a mobile phone because it is an iOS device and
the taxonomy states that iOS is a subcategory of mobile phone.
From the semantics of the UPSELL relationship defined in the ontol‐
ogy, we can reason that an iPhone 12 Pro should be recommended
to customers who own an iPhone 12. Figure 2-6 shows how an
ontology supports precisely this upsell feature using UPSELL rela‐
tionships to help guide a user of the product catalog toward better
buying decisions.
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3 Not all the data will necessarily be in a single database. Generally, we require some sys‐
tems integration work so that the data can be accessed over the network from the
myriad of databases where it is stored.

Figure 2-6. An ontology showing upgrade paths (upsell opportunities)
for products in the catalog

In larger systems spanning departments, we might even use an
ontology to act as a bridge between distinct departmental taxono‐
mies to facilitate semantically aligned integration. By deploying an
ontology that defines cross-taxonomy equivalence (links between
the same concepts in distinct topologies), we can traverse the
entirety of the business domain.3

Ontologies can be built in a modular fashion to make them compos‐
able. Figure 2-7 shows a sophisticated use of layered ontologies to
bridge between several underlying taxonomies/ontologies. Each
layer in the graph can be queried independently, but when the layers
are brought together, they provide an ability to reason across those
domains.
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Figure 2-7. A sophisticated layering of ontologies and taxonomies over
the same data set

Where originally we were able to reason about electronics that com‐
plement one another through a single ontology, when we use a
cross-domain overarching ontology, we are able to reason about
more wide-ranging needs, including a bigger range of products, rec‐
ommendations, special offers and promotions, and more. This is a
distinct shift from “tell me what electronics complement each other”
to “help me get the things I need (at the best price).”

Ontologies make knowledge actionable. They enable human or soft‐
ware agents to carry out sophisticated tasks. For example, if our e-
commerce retailer ties its product hierarchy into stock control data
through another ontological layer, its has a way of offering other
good choices to the user when the current item is out of stock or to
recommend products that have better margins. All of this comes at
the modest cost of writing down how the business works as a
machine-readable ontology.
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Which Is the Best Organizing Principle for Your
Knowledge Graph?
The type of organizing principle of a knowledge graph should
always be driven by its intended use. There is little value in building
rich and expressive features into the organizing principle if there is
no associated process or agent (human or software) that makes use
of them. It is a very common mistake to aim for an overly ambitious
organizing principle up front. A prematurely detailed organizing
principle will be an expensive effort in both time and resources at a
point where the utility of the work is least well understood. It also
risks being out of date by the time it’s finished.

A good general principle for building organizing principles for
knowledge graphs is just enough semantics. Use the simplest techni‐
ques you can find to address the needs you have today. Tomorrow
you can always compose more advanced organizing principles into
your system when future requirements drive out the need. Why
build a complex ontology when a taxonomy or just a property graph
is enough to drive the capabilities required by a use case?

Building only what you need plays well with iterative systems-
delivery practices. Iterative construction of knowledge graphs helps
to avoid the common trap of ontological perfectionism and keeps
knowledge graphs fit for purpose for the long haul, delivers value
early, and reduces overall risk.

Organizing Principles: Standards Versus
Custom
There are several standard, or at least widely used, ontologies in
existence that service a variety of domains, such as SNOMED CT
for clinical documentation and reporting, the Library of Congress
Classification (LCC) for library classification, Financial Industry
Business Ontology (FIBO) for finance and business, and
Schema.org and Dublin Core for general-purpose web resource
annotation, to name just a few of the most popular ones. Whether
for interoperability reasons or to reuse an existing public model, if
you happen to work in a domain for which such a standard exists, it
can be a good idea to consider adopting that model wholesale.
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If your driver is interoperability, probably the consumers of your
knowledge graph are aware of Schema.org, SNOMED, or FIBO, in
which case speaking the same common language in your knowledge
graph will obviously simplify communication. Interoperability can
be crucial when the communicating parties are separate entities,
such as independent participants in a supply chain. In some cases, it
may even be mandatory to use a specific standard for things like
regulatory reporting. From the perspective of knowledge reuse, you
are treading a path that others have trodden before and can benefit
from their efforts.

Where there is no standard for your domain, only a partial fit, or
where you really do need fine-grained control over the organizing
principle, then you will need to write your own from scratch or use
a public standard as a starting point for your own organizing princi‐
ple. When faced with the task of creating an organizing principle,
you could take different approaches. One is to use natural language
to describe the semantics of your organizing principle, as we did
earlier in the chapter where we described property graphs using
English prose. This approach has a low barrier to entry but has the
downside that it’s not machine readable.

Another way to create an organizing principle would be to define it
formally using one of the standard languages available. The most
widely used ones are RDF Schema and Web Ontology Language
(OWL) for ontologies and Simple Knowledge Organization System
(SKOS) for taxonomical classification schemes. Each allows for dif‐
ferent expressivity levels: from the basic definition of categories and
relationships to taxonomies and more sophisticated constructs like
complex classes through combination and operators for existence
and universality.

One good thing about using a standard ontology language to
describe your organizing principle is that you get good support from
software in the creation process. Visual ontology editors help
knowledge engineers in this task since writing ontologies by hand is
difficult and error prone. Nonetheless, becoming fluent in one (or
more) of these languages has a cost associated, and that cost needs
to be weighed against the benefits.

It’s not only during the creation of the organizing principle that you
can benefit from standards-aware software, though. Once the organ‐
izing principle has been applied to your knowledge graph, software

24 | Chapter 2: Building Knowledge Graphs



4 Interestingly enough, the vast majority of the public RDF data in the web is not hosted
in triple stores but embedded in web pages in the form of JSON-LD snippets, further
proving this point.

based on standards can run automated tasks on your data. For
example, suppose you use OWL as the framework for the organizing
principle of a knowledge graph. In that case, a program capable of
running OWL-based reasoning would be able to derive new facts
from your data without it having to understand that data. That’s very
appealing, of course, but it is essential always to keep an objective
view. What are the kind of things that I can express with these
standards? What is the nature of the inferences that can be run on
them? And the most important question: how do they align with
your business needs?

We observe that organizations that have been successful with knowl‐
edge graphs tend to leverage standards to a certain extent while
ensuring they can easily layer on additional meaning when needed
and move fast to keep up with business changes. We find that a mix
of standards and adaptive customization is most aligned with the
reality of modern business.

Data Exchange and RDF
Resource Description Framework (RDF) is often presented as a key
differentiator between different knowledge graph implementations
or as a way to prescribe a particular technology stack. This is a mis‐
take. RDF is a model for data exchange and does not mandate how
data should be stored or manipulated or what architecture should
be in place. RDF cares about how data is serialized and exchanged,
not how it is stored and organized.4

The techniques described in this chapter are completely independ‐
ent from implementation decisions. Choosing an organizing princi‐
ple is an independent act from sharing data in a common format, as
is the storage and querying of that data. You don’t need an RDF tri‐
ple store to build knowledge graphs.

Use RDF to share knowledge, not to manage data.
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Essential Capabilities of a Knowledge Graph
Before we move on to real-world examples of knowledge graphs, we
will briefly revisit the foundations. First, we don’t believe that any
specific graph technology is required for knowledge graphs, despite
the historical association with so-called semantic triple stores. We
prefer the property graph model since it’s the most popular method
today, and it’s a performant way to manage knowledge graphs but is
not mandatory. In fact, with a general graph model we can readily
design new (or reuse existing) organizing principles.

A good knowledge graph stores and unifies underlying data so that
it can be reasoned about. It does not necessarily seek to change the
underlying data but instead provides guidance on how that data can
be understood, no matter its source technology.

Good knowledge graphs are flexible and easy to main‐
tain. Avoid technologies that bog you down in heavy‐
weight processes because while you’re wading through
that process, the business will have moved on.

Finally, a good knowledge graph will be performant. This is not a
throwaway point, far from it. Teams will work around pain points,
and slow systems are painful. A fast, up-to-date knowledge graph
empowers users. A slow, hard-to-change one is a hurdle for users.

People and systems using a knowledge graph enhance the knowledge
graph. Do everything you can to encourage use, and your knowl‐
edge graph will flourish.

At this point we have a good definition of a knowledge graph and
the organizing principles that enable us to better derive meaning
from a graph. Next, we’ll turn to the applications of knowledge
graphs to illustrate how businesses generate value from knowledge
extracted from their smarter data.
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1 According to the ICIJ, the Panama Papers was a “giant leak of more than 11.5 million
financial and legal records exposes a system that enables crime, corruption and wrong‐
doing, hidden by secretive offshore companies.”

CHAPTER 3

Data Management for
Actionable Knowledge

When the data team of the International Consortium of Investiga‐
tive Journalists (ICIJ) received a data dump that came to be known
as the Panama Papers, they probably thought they’d be looking for
the digital equivalent of a needle in a haystack.1

With such a large and complex set of data, it may have seemed an
insurmountable task for a small team of knowledge workers, but
their decision to build a knowledge graph with the data fundamen‐
tally changed that situation. The knowledge graph the ICIJ built
gave context and connections to the data. The complex, multiyear,
multimedia data in the knowledge graph was linked in a way that
investigators just needed to follow the connections to uncover often
scandalous stories that we have been reading in the news since 2015.

In unraveling the Panama Papers, the ICIJ demonstrated that
explicit connections in data are transformative for consumers,
whether they are human or software agents. Amongst the in excess
of 214,000 entities and 140 prominent individuals discovered in the
leak, the files also showed how major banks played a significant role
in helping to move wealth offshore.
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But that was not the end of the story. The work of the ICIJ is ongo‐
ing, and so the data team at ICIJ kept improving the data pipeline
for populating the knowledge graph. They delivered a freshly upda‐
ted graph to the journalists every day, despite ongoing changes like
new code releases, additional data sources, and new team members.

In many respects, the ICIJ’s journey is not so different from most
other data owners, chief data officers (CDOs), or chief information
officers (CIOs). A CDO or CIO has to ensure that data with the
right quality (accuracy, completeness, timeliness) is accessible to the
right people and processes and is used a way that complies with
rules and regulations.

This chapter explains the foundations for actioning knowledge
graphs, which are used to drive decisions or actions based on data.
We discuss knowledge graphs that support holistic understanding
and linking of multiple data sources across the enterprise and how
we can incorporate provenance metadata into the mixture.
Throughout, we provide several use cases and an end-to-end exam‐
ple to illustrate approaches a CDO or CIO could take.

Relationships and Metadata Make Knowledge
Actionable
We use relationships to describe how entities interrelate. For exam‐
ple, it is possible for a graph to state that a customer subscribes to
a service by linking the customer node and the service node through
a SUBSCRIBES_TO relationship. But relationships can also be used
to connect data with metadata, and this is a very powerful
combination.

Figure 3-1 shows a two-layered graph. On the bottom layer, we see
the data pertaining to customers and the services to which they sub‐
scribe. On the top layer, we have some metadata that describes the
provenance of the customer and subscription data. This metadata
shows how customer information is part of a dataset sourced from
an external system, which is curated by a particular human data
steward.
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Figure 3-1. Relationships connect the data and metadata layers

Knowledge graphs like the one in Figure 3-1 can answer domain
questions like “What customers subscribe to service X?” but can also
provide confidence in the answer with provenance and governance
metadata. Importantly, data architects can implement this technique
in a noninvasive manner with respect to the source systems contain‐
ing customer data, by building it as a layer above those systems. A
popular example of this is to build a knowledge graph of metadata
that describes data residing separately in an otherwise murky data
lake.

A globally linked view of data unlocks many significant use cases.
Figure 3-1 shows the powerful combination of the data and meta‐
data planes in the graph, but it’s easy to see how we can construct a
complete view of a customer by linking disparate partial views of
customers across different systems. We could enrich the original
customer view with the customer’s behavior over their lifetime,
detect patterns for good and bad customers, and adapt processes to
suit their behavior. Similarly, on the metadata plane, we’ve started by
showing how to offer a catalog of richly described datasets connec‐
ted to the data sources where they are hosted, but we can also
semantically enrich them by linking them to vocabularies, taxono‐
mies, and ontologies to enable interoperability. Or we can add own‐
ership/stewardship information to enhance governance and map
where data came from as well as which systems and individuals have
handled it.
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The Actioning Knowledge Graph
An actioning knowledge graph provides a way of understanding
good courses of action. Whether that’s recommending a product
with a risky or unreliable supply chain or optimizing routes for mail
delivery, the actioning graph’s responsibility is to guide someone to a
better outcome.

To achieve this, an actioning knowledge graph requires integrated,
contextualized, quality-assured, and well-governed data. Actioning
knowledge graphs often integrate data from multiple information
silos, providing a unified, deduplicated view of data. Such unified
views are normally built around key (master) business entities; that’s
why they are often referred to as Master Data Management (MDM)
graphs and power systems with names like Customer 360, Product
360, or Single View of Patient.

Some organizations build graphs integrating all of their
customers’ touchpoints over time to provide a com‐
plete and cohesive view of the customers’ journeys.
Customer journey graphs are invaluable for detecting
behavioral patterns that can help to predict churn or
recommend the next best action in a highly personal‐
ized manner.

The Data Fabric Architecture
Actioning knowledge graphs can be used to provide integrated
access to multiple data domains in what’s called a data fabric archi‐
tecture. Data fabrics are general-purpose, organization-wide data
access interfaces that offer a connected view of the integrated
domains by combining data stored in a local graph with data
retrieved on demand from third-party systems. Their job is to pro‐
vide a sophisticated index and integration points so that they can
curate data across silos, offering consistent capabilities regardless of
the underlying store (which might or might not be graph based), as
shown in Figure 3-2.
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2 For example, the Neo4j graph database provides user-defined procedures that can call
out to other systems and combine the results from those systems with local data, which
is all processed as if it were a local graph query.

Figure 3-2. An actioning knowledge graph supported by a data fabric

The example in Figure 3-2 is typical of an enterprise data fabric. The
actioning knowledge graph provides an index and perhaps some
metadata management across several data systems (which are them‐
selves typically unaware of the data fabric). It acts as an entry point
so that when a client application or user requests, “Give me the cus‐
tomer John Smith from Seattle,” it can follow the relationships in the
graph to leaf nodes, which redirect to records in other systems. In
Figure 3-2, customer records are kept in a document database, the
product catalog is stored in another graph database, and billing
information is stored in a relational database. All of these are
accessed transparently through an integration layer as part of the
data fabric.2 The actioning knowledge graph brings back data from
the systems and combines them into a holistic set of data for the cli‐
ent, without the client having any knowledge that multiple backend
systems were used.

Data architects often turn to graphs because they are flexible enough
to accommodate multiple heterogeneous representations of the
same entities as described by each of the source systems. With a
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graph, it is possible to associate underlying records incrementally as
data is discovered. There is no need for big, up-front design, which
serves only to hamper business agility. This is important because
data fabric integration is not a one-off effort and a graph model
remains flexible over the lifetime of the data domains.

Most data integration solutions unfortunately ignore relationships
(with a notable exception being the Web). Using relationships to
form an actioning knowledge graph has significant benefits since
characteristics like node degrees, neighborhood information, and
centrality metrics can be leveraged to build sophisticated and effec‐
tive data integrations. For example, we can define a matching rule as
follows: two nodes represent the same product (and therefore can be
deduplicated) if their names have a strong string similarity (say over
95%) and they have identical clustering coefficients. The result is
that data owners get significantly improved matching rates when
aligning multiple data sources using graph metadata.

When a data fabric overlays an organizing principle, such as an
ontology, taxonomy, or enterprise canonical model atop the integra‐
ted data, it is presented to consumers as an actioning knowledge
graph, making it possible to validate across systems and check for
inconsistencies or violations of the semantics of the data. This
improves the quality and correctness of the data and increases inter‐
operability across the enterprise.

Metadata Management
Patterns of data usage have changed profoundly in the enterprise. In
organizations with mature data management practices, expertise
and control over data are shifting from a centralized setup to a dis‐
tributed setup where business units provide domain expertise and
systems architecture is often designed as a set of loosely coupled
cooperating services.

As a consequence, your organization probably has many data users,
and you have probably seen explosive growth in the number of
internal data resources: data tables, dashboards, reports, metrics def‐
initions, and so on. On the positive side, this shows your investment
in data-informed decision making, but how do you make sure your
users effectively navigate this sea of data assets of varying quality,
freshness, and trustworthiness? The solution to keeping data fresh is
a metadata hub, which has an actioning knowledge graph at its core.
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The trend for knowledge graph–backed metadata hubs
started in 2017 when Airbnb announced its Dataportal
platform at their “Democratizing Data at Airbnb” talk
at GraphConnect London. This were followed by Lyft
with Amundsen and LinkedIn with Datahub. Com‐
mercial solutions have followed and now also offer
metadata management platforms enhanced with
knowledge graphs.

The actioning knowledge graph for a metadata management hub is
built from metadata collected from all systems across an estate. It
typically includes information like datasets, any schemas, transfor‐
mations, mappings, code, and so forth, which manipulate data. It
also often includes information on governance and usage of the data
assets, such as access patterns and usage stats, data ownership and
stewardship, data quality ratings from consumers, and so on. In
some cases, it might contain operational information about the sys‐
tems themselves, such as their health or utilization. In the graph, the
data coming from the systems can be semantically enriched with
fragments of “business knowledge” in the form of glossaries, ontolo‐
gies, descriptions of business processes, compliance information,
and more—just link the graphs together.

The graph in Figure 3-3 shows a simple example of how the action‐
ing knowledge graph for a metadata hub would look. A data pipeline
can be traversed to provide detailed provenance reports and answer
impact analysis queries such as “Data source X is unavailable and all
dependent pipelines are disrupted. Which data owners need to be
notified?” In fact, the graph is a representation of a data pipeline
that reads a report, standardizes the values of a given field—for
example, an industry sector field—and then calculates aggregates by
standardized industry sector and stores the result as a file for further
distribution. The graph also contains data governance and prove‐
nance information showing which individuals are responsible for
(or own) data assets and what groups these individuals belong to—
both of which can be reasoned about for correctness and reported
on for regulatory compliance.
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Figure 3-3. A graph describing a simple data pipeline

Scaling up the example in Figure 3-3, we end up recording this
information at a company-wide level. This brings together the con‐
nections of all data pipelines and processes and extends them with
usage and data quality information to provide global visibility.

An actioning knowledge graph for metadata management builds
trust in data and promotes self-service data consumption across the
enterprise. It can also map data assets to concepts in the enterprise
ontologies to make them discoverable and accessible and promote
self-service data consumption. We believe it is the foundation for
data management functions like data quality, data stewardship, and
data governance.
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Trustworthy AI needs trusted data

In an era of machine learning, where data is likely to be
used to train AI, getting quality and governance under
control is a business imperative. Failing to govern data
surfaces problems late, often at the point closest to
users (for example, by giving harmful guidance), and
hinders explainability (garbage data in, machine-
learned garbage out).

Deploying an actioning knowledge graph drives an increase in the
productivity of data consumers (data analysts/data scientists) and
brings high value insight into operations. In the words of data engi‐
neering at Airbnb: “A graph of the ecosystem has value far beyond
tracking lineage and cross-functional information. Data is a proxy
for the operations of a company. Analyzing the network helps to
surface lines of communication and identify facets or disconnected
information.”

Popular Use Cases for Actioning Knowledge
Graphs
Here we summarize popular use cases for actioning knowledge
graphs. This is by its nature incomplete, but the set of ideas and pat‐
terns is commonplace in contemporary adopters.

Data lineage
Traces all steps in data pipelines from data sources to data
consumers to provide trust and high-fidelity provenance
information.

Data catalog
Actionable inventory of all data assets with their detailed
structure.

Impact analysis and root cause analysis
These are two similar meta use cases that materialize in many
concrete examples like risk management, service assurance,
ultimate beneficiary ownership (UBO), or fraud origination.
Impact analysis is used to assess the direct or indirect effects of
an event or a change in an ecosystem (the butterfly effect).
Reciprocally, root cause analysis tries to map symptoms or
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consequences to originating causes. Both exploit the transitive
dependencies modeled as relationships in the underlying graph.

Information search
Actioning knowledge graphs are also used to enhance informa‐
tion search. Documents, lessons learned, and knowledge in gen‐
eral can be indexed in a knowledge graph, making it possible to
search for things instead of strings. In an actioning knowledge
graph, documents are annotated according to one or many
ontologies to enable semantic searches, document similarity
computation, and generate recommendations that can antici‐
pate the needs of an expert.

Single view of X
Also known as X360 (X being the customer, the patient, the
product, or any other key business entity), this provides a trus‐
ted and contextualized aggregation of all information relevant
to X. Trusted views are usually built to drive contextual data-
driven decisions around personalization, recommendation, and
general next-best-action for activities related to X. The action‐
ing knowledge graph provides a contextualized understanding
of X and consequently provides the right data and context from
which to suggest actions.

The UBS Actioning Knowledge Graph
UBS is a multinational investment bank and financial services com‐
pany based in Switzerland. Founded in 1862, it maintains offices in
more than 50 countries, employs more than 66,000 people, and
reported total assets of more than $972 billion in 2019.

To comply with regulations, all banks need to provide transparency
into the data flows that feed their risk reporting. This requires
broad data governance and detailed data lineage. Using an action‐
ing knowledge graph, UBS built its data lineage and data gover‐
nance tool called the Group Data Dictionary (GDD). With the
GDD, UBS can track information as it flows through the enterprise,
monitor its quality, discover errors, and trace them to the source,
minimizing damage and reducing data duplication.

UBS workflows and auditing capabilities are mostly built on rela‐
tional technology, so synchronization of the knowledge graph with
the underlying legacy systems is essential. GDD achieves this by
constantly collecting metadata from the systems it tracks in order to
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compute a current view of them at any point. Some of the more
modern systems added to GDD more recently are able to stream
their updates into the graph by using a distributed publish-
subscribe messaging system.

GDD’s actioning knowledge graph includes nodes representing the
different data assets and their internal structures (attributes). It also
includes relationships representing data flows connecting the data
assets. The organizing principle uses transitive relationships gener‐
ating dependency chains in the graph that they can traverse to ana‐
lyze and expose lineage spanning dozens of levels of entities and
dependencies.

Using an actioning knowledge graph, UBS is able to detect and
resolve deep dependencies that would have been impossible to
uncover in real time using traditional technologies.

Increased Trust and Radical Visibility
Few things are more damaging for organizations than mismanaging
data, and few things are more potent than good data used well. As
organizations grow, the complexity of their data ecosystems and the
challenges to data management grow too. One of the most common
challenges is that information and people tend to become siloed by
tools or teams, leading to disconnected knowledge among staff.
Using relationships in knowledge graphs is an excellent way to
counter this entropic tendency inherent in a large or growing
business.

Understanding the entire data ecosystem, from the production of a
data point to its consumption in a dashboard or a visualization, pro‐
vides the ability to invoke action, which is more valuable than the
mere sum of its parts. In this chapter, we to have raised awareness of
opportunities for your own business to map its data, data prove‐
nance, and data governance. We also hope that you’ll be keen to take
this further and drive actions from the comprehensive view of data
assets. That being said, data discovery is a key element to this strat‐
egy, as we shall explain in Chapter 4.
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CHAPTER 4

Data Processing for
Driving Decisions

Graphs provide context to answer questions, improve predictions,
and suggest best next actions. But uncovering insight from graph
data is a necessary step toward unleashing value.

In the actioning knowledge graphs we saw in Chapter 3, an organiz‐
ing principle was applied to an underlying graph in order to extract
knowledge. We said this makes the data smarter. Deciding upon or
discovering an organizing principle, or even just exploring the graph
to find its general properties, is a useful activity in its own right.

In this chapter, we’re going to explore decisioning knowledge graphs.
A decisioning knowledge graph does not drive actions directly but
surfaces trends in the data, which can be used in several ways such
as to extract a view or subgraph for:

• Specific analyses (e.g., monopartite graphs like customer-
bought-product) yielding actionable knowledge that can be
written back into an actioning knowledge graph

• Human analysis (assisted by tooling) for data science explora‐
tion and experimentation, eventually possibly yielding insight
that is written to the actioning knowledge graph or influences
organizational structure

• Further processing by downstream systems (e.g., training
machine-learning models)
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Physically, our decisioning graph might or might not be the same
graph as our actioning knowledge graph. Sometimes it’s helpful to
keep all the actionable data and decision making together (particu‐
larly when we want to enrich the actioning knowledge graph), and
sometimes we want to physically separate them (for data science
workflows).

However we physically arrange our infrastructure, our toolkit for
these jobs consists of discovery, analytics, and data science. Sepa‐
rately, discovery, analytics, and data science are helpful. But together
they become extremely powerful tools in our toolbox for turning
decisions into useful actions.

Graph Analytics, Machine Learning, and Data Science
Processing graph data typically uses techniques from graph analyt‐
ics, graph machine learning, and graph data science. These methods
excel at finding unobvious connections because they can surface
patterns in our data even when we don’t exactly know what to look
for.

Graph analytics comes from graph theory and entails processing
data based on relationships that connect it. It’s something we do to
answer specific questions using existing data (e.g., for social net‐
work analysis) or to discover how the connections in that data
might evolve (e.g., for supply chain optimization). Graph queries,
visualization, and algorithms are tools we apply (often together),
with the results used directly for analysis.

Graph machine learning uses graph data and graph analytics output
to train machine learning (ML) models. Both graph data and graph
metrics (degree, centrality, even topology) can be used to generate
features to be learned by a ML model.

Graph data science is a multidisciplinary approach that incorporates
graph analytics and graph machine learning as a holistic way of
gaining insights from data.

This chapter covers the advantages of bringing discovery, graph data
analytics, and graph data science into the mix. It explores the capa‐
bilities of decisioning knowledge graphs, to drive better actions and
outcomes and highlights a number of enterprise-ready use cases.
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Data Discovery and Exploration
The first step in any analysis is to find the data we need. For exam‐
ple, in criminal investigations, a suspect, individual, or organization
is identified because connections in the data point to it in unusual
ways. In a telecoms network, a device that is the root cause of a fail‐
ure is identified because a surrounding constellation of working
devices that depend directly or indirectly on that devices themselves
report degradation in service. A group of fraudsters collaborating to
create synthetic identities can often be identified because their
shared means of identification forms rings in ways that would be
otherwise highly unlikely.

Knowledge graphs provide the organizing principles to connect dis‐
parate datasets and a contextual platform for reasoning over linked
information. Prime examples of this are POLE (Persons, Objects,
Locations, and Events) databases often applied to governmental/law
enforcement use cases or in IT systems management where failures
can be predicted or retrospectively analyzed using a knowledge
graph.

Leveraging the connections in data is transformative when sifting
through large volumes of information. In Chapter 3 for example, we
explained how the ICIJ makes sense of terabytes of leaked data. Sim‐
ilarly, NASA enables semantic searches over millions of documents
to shave years and many millions of dollars off projects in its space
program. Government agencies all over the world process countless
phone records, financial transactions, fingerprints, DNA, and court
records to fight crime and prevent terrorism. Financial institutions
are able to use data discovery to improve fiscal responsibility and
fight money laundering at scale.

The common thread among all these examples is that useful proper‐
ties and patterns in the data first have to be discovered. Some intu‐
ition and thought have to go into the design of an organizing
principle (such as a taxonomy), and from there the data can be
explored to discover its useful properties. When useful patterns are
discovered, they can be analyzed, used to train ML models, be writ‐
ten back to an actioning knowledge graph, or sent downstream to
other systems.
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The Predictive Power of Relationships
It’s worth noting at this point that beyond helping with discovery
and exploration, relationships are highly predictive of behavior. In
fact, researchers have found that even without demographic infor‐
mation like age, location, and socioeconomic status, they can be
highly accurate in predicting who will vote, smoke, or suffer obesity
based on one thing: social relationships. It’s not surprising that if we
have many friends who vote, we’re more likely to vote, or that if
we’re friends with smokers, we’d be more likely to smoke.

However, it is remarkable that a researcher can make this prediction
even more accurately based on our friends-of-friends behavior, not
one but two hops away from us. That is, the behavior of our friends-
of-friends, whom we may not know that well or at all, is more pre‐
dictive of our behavior than information that pertains only to us.

For more information on the science underlying social
graphs, see Connected by James Fowler and Nicholas
Christakis (Little, Brown and Company, 2009).

Despite their predictive power, most analytics and data science prac‐
tices ignore relationships because it has been historically challenging
to process them at scale. Consider trying to find similar customers
or products in a three-hop radius of an account. With nongraph
technology, you might be able to process this data, even if it is
slower than querying a knowledge graph. But what if you need to
scale such processing over a large graph of your customer base, then
distill useful information (e.g., for every pair of accounts in this
radius, calculate the number of accounts in common), and finally
transform the results into a format required for machine process‐
ing? It’s just not practical in a nongraph system. This explosion of
complexity quickly overwhelms the ability to perform processing
and hinders the use of “graphy” data for predictions to the ultimate
detriment of decision makers.

Instead of ignoring relationships, knowledge graphs incorporate
them into analytics and ML workflows. Graph analytics excels at
finding the unobvious because it can process patterns even when we
don’t exactly know what to look for, while graph-based ML can
predict how a graph might evolve. This is precisely what most data
scientists are trying to achieve!
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A performant knowledge graph makes it practical to incorporate
connections and network structures into data analytics and from
there to enrich ML models. For the business, this means better pre‐
dictions and better decisions using the data we already have.

The Decisioning Knowledge Graph
We call a knowledge graph used for analytics, ML, or data science a
decisioning knowledge graph because the aim is ultimately to
improve decisions made by human or software agents. A decision‐
ing knowledge graph must support analytics and data science work‐
flows from simple queries to ML as well as provide graph
visualizations.

Figure 4-1 illustrates the capabilities of a decisioning knowledge
graph. These capabilities may be used alone or combined with one
another, often in a pipeline.

Figure 4-1. Unique capabilities combined in a decisioning knowledge
graph

Queries
These are written by humans during an investigation and typi‐
cally produce human-readable results.
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Algorithms
While algorithms also produce human-readable results, they are
coded in advance of any particular investigation and are based
on well-understood principles from graph theory.

Embeddings
These are also defined in advance and use machine-learned for‐
mulas to produce machine-readable results.

Once we have results from queries, algorithms, and embeddings, we
can put them to further use. As we saw in Chapter 2, graph-based
visualization tools are helpful for exploring connections in graph
data, but we can also use these outputs as training data for ML
models.

Graph Queries
Most analysts start down the path of graph analytics with graph
queries, which are (usually) human crafted and human readable.
They’re typically used for real-time pattern matching when we know
the shape of the data we’re interested in. For example, in Figure 4-2
we’re looking for potential allies in a graph of enemies on the basis
of the concept, “the enemy of my enemy is my friend.” Once a
potential ally has been located, we create a FRIEND relationship.
Unlike data discovery, where we’re asking a specific question for
investigation, here we use the query results to feed subsequent
analyses.

Figure 4-2. Making friends with the enemy of my enemy.
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1 Although PageRank was developed by Google to understand the relative ranking of
Web pages, it’s actually named after its inventor, Larry Page.

With a graph database and a graph query language, these kinds of
graph-local patterns are computationally cheap and straightforward
to express.

Graph Algorithms
But what if we don’t know where to start the query or want to find
patterns anywhere in the graph? We call these operations graph-
global, and querying is not always the right way to tackle these chal‐
lenges. A graph-global problem is often an indication that we should
instead consider a graph algorithm.

For more comprehensive analysis, where we need to consider the
entire graph (or substantial parts of it), graph algorithms provide an
efficient and scalable way to produce results. We use them to achieve
a particular goal, like looking for popular paths or influential nodes.
For example, if we’re looking for the most influential person in a
social graph, we’d use the PageRank algorithm,1 which measures the
importance of a node in the graph relative to the others.

In Figure 4-3 we see a snapshot of part of a graph. Visually, we can
see that the node representing Rosa is the most connected, but that’s
an imprecise definition.

If we run the PageRank algorithm over the data in Figure 4-3, we
can see that Rosa has the highest PageRank score, indicating that
she’s more influential than other nodes in the data. We can use this
metadata in knowledge graphs by incorporating it as part of the
organizing principle, just like any other data item, to drive users
toward good decisions.
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Figure 4-3. Node importance via the PageRank algorithm

Graph algorithms excel at finding global patterns and trends, but
we’ll want to choose and tune the algorithms to suit our specific
questions. A decisioning knowledge graph should support a variety
of algorithms and allow us to customize for future growth.

Diving Deeper into Graph Algorithms
The most well-known graph algorithms fall into five classic
categories:

• Community detection for finding clusters or likely partitions
• Centrality for determining the importance of distinct nodes in

a network
• Similarity for evaluating how alike nodes are
• Heuristic link prediction for estimating the likelihood of nodes

forming a relationship
• Pathfinding for evaluating optimal paths and determining

route quality and availability

Graph Algorithms (O’Reilly, 2019) by Mark Needham and Amy E.
Hodler can help you understand how to use graph algorithms in
your domain.
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Graph Embeddings
Beyond just understanding data better, graph queries and algorithm
results can be used to train ML models, but what if you don’t know
what to query or which algorithm to use? Do you know if PageRank
or a different type of algorithm would be more or less predictive?
You could try them all and compare the results, but that would be
tedious.

Graph embeddings are a special type of algorithm that encodes the
topology of a graph (its nodes and relationships) into a structure
suitable for consumption by ML processes. We use these when we
know important data exists in the graph, but it’s unclear which pat‐
terns to look for and we’d like the ML pipeline to do the heavy lifting
of discovering patterns. Graph embeddings can be used in conjunc‐
tion with graph queries and algorithms to enrich ML input data to
provide additional features.

Embeddings encode a representation of what’s significant in our
graph for our specific problem and then translate that into a vector‐
ized format (as seen at the bottom of Figure 4-1). We humans can’t
readily understand the list of numbers it creates, but it’s precisely in
the format we can use to train ML models.

Some types of graph embeddings also learn a function
to represent our graph. We can apply that function to
new incoming data and predict where it fits in the
graph topology.

Graph embeddings are very useful because rather than running
multiple algorithms to describe specific aspects of our graph topol‐
ogy, we can use graph structure itself as a predictor. Graph embed‐
dings expand our predictive capabilities, but they typically take
longer to run and have more parameters to tune than other graph
algorithms. If we know what elements are predictive, we use queries
and algorithms for feature engineering in ML. If we don’t know what
is predictive, we use graph embeddings. Both are good ways to
improve decisioning graphs.
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ML Workflows for Graphs
Analyzing the output of graph queries and algorithms and using
them to improve ML is great, but we can also write results back to
enrich the graph. In doing so, those results become queryable and
processable in a virtuous cycle that feeds the next round of algorith‐
mic or ML analysis. Creating a closed loop within our decisioning
knowledge graph means we can start with a graph, learn what’s sig‐
nificant, and then predict things about new data coming in, such as
classifying someone as a probable fraudster, and write it back into
the graph. The knowledge graph is enriched by the cycle shown in
Figure 4-4.

Figure 4-4. A closed-loop graph ML workflow

Graph machine learning is often used for knowledge graph comple‐
tion to predict missing data and relationships. In-graph ML keeps
ML training inside the graph, which enables us to incorporate its
ML workflows into our knowledge graph for continuous updates as
new data is added.

It also avoids the need to create data integration pipelines and move
data between various systems when making graph-specific predic‐
tions. For example, using a graph-centered approach we can avoid
having to export similarity scores and embeddings from our
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2 TensorFlow is a free, open-source software library for ML.

knowledge graph into toolkits like TensorFlow2 to predict node cate‐
gories and then write back the results to update our knowledge
graph—all at high latency and systemic complexity. Instead, doing
this entirely within our knowledge graphs significantly streamlines
and accelerates the process.

We recommend automating some of the trickier tasks
like transforming data into a graph format, test/train
splitting of graph data, multiple model building, and
accuracy evaluation. If you have graph and ML exper‐
tise, you might be able to build a decisioning knowl‐
edge graph that includes and automates ML model
training for graphs. If not, consider a vendor or open-
source solution with in-graph ML capabilities.

Graph Visualization
Visualizing data, especially relationships, allows domain experts to
better explore connections and infer meaning. For knowledge
graphs, we need tools like those shown in Figure 2-3 to help visually
inspect raw data, understand analytics results, and share findings
with others.

Walking through relationships, expanding scenes, filtering views,
and following specific paths are natural ways to investigate graphs. A
visual representation of a graph needs to be dynamic and user cus‐
tomizable to support interactive exploration. In addition to direct
query support, graph visualizations need low-code/no-code options
and assistive search features, like type-ahead suggestions, to
empower a broader range of users.

Data scientists also benefit from visualizing algorithm and ML
results. With the level of abstraction raised visually, a data scientist
can focus on the necessary complexity of an experiment and not
become bogged down in accidental complexity. For example, our
tools can visualize PageRank scores as node sizes, node classifica‐
tions as icons, traversal cost as line thickness, and community
groups as colors. With these visual abstractions, the important
aspects of the underlying data are immediately apparent, where they
would be hidden in raw data. Once a data scientist is satisfied with
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their results, a graph visualization tool enables them to quickly
prototype and communicate findings with others, even where those
others are not experts in graph technology.

Decisioning Knowledge Graph Use Cases
There are many use cases for analytics, data science, and ML with
decisioning knowledge graphs. Here are a few:

• Finding and preventing fraud based on detecting communities of
like behavior, unusual transactions, or suspicious commonali‐
ties. Results are typically written into an actioning knowledge
graph to support online fraud detection or passed downstream
into a ML workflow such that better predictive models can be
built.

• Improving customer experience and patient outcomes by surfac‐
ing complex sequences of activities for journey analysis. Typi‐
cally, results are interpreted by domain experts who understand
the journey of the user and can spot anomalous data, usually
with help from visualization tools.

• Preventing churn by combining individual data with community
behavior and influential individuals in that network. Results are
often written back into an actioning knowledge graph so that
risky customers can be identified at points of contact. Results
are also used to improve ML models so that holistic churn pre‐
diction across the customer base can be improved.

• Forecasting supply chain needs using a holistic view of depen‐
dencies and identified bottlenecks. Results are written into the
actioning knowledge graph that underpins the supply chain sys‐
tem, enriching it so that the supply chain is more robust.

• Recommending products based on customer history, seasonality,
warehouse stock, and product influence on sales of other items.
Results are written into the actioning knowledge graph that sup‐
ports the product catalog.

• Eliminating duplicates and ambiguous entities in data based on
highly correlated attributes and actions. The output is typically
sent to downstream ML systems (e.g., graph neural networks)
for predictive analysis around whether claims to identity should
be linked. Output may also be used to train those downstream
systems.
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• Finding missing data using an existing data structure to predict
undocumented relationships and attributes. Often computed
data is written back into the actioning knowledge graph or sent
downstream to ML for further processing before being written
back into an actioning knowledge graph.

• What-if scenario planning and “next best action” recommenda‐
tions using alternative pathways and similarities, typically con‐
sumed by experts in the first instance and ultimately written
back to an actioning knowledge graph so that online systems
can have better “next best actions.”

Real-Time Decisioning
Real-time decisioning solutions require immediate analysis of cur‐
rent options before immediately matching them to the most appro‐
priate choice (i.e., making a recommendation). For instance, in
Chapter 2 we show how retail recommendations can be made in
real time based on a knowledge graph.

It’s important to understand that interactive speeds prohibit online
use of global algorithms and ML training. The computation cost
and latency to run large graph algorithms are simply too high to
run on a per-request basis. Instead, graph algorithms, data science,
and ML often operate on a different cadence to real-time queries.
The more expensive processing runs in the background, continu‐
ously enriching the actioning knowledge graph, while real-time
queries get better results over time as the underlying knowledge
graph improves.

Each of these use cases is valuable, and it’s possible that more than
one may apply to your business. What’s nice about these use cases is
that tooling already exists that can implement them. We don’t need
to invest in building such tools; we just need to get our data in a for‐
mat so that the tools can conveniently process it. Often this can be as
simple as storing it in a graph database. From here, we can incorpo‐
rate the knowledge graph into our business processes to help to
make better decisions.
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Boston Scientific’s Decisioning Graph
Boston Scientific is a global medical device company that develops
and manufactures a wide range of innovative diagnostic and treat‐
ment medical products, including pacemakers and artificial heart
valves. Health care practitioners have helped more than 30 million
patients around the world using the company’s products.

Boston Scientific has an integrated supply chain from raw materials
to complex devices that includes development, design, manufactur‐
ing, and sales. Predicting and preventing device failures early in the
process is crucial. However, the company had difficulty pinpointing
the root cause of defects, limiting its ability to prevent future
problems.

Using a decisioning graph, Boston Scientific was able to apply graph
analytics to their supply chain and consequently improve the relia‐
bility of their products. It started with a knowledge graph that
included parts, finished products, and failures, as seen in Figure 4-5.
The chosen organizing principles used an ontology to define a hier‐
archy of parts as ISSUED other parts to create assemblies that lead to
finished products. Then they add relationships of finished products
to events that RESULTS_IN failures. Using graph queries, Boston Sci‐
entific is able to quickly reveal subcomponents’ complex relation‐
ships and trace any failures to relevant parts.

The company was able to identify previously unknown vulnerabili‐
ties by adding graph algorithms to rank parts based on their prox‐
imity to failures and match other components based on similarity.
Since results can be automatically written back to their decisioning
knowledge graph, Boston Scientific continues to enhance its data
and improve product reliability across multiple collaborating teams.
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Figure 4-5. Illustrative example of a simple graph similar to Boston
Scientific’s data model

Better Predictions and More Breakthroughs
With a decisioning knowledge graph, we can answer otherwise diffi‐
cult questions based on nuanced relationships from large graphs.
Graph algorithms and in-graph ML make it possible to predict out‐
comes based on the connections between data points rather than
raw data alone. Combining both approaches can substantially
improve the quality of results obtained.

A decisioning knowledge graph is not used directly by online sys‐
tems but powers those online systems by enriching their underlying
knowledge graphs, either directly or as the result of a longer analyt‐
ics and ML workflow. The tools and patterns around a decisioning
knowledge graph open up a new possibilities for gaining insight
from data that has until recently only been accessible to researchers
and a very few advanced technology companies. A decisioning
knowledge graph commoditizes and democratizes a powerful set of
tools for widespread business use.
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CHAPTER 5

Contextual AI

The last few years have demonstrated impressive improvements in
AI predictive capabilities but with narrow application and some‐
times disturbing results. For AI to reach its full potential, we believe
it must incorporate wider contextual information from knowledge
graphs.

We think of context as the network surrounding a data point of
interest that is relevant to a specific AI system. Using knowledge
graphs with AI systems is the most effective way to achieve contex‐
tual AI, which incorporates neighboring information, is adaptive to
different situations, and is explainable to its users.

This chapter explains why AI needs the connected context of knowl‐
edge graphs and its benefits for more trustworthy data, higher accu‐
racy, and better reasoning. We explain how this can be achieved
with some straightforward knowledge graph patterns and showcase
some successful systems where graphs and AI have been combined.

Why AI Needs Context
AI is intended to create systems for making probabilistic decisions,
similar to the way humans make decisions. Humans make thou‐
sands of decisions every day, often without conscious thought, by
matching observed patterns against contextualized experiences.

A person who says, “You saw her duck,” may be asking you directly
whether you saw a woman get out of the way of a flying object. But
perhaps they are stating that you or someone named Yu (于  in
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Chinese) saw a friend’s pet bird or are telling them to help butcher
poultry for dinner. It’s hard to know the meaning of this text
without context. Likewise, if we had to meticulously review the
inputs in isolation to interpret the phrase in Figure 5-1, let alone all
the decision paths we make every day, the complexity would para‐
lyze us.

Figure 5-1. Linked context used to interpret the phrase “you saw her
duck”

Instead, humans deal with ambiguities by using context to deter‐
mine what’s significant in a situation and extend that learning across
domains to understand new conditions. Once we learn a compli‐
cated or nuanced task like driving a car, we can apply that to other
scenarios, such as different vehicle types. We are masters of abstrac‐
tion and of recycling lessons learned.
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Today’s AI is not very able to generalize. Instead, it is effective for
specific, well-defined tasks. It struggles with ambiguity and mostly
lacks transfer learning that humans take for granted. For AI to make
humanlike decisions that are more situationally appropriate, it needs
to incorporate context.

Explainability
Predictions made by AI must be interpretable by experts and ulti‐
mately explainable to the public if AI systems are to expand their
utility into more sectors. In the absence of understanding how deci‐
sions were reached, citizens may reject recommendations or out‐
comes that are counterintuitive. In systems where human safety is
paramount, such as medical imaging, explainability becomes a crit‐
ical aspect of running a system that will not harm people. Explaina‐
bility isn’t a nice-to-have—it is a required component of AI, and
being context driven improves explainability.

Graph technology is the best way to maintain the context for
explainability. It offers a human-friendly way to evaluate connected
data, enabling human overseers to better map and visualize AI deci‐
sion paths. By better understanding the lineage of data (context of
where it came from, cleansing methods used, and so forth), we can
better evaluate and explain its influence on predictions made by the
AI model.

Contextual information from a knowledge graph helps an AI solu‐
tion flex by enabling it to learn and abstract guiding principles
across scenarios. For example, we might train a semiautonomous
car to slow down in rainy weather or near-freezing temperatures.
We can use pretrained knowledge about this situation, including
context, and then transfer that learning, which reduces the amount
of data and training required. For example, in Figure 5-2 we want
the AI to apply contextual information such as an approaching
bridge or unusual driver behavior and decide that its response
should be similar to wet weather.
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Figure 5-2. Example of traditional ML versus transfer learning for a
semiautonomous vehicle

AI systems with many-layered and interacting relationships, like
smart homes, also need a considerable amount of context to
respond appropriately to different situations. Even a simple request
like “turn off my daughter’s lights” requires a system to understand
contextual information, as shown in Figure 5-3. Specifically, it
requires knowledge of who’s speaking, which person is your daugh‐
ter, which lights belong to her, whether the lights are on now, and so
on.

Figure 5-3. Simplified graph data model for lights in one area of a
smart home
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1 The Royal Statistical Society published an Oakland, California, simulation analysis of a
ML approach often used for predictive policing and found, “…that rather than correct‐
ing for the apparent biases in the police data, the model reinforces these biases.”

The point is that AI benefits greatly from context to enable probabil‐
istic decision making for real-time answers, handle adjacent scenar‐
ios for broader applicability, and be maximally relevant to a given
situation. But all systems, including AI, are only as good as their
inputs. Garbage in means garbage out, even if AI produces that
garbage. To ensure that we use good-quality data to build AI sys‐
tems, we need to understand that data’s provenance.

Data Provenance and Tracking for AI Systems
Knowing the provenance of data is essential for trustworthy AI.
Although this seems like a straightforward data lineage task as dis‐
cussed in Chapter 3, we also need to track adjacent information like
who collected the data, how it was transformed, who had access to
it, and so on.

As a cautionary example, some predictive policing
models have used decades-old arrest and prosecution
data despite inherent racism in the data. Simulations
have illustrated the tendency of such approaches to
promote a cycle of increased policing and arrests.1
Understanding our data’s backstory requires tracking
context.

Knowledge graphs are well suited for bringing together information
and tracking how information has changed as it passes from system
to system and person to person. In the course of their duties, data
engineers may extract data used in AI from various systems, more
data may be purchased from third-party providers, and all of it may
be transformed and mixed together by multiple processes even
before it comes to rest in a knowledge graph. Each stage of acquir‐
ing, cleansing, and curating data may inject errors and biases into
the system.

Tracking data lineage with even a simple model as in Figure 5-4
gives data engineers another lens into the suitability and quality of
the data for the problem at hand. Automatically tracking such
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provenance metadata (as a graph, of course) allows us to efficiently
monitor the system to ensure it is operating within acceptable
parameters. For example, we can use the graph to discover that the
team cleansing the data was diverse or otherwise relatively free from
bias. It also allows us to understand the assumptions they made
when balancing data for statistical representation.

Figure 5-4. Simple data lineage model for tracking changes

Tracking knowledge graphs helps with audit trail and existing com‐
pliance requirements too. Although AI norms and regulations are
still evolving, we need to have systems to manage an increasing
amount of this complex peripheral information.

As an important case in point, recent judgments
against using biometric data without permission have
made it very clear that the industry needs to verify
contextual information in order to operate some AI
systems. We need to be ready for provenance to be a
prerequisite for owning and operating compliant AI
systems. See, for example, this article from The Verge.

We believe that transparent data sourcing and provenance are essen‐
tial for trustworthy AI. That starts with internal business guidelines
and processes but also requires technology to support better data
lineage. Knowledge graphs allow us to employ organizing principles
based on linking where the data came from and how data has
changed. An AI system that lacks such traceability has no way of
verifying any claims it makes of its behavior and, by definition, can‐
not be trusted. To earn that trust, we must be able to trace.

But having reliable AI results doesn’t end with the data. We also have
to understand the ML techniques and processes themselves.
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Diversifying ML Data
Knowledge graphs enable us to employ context to help solve some
of the most difficult issues in training data: small data sizes and the
lack of data variety. Since training data is often scarce, graphs can
help squeeze out every possible feature, including relationships and
topological information. This might require a change in mindset to
diversify the type of data regularly included in ML.

Suppose you’re not using a knowledge graph. In that case, the ten‐
dency is to demand more training data, typically of the same type of
information you’re already using. Additional data isn’t always readily
available or affordable. Even if we can obtain more data, we need to
be careful of diminishing returns and overfitting. Overfitting
involves heavily training predictive models on specific data or fea‐
tures, resulting in increased accuracy scores for that training data
but a decline when used on new data. Broadening the data types
used in ML, like adding relationships, is a simple tactic to guard
against overfitting and expands results for broader scenarios.

Contextual information describes how entities relate to one another
and events instead of describing static elements about individual
entities, and context is a fundamentally different type of informa‐
tion. When building AI systems, we can extract context from graphs
for more variety in training and improve predictions.

Imagine we’re trying to improve patient outcomes for a complex dis‐
ease like diabetes. We can train a predictive model on things like
current medications, test results, and patient demographics. Perhaps
our model tells us which medications by age and gender predict
good versus poor outcomes, and it’s 98% accurate according to our
training and testing data.

However, in practice we find these predictions have a high false-
positive rate. What factors could be missing? We could try to boost
our results by simply broadening the number of features used in the
model training, but that can lead to overfitting and still leaves out
the context in which this disease occurs. Since complex diseases
develop over time, the sequence of diagnosis and medications might
be influential. Or perhaps contextual information like lifestyle might
have a bigger impact than we expected.

Using graphs, we can capture the path of events over time down to
each doctor visit, test result, diagnosis, and medication change.
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Figure 5-5 illustrates a patient journey for diabetes, a very complex
disease, considering only a 90-day window around the diagnosis.
The paths in this relatively small journey quickly become unwieldy.
It’s clear that we need more advanced tools when we add multidi‐
mensional context. To incorporate context into an AI system, we
can use graph embedding to codify the topology of the journey
paths and make predictions based on all the surrounding informa‐
tion we have in context. We can also look at various predictive
aspects, like the different professionals involved, and see how that
might have a strong influence on outcomes.

Figure 5-5. Example patient journey of diagnosis using a graph to cap‐
ture paths (source: Neo4j demonstration software)

Adding relationship and structural information to ML is one of the
best ways to add contextual information and diversify the type of
data used in AI systems. Once we have added context to the founda‐
tion of AI systems for data assurance and better ML results, we
should turn to how we can further leverage context to improve ML
processes and operations.

Better ML Processes
All of these graph-AI systems produce value only when they’re in
production. The practice of MLOps (machine learning plus opera‐
tions) has grown up around managing the life cycle of AI systems,
but emphasizes the tasks of taking an ML model into production.
MLOps uses high levels of automation to ensure the quality of pro‐
duction ML and business and regulatory compliance.

It’s fitting that since graphs are a natural underlay for ML, they are
also a natural underlay for MLOps. In fact, a knowledge graph
makes an excellent AI system-of-truth, which gives a complete
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2 Using graphs to reduce predictive drift has been demonstrated in Jiaoyan Chen et al.,
“Knowledge Graph Embeddings for Dealing with Concept Drift in Machine Learning,”
Journal of Web Semantics 67 (February 2021).

picture of the AI data. We can use a knowledge graph to collect and
dynamically track all the building blocks of an AI system: train/test
data, ML models, test results, production instances, and so on. With
this system-of-truth, a data scientist can use an existing predictive
model as a template for building a new model, quickly identify the
building blocks to change, and automate sourcing the building
blocks they intend to keep.

Feature Tracking for AI Systems
Data scientists can use a system-of-truth graph to manage even
granular building elements such as where and what kind of predic‐
tive features are in different ML models. Tracking feature usage
becomes extremely important if a particular data element is present
in multiple forms or datasets used for ML. For example, if our fea‐
ture engineering uses zip code and county data to create two pre‐
dictive features, we now have heavily weighted the importance of
location in our ML model. In this case, we’d easily be able to iden‐
tify that two location features were used in the same model by refer‐
encing our system-of-truth that tracked feature usage and type.

Another area of concern for MLOps is how quickly predictions
degrade over time, called predictive or concept drift. Data scientists
train ML models on historical data to make predictions on new,
unseen data. Since there is always new data coming in, the correla‐
tion of the new data to your predictions tends to become less accu‐
rate as time passes (or there is a major event like a pandemic).
Interestingly, graph-native predictive models, discussed in Chap‐
ter 4, appear to have less predictive drift over time than traditional
ML models.2

This characteristic is likely due to the use of structural information
(relationships). Data structures don’t typically change as quickly as
discrete data points do. Consequently, these predictive models
appear to have a longer shelf life with less retraining required,
meaning that operations teams can use their decisioning knowledge
graphs to create accurate models that stay more accurate longer.
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Finally, we need to consider how and where we should keep the
human in the loop, allowing a human user to change the outcome of
an event or process. Although there are many ways to incorporate
human interaction, knowledge graphs can help early in the process
when an ML model has been developed but not yet put into produc‐
tion. At this point in the process, we want to understand if the
model is making the correct predictions. An expert might test
hypotheses by exploring similar communities in the knowledge
graph or debug unexpected results by drilling into hierarchies and
dependencies with an organized graph. In this context, graphs pro‐
vide contextual information for investigations and counterfactual
analysis by domain experts.

Improving AI Reasoning
Organizations are using knowledge graphs to improve the reasoning
skills of AI itself by adding context to the decision process. Many AI
systems employ heuristic decision making, which uses a strategy to
find the most likely correct decision to avoid the high cost (time) of
processing lots of information. We can think of those heuristics as
shortcuts or rules of thumb that we would use to make fast deci‐
sions. For example, our hunter-gatherer ancestors would not have
deliberated long about a rustle in the bushes. Instead, they would
have quickly reacted to the situation as either a threat or opportu‐
nity based on heuristics like time of day and location.

Knowledge graphs help AI make better decisions by adding contex‐
tual information to their heuristic strategies. In a chatbot example,
our AI might have natural language understanding of words and
phrases. But to provide the best experience, we need to infer intent
based on short interactions with the user and update assumptions as
a dialogue progresses. In Figure 5-6 we can see how a chat layer, ML
models, and a knowledge layer can work together for continual
updates in a recommended architecture.
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3 Image is adapted from SoYeop Yoo and OkRan Jeong, “An Intelligent Chatbot Utilizing
BERT Model and Knowledge Graph”, Journal of Society for e-Business Studies 24, no. 3
(2019).

Figure 5-6. Chatbot system architecture proposed by researchers3

Meandering chatbot dialogue is frustrating for end users. To address
the need for progressive understanding, LPL Financial used a
knowledge graph to power its financial chatbot based on a model
simliar to Figure 5-7. After training its model to identify keywords
in documentation, the company created metatags in its knowledge
graph as its organizing principle, effectively providing conversa‐
tional shortcuts through the graph. The company uses graph analyt‐
ics to look for similar keywords and clusters of terminology to infer
missing relationships and hierarchies. With this information, LPL
Financial created a dynamic subgraph to better represent the rela‐
tionships between questions and answers.
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Figure 5-7. Representation of the LPL Financial subgraph used for a
financial chatbot

Figure 5-7 illustrates the graph data model with the addition of clar‐
ification steps that map AI questions to categories of options that are
valid for particular answers. LPL Financial reduced the amount of
detail needed in each step of the dialogue as well as paired down the
number of options the chatbot had as it progressed. As the AI sys‐
tem was used, the actioning knowledge graph was further updated
by weighting relationships based on how frequently they led to cor‐
rect responses. We can see how using a knowledge graph to boost
chatbots means faster answers and a more natural experience.
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Near-Future Breakthroughs
In a paper from DeepMind, Google Brain, MIT, and the University
of Edinburgh, “Relational inductive biases, deep learning, and
graph networks” (2018), researchers advocate for using a graph net‐
work, which “generalizes and extends various approaches for neural
networks that operate on graphs, and provides a straightforward
interface for manipulating structured knowledge and producing
structured behaviors.” These researchers believe that graphs have an
excellent ability to generalize about data structures, which broadens
the applicability and sophistication of AI systems.

The graph-network approach takes a graph as an input, performs
learning computations while preserving transient states, and then
returns a graph. This process allows the domain expert to review
and validate the learning path that leads to more explainable pre‐
dictions.

Using graph networks also enables whole-graph learning and multi‐
task predictions that reduce data requirements and automate the
identification of predictive features. This means richer and more
accurate predictions that use fewer data and training cycles.

The research concluded that graphs offer the next major advance‐
ment in ML, and we’re starting to see the groundwork of this
research in production. In fact, the graph embeddings and graph-
native ML covered in Chapter 4 are required first steps to build
such graph networks.

The Big Picture
Both AI and knowledge graphs are driving the next wave of break‐
throughs and competitive advantage for organizations. But the com‐
bination of AI and knowledge graphs is where we are heading as a
industry. Those companies that use them together successfully—to
reduce the risk of fraud, improve patient outcomes, make better
investment decisions, or increase employee productivity—will pros‐
per in a world where good data directly influences good systems.
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CHAPTER 6

Business Digital Twin

A digital twin is a software version of a real world artifact or process.
The concept comes from manufacturing where a digitized version of
some component or machine can be subjected to a barrage of virtual
testing that would be too hazardous, destructive, expensive, or
impractical to perform on the real physical entity. Digital twins are
high-fidelity models of the real world and are kept synchronized
with their counterparts as new data becomes available.

In the modern enterprise, digital twins are no longer just facsimiles
of physical artifacts. Contemporary digital twins can include organi‐
zations, processes, and even people. They still consume data from
the physical environments of their real world counterparts, whether
that’s environmental data from Internet of Things (IoT) sensors,
packet loss statistics from a network router, or performance and key
performance indicator (KPI) data for projects or departments. That
data helps the digital twin maintain accuracy over time.

Like its manufacturing counterpart, the enterprise digital twin
allows us to reason about the real world and perform all manner of
investigations, hypotheses, and abuses to understand how a real sys‐
tem might react. Digital twins can also uncover variances between
the as-designed processes and as-implemented processes, surfacing
any divergence quickly.

With an enterprise digital twin we can model IT network operations
(to look for points of failure or insecurity), optimize heating and
cooling for facilities (often to drive down cost), and ensure that
logistics for raw materials and processed goods are harmonious. But
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we can also support business-process optimization to improve the
bottom line, look for weaknesses in supply chains to test the resil‐
ience of the business when subjected to external shocks, perform
succession planning for staffing roles to ensure business continuity,
and perform a myriad of other tasks that perhaps only exist infor‐
mally today.

The enterprise digital twin provides key values:

• A map of the business or a smaller business unit (departmental)
or layer (such as IT) of the business

• Real-time understanding of the business
• A way of exposing the model to pressures to see how it reacts

With a digital twin acting as a smart map, it is possible to create a
rich virtual view of the business that closely matches reality. Our
organizing principle follows accordingly: the elements in the real
world and how they interrelate are captured in high fidelity as a
property graph, and the constraints and rules that govern the real
world become constraints and queries for that property graph.

Digital Twins for Secure Systems
In an increasingly digitized world, the dependability of IT systems is
critical to the execution of most businesses. But IT is a complicated
field. Even when things are going well, upgrades and changes to
software can ripple through a system, causing unintended conse‐
quences. But systems can fail especially badly when servers, net‐
works, power supplies, or even data center air conditioning fails.

Such entropic failures are an everyday part of a modern enterprise
operating environment, but they are not the only kinds of failures.
IT systems are targets for cybercriminals who would like to steal
data, disrupt commerce, or hold systems hostage. These malicious
failures are as much part of the modern IT landscape as failures due
to entropy.

A digital twin can help us understand and manage both scenarios, as
you can see in Figure 6-1.
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Figure 6-1. A simple IT network

In Figure 6-1 we see a computer network arranged in a classic tiered
model with public-facing servers providing some API or Web ser‐
vice, communicating (via a firewall) with some middle-tier servers
providing application logic, which in turn communicates (again via
a firewall) with servers in the data tier. The connections between the
servers form a graph (of course!), and the links show legal connec‐
tions between machines supporting some application. Strictly, the
intent is that a server in one tier should only talk to a server in an
adjoining tier using the prescribed protocols, such as TCP or HTTP.
Any deviation, like skipping a tier or intratier communications,
might indicate a security breach.

The organizing principle for this graph is based on the property
graph model, but where a path for a given interaction is only per‐
mitted to form between a single Web, App, and Data node, with the
correct protocol. Any deviation from this, as shown in Figure 6-2,
should be considered suspicious and must be raised as an issue
rapidly.

In Figure 6-2 we see one server in the Web tier communicate
directly with another host in the Data tier, which contravenes our
organizing principle. Discovering this violation is trivial when we
capture metrics from the system as a knowledge graph. Our organiz‐
ing principle insists on a path length of four from Web tier through
App tier into the Data tier and then back up the stack. Any connec‐
tivity that violates this constraint is suspect and can be quickly
flagged.
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1 We ignore the multi-data-center or multiregion deployment for clarity.

Figure 6-2. An obvious illegal path in the network, and a possible
intrusion

Advanced Patterns
There are many ways a system can be compromised and, accord‐
ingly, there are many paths through the system we’d like to prohibit.
In a real system, we would likely map all ports and protocols
between systems, comparing them to our architecture as intended
(the organizing principle). We might also add in human operators
and their social patterns so that we can understand the extended
attack surface (compromised employees included) and rapidly
know who’s best placed to respond with either human intervention
or automation. By rapidly discovering illegal paths and deviations
in the graph representing the system, we uncover patterns of possi‐
ble misbehavior and can address them quickly.

In reality, the world isn’t so separated into such neat layers. The
computer servers that run this system are probably located near one
another,1 in the same data centers and possibly even in the same
rack, or as virtual machines on the same physical host. This means
they have things in common like switches, routers, cabinets, power
supplies, and cooling, to name but a few. Knowing this information,
we understand that a brownout causing an air conditioner to halt
can also cause disruption for a user thousands of miles away run‐
ning an app on their phone. And if we understand it, perhaps a
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malicious actor understands it too. Therefore, that’s the best part of
our system to attack rather than the usually well-defended servers!

Of course this is speculation, and you might speculate about many
other ways that this system could thrive or fail. That spark of curios‐
ity drives experiments, but the engine for those experiments is the
knowledge graph that underpins the digital twin, all driven by data
from the systems themselves.

Bernard Marr writing in Forbes Magazine quotes NASA’s John Vick‐
ers as saying, “The ultimate vision for the digital twin is to create,
test and build our equipment in a virtual environment.” The quote
continues: “Only when we get it to where it performs to our require‐
ments do we physically manufacture it. We then want that physical
build to tie back to its digital twin through sensors so that the digital
twin contains all the information that we could have by inspecting
the physical build.”

Fortunately, in the case of digital twins for IT systems, bringing
together systems metrics is a straightforward task, as Figure 6-3
shows. Most computer systems already export operational metrics
and alerts, which can be conveniently integrated into the digital
twin. LendingClub’s MacGyver platform for managing hundreds of
microservices and infrastructure is a good example of integrating
system metrics into a real-time graph for a digital twin. Done well,
the digital twin can be an up-to-date source of activity, a historical
view on how the system has developed, and a place where hypothe‐
ses can be robustly tested.

Figure 6-3. Creating the digital twin from data
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But intrusions aren’t the only use case for this kind of knowledge
graph. Using the digital twin, a system operator can locate possibly
faulty equipment or configurations by finding where paths intersect.
This is useful because it ties together disparate users’ error reports
and enables them to be placed in context so they can be traced to a
common fault, such as a flaky network switch or failing power sup‐
ply. Furthermore, system architects can run what-if scenarios to see
how failures will propagate through the network and use the digital
twin to reduce the blast radius of any failures as well as any single
points of failure, especially the ones that are not obvious to human
eyes. Security professionals can probe the model to see how an
attacker might compromise it, with a view to creating a minimal
spanning tree of a subgraph (the shortest or cheapest path encom‐
passing all of the target graph) to determine the logical cost for an
attacker to compromise it. Finally, we can also apply the analytics
techniques presented in Chapter 4, so software can surface new or
unusual patterns of interest to operators, giving the defenders an
automated boost in the arms race against attackers.

Digital Twin for the Win!
The examples we’ve shown in this chapter come from just one cor‐
ner of a modern enterprise. IT is often an easy candidate for digital
twinning. The IT department has the expertise to implement a digi‐
tal twin easily, and IT systems produce lots of metrics that are
straightforward to gather. Moreover, the IT systems themselves are
often complex and sophisticated enough for the return on invest‐
ment in digital twins to be high.

But digital twins aren’t just for IT. We’ve seen plenty of examples of
digital twins being used across disparate business domains:

Wind turbine predictive maintenance
By understanding the ebbs and flows of the power network, the
seasonality and daily weather conditions, and the electrical and
financial ripple effects of shutting down parts of the network
(which may be continental scale), engineers are able to cost-
effectively stop wind turbines for maintenance while keeping
the grid balanced and ensuring minimal revenue losses.

Heating and cooling maintenance
By understanding the mechanical heating and cooling systems
for a building or campus and the prevailing weather conditions,
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engineers can select times for preventative maintenance with
low impact on the facilities. Moreover, the digital twin can high‐
light opportunities for preventative maintenance by aggregating
signals from the network that might be suggestive of future fail‐
ure that can be fixed more cheaply in the present.

Supply chain performance management
Businesses are complex entities with intricate, often interna‐
tional, supply chains. To understand how a typhoon in the Phil‐
ippines affects the share price of a NASDAQ-listed technology
company, analysts follow the network of how that company and
its suppliers are interconnected. If a fabrication plant in
typhoon-hit Manila is closed for weeks, then production of the
final electronic consumer goods will be hit, and the lower vol‐
umes may lead to lower stock prices. Good businesses use their
digital twins to not only find scenarios like this with poor out‐
comes but also evolve their systems and plans to try to avoid
such impacts. A similar pattern can be used with power net‐
works, incorporating long-distance transmission, renewables,
and pricing.

Transport networks
Integrated transport planning has many variables: people, cars,
trains, buses, the weather, delays, and more. Planners model the
network as a digital twin to both respond to real-time opera‐
tions and determine the best times to replace rails, dig up roads,
or allow special events to occur. The digital twin is so useful in
this case because common sense isn’t sufficient. In such a large
and diverse network, unexpected consequences can multiply
and chaotically ripple through the system. A digital twin pro‐
vides the tool for reasoning about and managing such complex‐
ity, especially when it is supported by graph algorithms and
graph machine learning ahead of implementing any real world
changes.

Digital twins aren’t for everyone. If your business is small or the
number of network permutations is manageable, then a digital twin
might be overkill. But as businesses grow, the technique becomes
increasingly valuable. If you often find yourself blindsided by
change, that could be an indication that a digital twin would help
you.
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CHAPTER 7

The Way Forward

Data is one of a modern business’ best assets. The irony is that as
data volumes have grown, wrangling with—let alone capitalizing
upon—data has become a struggle for many. Knowledge graphs are
a tool that we can use to restore sanity to data by imposing an
organizing principle to make data smarter. Through the organizing
principle, businesses can reason about their data and bring together
silos of disjointed information to form a consistent basis for busi‐
ness activities.

For each of us in business, there’s a role to play. Business leaders
must champion their data as one of their most strategic assets and
boost efforts to increase its volume and usefulness, while data pro‐
fessionals carry the bulk of the workload in turning strategy into
reality.

Governance and compliance teams will seek to understand the
provenance and logistics of data through the enterprise and ensure
that it is used compliantly. They will drive automation over the
knowledge graph to achieve this goal. Analytics teams will find new
ways to extract insights from data. They will become adept at build‐
ing and using analytics tools and ML techniques to make the smart
data in knowledge graphs work as hard as possible. Digital teams
will create new business and revenue opportunities bottom-up by
using knowledge graphs to support myriad higher-level services.

Throughout this book, we’ve shown how knowledge graphs help
businesses harness connected data to drive business value. We’ve
shown how this can be done without high-cost, high-risk, rip-and-
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replace technical projects. Instead, we’ve shown that knowledge
graphs can be deployed as a nondisruptive technology sitting along‐
side existing systems while simultaneously enhancing their utility
and value.

The construction of knowledge graphs is more bazaar than cathe‐
dral. You don’t need grand designs to get started. In fact, we believe
that a disciplined, iterative approach is superior in many regards. So
start small, and solve a single important problem first.

More Resources for Getting Started
• Neo4j’s knowledge graph web page with whitepapers and case

studies to help you understand how other enterprises have
thrived with knowledge graphs

• Turing Institute’s knowledge graph interest group facilitates
research discussions with an emphasis on semantics and onto‐
logical reasoning

• Claudio Gutierrez and Juan Sequeda’s article on the history of
knowledge graphs

• Jésus Barrasa’s guide to ontologies, inferencing, and integration
• A complete knowledge graph system, with source data, from

the COVID-19 community’s biomedical knowledge graph to
help combat COVID-19

When you’ve shown value with your first project, move onto the
next and be prepared to refactor some of the data. Knowledge
graphs are flexible, so such refactorings are not to be feared—they
are part and parcel of working with a living, valuable system. As you
find you need more tooling (e.g., support for ontologies or ontologi‐
cal languages and tooling), bring it into scope but only as much as
you need to solve the immediate problems.

Despite the years of academic research that underpin the approach,
knowledge graphs are new to many of us. We recommend that you
make best use of communities of practice, vendors, and subject mat‐
ter experts to get off the ground. Even though you may not need it,
your confidence will be bolstered in those critical early days.
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