
Understanding Neo4j Scalability

David Montag

January 2013

Understanding Neo4j Scalability
Scalability means different things to different people. Common traits associated include:

1. Redundancy in the face of server failures, both for the data and for the opera-
tional service

2. Managing increasing read load

3. Managing increasing data set size

4. Managing increasing write load

The Neo4j scalability package is known as high availability, or HA. It primarily enables
three things:

• Full data redundancy

• Service fault tolerance

• Linear read scalability

These features clearly address the first two scalability traits — redundancy and read
throughput. We will first talk about exactly how Neo4j addresses these. Then we will
discuss how to put HA to work addressing the remaining traits — managing growing
datasets and increasing amounts of write load.

Lastly we will discuss a few common configurations of HA beyond the single main clus-
ter, including:

• Online backups when the cluster is running

• Global cluster for data locality

• Disaster recovery for data center redundancy

• Reporting instances for ad-hoc reporting

Neo Techno logy
 1
 Unders t and ing Neo4 j S ca l ab i l i t y

Architecture

Neo4j high availability (HA) uses a master-slave cluster architecture, as shown here:

As the diagram illustrates, there are two parts to each Neo4j instance. One part is the
database itself, and the other is the cluster management component. The cluster man-
agement component continuously stays in sync with all instances in the cluster, keeping
track of any instances joining or leaving. When a master election becomes necessary, the
cluster management component ensures that a new master is consistently elected. The
database layer manages the rest of the system.

The Neo4j cluster performs automatic master election. Slave instances pull transactional
updates of data from the master. As such, all write operations are coordinated by the
master. It is still possible to write via slaves, but the slave will still make sure to perform
the write operation synchronously with the master, behind the scenes. Therefore, when
it comes to write performance, it is faster to write directly to the master than writing via
a slave.

The astute reader will have realized that the write capacity of the cluster is constrained
to that of the master. This is a correct observation, and relates to the fourth trait associ-

Neo Techno logy
 2
 Unders t and ing Neo4 j S ca l ab i l i t y

Load balancer

Neo4j

———————
Cluster

Management

Neo4j

———————
Cluster

Management

Neo4j

———————
Cluster

Management

Master SlaveSlave

ated with scalability — managing increasing write load. This is something we will cover
later in this paper.

Redundancy

In a Neo4j HA cluster, the full graph is replicated to each instance in the cluster. This
means that the full dataset is replicated across the entire cluster, to each server. Regard-
less of the number of instances that fail, all the data is kept safe as long as one instance
remains available. A consequence of this is that all data needs to fit within the capacity
of a single Neo4j instance.

A single instance of Neo4j can house at most 34 billion nodes, 34 billion relationships,
and 68 billion properties, in total. Businesses like Google obviously push these limits,
but in general, this does not pose a limitation in practice. It is also important to under-
stand that these limits were chosen purely as a storage optimization, and do not indi-
cate any particular shortcoming of the product. They are easily, and are in fact being,
increased.

Neo4j HA requires a quorum in order to serve write load. What this means is that a
strict majority of the servers in the cluster need to be online in order for the cluster to
accept write operations. For instance, three out of six servers will not do, it must be
strictly more than half. This way, the Neo4j database service can continue to operate de-
spite server outages. If enough servers are not available to form a quorum, the cluster
will degrade into read-only operation until a quorum can be established.

Scaling Read Throughput

Although write operations are performed in unison with the elected master, read opera-
tions can be done locally on each slave. This means that the read capacity of the HA
cluster increases linearly with the number of servers.

For example, if a three-instance cluster is operating at maximum capacity, serving 300
read requests per second, then adding a fourth instance would increase the capacity to
400 read requests per second.

Neo Techno logy
 3
 Unders t and ing Neo4 j S ca l ab i l i t y

Managing Large Datasets

A key trait of a graph database is the so-called index-free adjacency property. This
means that a graph database can find the neighbors of any given node without having
to consider the full set of relationships in the graph. A result of this is that, as dataset
size increases, the time it takes to get the relationships off any given node stays con-
stant. In contrast, the performance of a relational database is directly tied to the total
number of rows in the table being queried. As the number of rows increases, perform-
ance degrades, regardless of index use.

Obviously this does not hold true for any kind of growth. At some point, Neo4j will hit
resource constraints, such as limits in the amount of RAM available. At this point, per-
formance will decrease when calculated across random requests, due to cache swap-
ping. To address this, Neo4j makes use of a concept known as cache-based sharding.

Cache-based sharding is a very simple concept. The only thing it does is mandate con-
sistent request routing. For instance, requests for user A are always sent to server 1,
while requests for user B are always sent to server 2, and so on. The key assumption is
that requests for user A typically touch parts of the graph around user A, such has his or
her friends, preferences, likes, and so on. This means that the neighborhood of the
graph around user A will be cached on server 1, while the neighborhood around user B
will be cached on server 2. By employing consistent routing of requests, the caches of all
servers in the HA cluster can be utilized maximally.

As outlined earlier, each server holds the full dataset. With cache-based sharding, each
server caches a separate part of the graph, simply due to the way requests are routed.
There will always be some overlap between the caches on different servers, but in gen-
eral the strategy is highly effective for managing a large graph that does not fit in RAM.

Managing High Write Load

Neo4j HA makes use of a single master to coordinate all write operations, and is thus
limited to the write throughput of a single machine. Despite this, write throughput can
still be very high.

Neo Techno logy
 4
 Unders t and ing Neo4 j S ca l ab i l i t y

The first important thing to realize is that very few scenarios actually deal with sus-
tained high write load. In the vast majority of cases, load is bursty with periods of high
load and periods of silence or lower load. By introducing a queue for writes, a steady
manageable stream of write operations can be serviced by the cluster. Queuing solu-
tions have been widely successful in regulating load for backend systems. This can also
introduce a number of desirable traits in a system, such as being able to batch write op-
erations, thereby dramatically increasing performance, as well as having the ability to
pause write operations without turning requests down during short periods of mainte-
nance.

For exceptionally high write loads, the performance bottom line can easily be brought
up by vertical scaling. Neo Technology actively supports customers operating on SSD
drives such as Fusion-io, achieving exceptional write load and easily sustaining a rap-
idly growing business with plenty of capacity to spare.

Sharding Graphs

Today, many popular databases offer so-called sharding solutions. These function by
partitioning the data across a number of servers. Many people opt for key-value or
document databases for these exact reasons. A key thing to understand though, is that
these solutions only store individual records. They are fundamentally unable to natively
represent and query connections between records, and thus do not support things like
referential integrity. Graph databases, spearheaded by Neo4j, are becoming the industry
norm for the storage of any connected data.

The mathematical problem of optimally partitioning a graph across a set of servers is
near-impossible (NP complete) to do for large graphs. Thus, this is a very hard problem
to solve in a good way. Neo Technology is working on an offering of a partitioned flavor
of Neo4j, currently set for release early 2014, subject to change of course. Customers
looking to scale their business into the ultra-large graph space over the next few years
can rest assured that Neo Technology will be accommodating them down the road.

Neo Techno logy
 5
 Unders t and ing Neo4 j S ca l ab i l i t y

Common HA Configurations

In enterprise settings, there are usually operational needs beyond what a single cluster
can offer. All of the following strategies can be combined freely.

Online backups when the cluster is running

Today there is not a single successful business that operates without backups of their
mission-critical data. Neo4j supports both full and incremental backups from running
clusters.

Global cluster for data locality

For most online businesses, providing a fast and reliable service is paramount. Latency
needs to be low, regardless of where a request is served. In order to serve a global audi-
ence, Neo4j can be configured to run as a global cluster. It operates by extending the
main cluster with slave-only satellite clusters, typically operating read-only as well. This
means that the master role still exists only in the main cluster, while satellite servers can
be placed close to end-users. The satellite clusters stay up to date with the main cluster
in real time.

Disaster recovery for data center redundancy

Mission-critical applications always make use of HA for data and service redundancy. A
single cluster is however not protected in the adverse event of an entire data center fail-
ure, such as during a fire or natural disaster. In order to mitigate this risk, businesses
with critical applications set up Neo4j with disaster recovery. Neo4j ensures that the full
graph is replicated to a mirrored cluster in another data center. At the flip of a switch,
the standby cluster switches into normal operations, and business can continue as
usual.

Reporting instances for ad-hoc reporting

The need for ad-hoc reporting has been commonplace in the database world for dec-
ades, and Neo4j users expect nothing less. By setting up one or more reporting instances
on the side of the main cluster, ad-hoc reporting and analytics jobs can be run without
compromising production capacity. Most businesses at first do not realize what great

Neo Techno logy
 6
 Unders t and ing Neo4 j S ca l ab i l i t y

data insights come with the use of a graph database like Neo4j. There is immense value
in being able to draw insights from production data in real time. Reporting instances
stay up to date with the main cluster like any other slave, but they will never be elected
master.

Conclusion

Neo4j scales gracefully, both vertically and horizontally. What this means is that Neo4j
can be run with 2GB or 200GB of RAM, regardless of dataset size. With cache-based
sharding, graceful horizontal scaling is achieved across large datasets. Servers can be
added until performance is satisfactory, and read performance scales linearly.

Looking back at the list of four scalability traits, we have covered how Neo4j addresses
each and every one. HA brings dataset and service redundancy, as well as linear scaling
of read capacity. Additionally, HA manages very large graphs by making use of cache-
based sharding. In the case of high write load, it can typically be managed as an archi-
tectural concern by making use of standard technologies such as queues and fast hard-
ware.

Lastly, businesses take advantage of common HA configurations to ensure their success,
whether it comes to keeping latency low, keeping their data and service safe in the event
of disaster, or drawing on real-time insights from the graph.

Neo Techno logy
 7
 Unders t and ing Neo4 j S ca l ab i l i t y

