
The #1 Platform for Connected Data

neo4j.com

WHITE PAPER

Overcoming SQL Strain
How Using Graph Technology Improves 
Performance and Business Agility
Dave Packer, Product Team

https://neo4j.com/?ref=pdf-white-paper-sql-strain


The #1 Platform for Connected Data

neo4j.com1

White Paper

Relational Databases Cause SQL Strain
Despite advances in computing, faster processors, and high-speed networks, the 
performance of some database applications is becoming slower and slower. We can see the 
problem in lengthening query times and in workarounds such as precomputing query results 
in advance to serve application needs instead of performing real-time queries. At a time 
when business agility is at a premium, business requests for changes are put off because the 
schema of relational databases isn’t designed for frequent changes and pivots.

The problems just described are happening because of an overall evolution not only in the 
volume and velocity of data, but in its variety, complexity, and interconnectedness, that is, the 
data relationships inherent in the data. The tidal wave of today’s data can be characterized 
as densely connected, semi-structured, and with a high degree of data model volatility. And 
as the volume, velocity and variety of data are increasing, the data relationships are growing 
even faster.

Relational databases were designed for tabular data, with a consistent structure and a fixed 
schema. They work best for problems that are well defined at the outset. Attempting to 
answer questions about data relationships (consider a product recommendations engine, 
a social graph, or the connections involved in uncovering patterns of fraud) with a relational 
database involves numerous JOINs between database tables. Despite their name, relational 
databases do not store relationships between data elements; they are not well suited for 
today’s highly connected data.

Relational databases do not adapt well to changes; they have a fixed schema. DBAs and 
developers face a steady stream of business requests to add elements or attributes to meet 
changing business requirements, such as storing information about the latest social platform. 
Such schema changes are problematic and take a great deal of time.

This guide is designed to help you recognize problems resulting from using relational 
databases to manage highly connected data and see how graph databases can be more 
effective in solving these problems. For DBAs and developers, graph database expertise 
represents an intuitive new skill that offers important business and career benefits. For 
business stakeholders, adopting a graph database means faster performance and faster time 
to market.

TABLE OF CONTENTS

Signs of SQL Strain	 2

The Impact of the Graph 
Data Model	 2

Solving a Connected Data 
Problem	 3

Data Modeling in a 
Relational Database versus 
a Graph Database	 3

Writing Queries with a 
Relational Database versus 
a Graph Database	 3

Query Performance with a 
Relational Database versus 
a Graph Database	 5

Evolution of the Application 
with a Relational Database 
versus a Graph Database	5

Top Use Cases for Neo4j	 5

Conclusion	 6

Overcomin SQL Strain
How Using Graph Technology Improves 
Performance and Business Agility
Dave Packer, Product Team

Despite their name, 
relational databases 
do not store 
relationships between 
data elements; they 
are not well suited 
for today’s highly 
connected data.

https://neo4j.com/?ref=pdf-white-paper-sql-strain
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-white-paper-sql-strain
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-white-paper-sql-strain


neo4j.com2

Overcoming SQL Strain

Signs of SQL Strain
Many relational database applications are working fine within their limits.  Some, however, may be showing significant signs of strain 
induced by the database, especially when an RDBMS is being used to handle highly connected data. Signs you may be trying to solve a 
connected data problem with a relational database include:

• Large number of JOINs
When you do a large number of JOINs as a part of a single query, there is an explosion of computing resource consumption 
and complexity and a corresponding increase in query response times.

• Numerous self-joins (recursive joins), which are common for hierarchy and tree representations
Some of the longest SQL queries in the world involve recursive joins. Traversing relationships by repeatedly joining tables to 
themselves is inefficient.

• Frequent schema changes 
This can be an indication that the data or requirements are rapidly evolving, calling for a more flexible model. 

• Slow running queries despite extensive tuning
DBAs may use every trick they know to speed up query times, but the queries still aren’t fast enough to support the 
application’s needs. Denormalizing data models for performance impacts data quality and update behavior.

• Precomputing results
Because queries run so slowly, results are precomputed. In effect, you are using yesterday’s data for queries that should be 
handled in real-time. This often entails precomputing 100% of the data even if only 1-2% will be accessed at any given time. 

These symptoms may indicate that you are using a relational database to solve a graph problem where the value is derived from data 
relationships. A graph database is purpose built to store highly connected data and derive value from data relationships in real-time.

The Impact of Graph Data Model
Relational databases such as Oracle and MySQL excel when it comes to capturing repetitive, tabular data. Despite the word 
“relational” in their name, relational databases are much less effective at storing or expressing relationships between stored data 
elements.

Consider the impact that using a graph data model can have in three important areas: 

1) Modeling data with a high number of data relationships
2) Flexibly expanding the model to add new data or data relationships
3) Querying data relationships in real-time

In discussions, we draw on a whiteboard and sketch connections between data elements, creating a natural and intuitive data 
model. Attempting to take a data model based on relationships and forcing it into a tabular framework creates a mental disconnect 
between the way business stakeholders think about data and processes and the way the database model is implemented. Developer 
productivity also suffers because the tabular data model is complex, hard to understand, and does not match the developer’s mental 
model of the application (referred to as “object relational impedance mismatch”). 

The mismatch between the intuitive, related data model from our whiteboard and the tables that will be created in the relational 
database leads to longer development time, higher project costs, and significant delays in getting to market, as the logical model is 
painstakingly crafted into a physical model. 

The value of the graph data model becomes even clearer when it’s time to flexibly expand the model to add new data or data 
relationships. Projects with rapidly evolving requirements or data sources (which are often the most business critical) are hit hardest 
by the rigidity of relational database models, as changes to the model often require reworking the application, and (if data has already 
been loaded) migrating the data itself. With a graph data model, changes to the data model can be made with little or no impact to the 
application. 

https://neo4j.com/?ref=pdf-white-paper-sql-strain
https://neo4j.com/blog/why-graph-data-relationships-matter/?ref=pdf-white-paper-sql-strain


neo4j.com3

Overcoming SQL Strain

Unlike a relational database, a graph database is structured entirely around data relationships. Graph databases treat relationships 
not as a schema structure but as data, like other values. From a relational database standpoint, you could think of this as pre-
materializing JOINs once at insertion time instead of computing them for every query. Because the data is structured entirely around 
data relationships, real-time query performance can be achieved no matter how large or connected the dataset gets.

The best way to understand the difference between relational databases and graph databases is to walk through a sample use case, 
as we do in the following section. 

Solving a Connected Data Problem: Two Approaches
How do relational and graph databases compare from a project standpoint? In order to contrast how you approach development with 
a relational versus a graph database, let’s look at a specific example: a simple product recommendations engine.

The data in this case is highly connected: Customers relate to products and brands, products relate to other products and brands 
and finally customers relate to other customers. Almost every online retail organization is interested in building a recommendations 
engine where value can be derived from data relationships. For a recommendations engine there are three key requirements: 

1) Model data and the data relationships to understand how recommendations can be made
2) Make recommendations in real-time by querying the data relationships
3) Continually make the model richer by adding more data and more relationships

In the following sections, we’ll compare how to approach creating a recommendations engine with an RDBMS and with a graph 
database, covering the topics of modeling data, writing queries, query performance, and evolving the application.

Data Modeling in a Relational Database versus a Graph Database
In a relational database, data modeling for a very simple recommendations engine requires creating multiple tables. You’d create 
separate tables for customers, orders, and products, as well as separate intermediate JOIN tables that represents which customers 
purchased which products in which order. 

Data models for a graph database can be easily sketched on the back of a napkin. A customer purchased a certain product. The 
relationship (customer to product) is stored as part of storing the order. Other customers purchased the same product. What other 
products did those people purchase? 

Modeling with a graph database is whiteboard-friendly; it is intuitive not just for developers but for everyone familiar with the domain. 
In other words, with a graph database, the logical model, the way we think about the problem, corresponds to the physical model, the 
way the data is stored, queried, and visualized by the database.

For many of the really interesting problems people are trying to solve today, it’s not enough to know that two things are connected. 
It’s also important to know something about that connection: its meaning, its significance, and its strength or weight or quality. For 
example, who is friends with whom and how strong is that friendship? How are two locations in a logistics network connected and 
how far apart are they? How many trains per minute follow that line?

A fully featured graph database will move beyond defining data relationships between entities and enable you to incorporate relevant 
information about the characteristics or strength of those connections.

Writing Queries with a Relational Database versus a Graph Database
Graph data queries are straightforward to write and to understand. Graph databases have their own syntax for such queries. Graph 
database Neo4j includes a simple but expressive language called Cypher that is purpose built for traversing data relationships. Cypher 
queries are much simpler than SQL queries; very frequently a long SQL statement can be compressed to many fewer lines in Cypher. 

Below (on Page 4) is a sample Cypher query for the example just described:

https://neo4j.com/?ref=pdf-white-paper-sql-strain
https://neo4j.com/blog/data-modeling-basics/?ref=pdf-white-paper-sql-strain
https://neo4j.com/neo4j-graph-database/?ref=pdf-white-paper-sql-strain
https://neo4j.com/developer/cypher/?ref=pdf-white-paper-sql-strain
https://neo4j.com/blog/why-database-query-language-matters/?ref=pdf-white-paper-sql-strain


neo4j.com4

Overcoming SQL Strain

This Cypher query says that for each customer who bought a product, look at the products that peer customers have purchased and 
add them as recommendations. The WHERE clause removes products that the customer has already purchased, since we don’t want 
to recommend something the customer already bought. 

Each of the arrows in the MATCH clause of the Cypher query represents a relationship that would be modeled as a many-to-many 
JOIN table with 2 JOINs each. So even this simple query encompasses 6 JOINs across tables. Here’s the equivalent query in SQL:

This SQL statement will not only suffer from performance issues due to the JOIN complexity but will also degrade in performance as 
the dataset gets larger. 

MATCH (u:Customer {customer_id:’customer-one’})-[:BOUGHT]->(p:Product)<-
[:BOUGHT]-(peer:Customer)-[:BOUGHT]->(reco:Product)

WHERE not (u)-[:BOUGHT]->(reco)

RETURN reco as Recommendation, count(*) as Frequency 

ORDER BY Frequency DESC LIMIT 5;

SELECT product.product_name as Recommendation, count(1) as Frequency

FROM product, customer_product_mapping, (SELECT cpm3.product_id, cpm3.customer_id

           FROM Customer_product_mapping cpm, Customer_product_mapping cpm2, 
Customer_product_mapping cpm3

           WHERE cpm.customer_id = ‘customer-one’

           and cpm.product_id = cpm2.product_id

           and cpm2.customer_id != ‘customer-one’

	    and cpm3.customer_id = cpm2.customer_id

	    and cpm3.product_id not in (select distinct product_id

		  FROM  Customer_product_mapping cpm

		  WHERE cpm.customer_id = ‘customer-one’)

	 ) recommended_products

WHERE customer_product_mapping.product_id = product.product_id

and customer_product_mapping.product_id in recommended_products.product_id

and customer_product_mapping.customer_id = recommended_products.customer_id

GROUP BY product.product_name

ORDER BY Frequency desc

https://neo4j.com/?ref=pdf-white-paper-sql-strain
product.product
cpm3.product
cpm3.customer
cpm.customer
cpm.product
cpm2.product
cpm2.customer
cpm3.customer
cpm2.customer
cpm3.product
cpm.customer
customer_product_mapping.product
product.product
customer_product_mapping.product
recommended_products.product
customer_product_mapping.customer
recommended_products.customer
product.product


neo4j.com5

Overcoming SQL Strain

Query Performance with a Relational Database versus a Graph Database 
Query performance in a relational database is impacted by data growth and the number of JOINs. As tables get bigger, so do indexes, 
which means that joining the same number of entities requires more and more work. As questions get more challenging, the number 
of entities you have to join increases. Even if the data volume stays constant, your computational complexity explodes, which impacts 
query performance. Problems with query performance are driving application developers to use denormalized results rather than 
returning results from live data.

A graph database is scalable and shows very small increases in query times as data grows. This is because it doesn’t compute 
relationships at query time but stores them at insertion time. In addition, graph queries look at the neighborhood of starting 
points, so regardless of the total amount of data in the database, the amount of data that is examined remains roughly the same. 
Organizations that use graph databases report significant decreases in query time. 

Evolution of the Application with a Relational Database versus a Graph Database
Change is a certainty with today’s applications, and nothing is changing faster than the number of data elements and attributes we 
want to store. There are good reasons that DBAs resist schema changes if possible. Schema changes can have a massive impact 
on the database and on other applications. They introduce development and operational overhead as well as risk. Adding a table, 
a foreign key, or even just a column into a table can affect or even break the applications using that database. Depending on the 
database, downtime may be required to carry out the schema change. Given these realities, schema changes are often less frequent 
than business requirements dictate.

Graph databases are schema-optional. This means that there’s no need to define schemas in advance. New data elements, new 
relationships, and new attributes for those relationships can be added at any time. With a relational database, you have to prep the 
system to accept new types of relationships and that prep takes time. With a graph database, you can inject new data elements and 
new relationships almost instantaneously.

Top Graph Database Use Cases

USE CASE DESCRIPTION CUSTOMER EXAMPLES

Network and IT 
Operations

Plan, predict and monitor network behavior by storing 
physical and virtual device information together with their 
data relationships

HP, MITRE

Real-Time 
Recommendations

Personalize product, content and service offers by leveraging 
data relationships

eBay, Fortune 50 Retailer, 
Medium

Identity and Access 
Management

Enable authorization and access to resources by storing 
complex relationships between users, roles, permissions, 
content and resources

UBS, Telenor

Knowledge Graph Improve search, retrieval, and analytics of digital content by 
storing rich content metadata and data relationships

NASA, Lyft, ICIJ, US Army

Master Data 
Management

Improve business outcome through storage, merging, and 
retrieval of complex, connected and hierarchical business 
information 

Cisco, Pitney Bowes, German 
Centre for Diabetes Research

https://neo4j.com/?ref=pdf-white-paper-sql-strain
https://neo4j.com/use-cases/network-and-it-operations/?ref=pdf-white-paper-sql-strain
https://neo4j.com/use-cases/network-and-it-operations/?ref=pdf-white-paper-sql-strain
https://neo4j.com/users/hp/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/mitre/?ref=pdf-white-paper-sql-strain
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-white-paper-sql-strain
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/ebay/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/fortune-50-retailer/?ref=pdf-white-paper-sql-strain
https://neo4j.com/blog/medium-uses-neo4j-2014/?ref=pdf-white-paper-sql-strain
https://neo4j.com/use-cases/identity-and-access-management/?ref=pdf-white-paper-sql-strain
https://neo4j.com/use-cases/identity-and-access-management/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/ubs-case-study/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/telenor/?ref=pdf-white-paper-sql-strain
https://neo4j.com/use-cases/knowledge-graph/?ref=pdf-white-paper-sql-strain
https://neo4j.com/blog/nasa-critical-data-knowledge-graph/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/lyft/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/the-international-consortium-of-investigative-journalists-icij/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/us-army/?ref=pdf-white-paper-sql-strain
https://neo4j.com/use-cases/master-data-management/?ref=pdf-white-paper-sql-strain
https://neo4j.com/use-cases/master-data-management/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/cisco/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/pitney-bowes/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/german-centre-diabetes-research-dzd/?ref=pdf-white-paper-sql-strain
https://neo4j.com/case-studies/german-centre-diabetes-research-dzd/?ref=pdf-white-paper-sql-strain


Neo4j is the leader in graph database technology. As the world’s most widely deployed graph database, we help  
global brands – including Comcast, NASA, UBS, and Volvo Cars – to reveal and predict how people, processes and 
systems are interrelated. 

Using this relationships-first approach, applications built with Neo4j tackle connected data challenges such as  
analytics and artificial intelligence, fraud detection, real-time recommendations, and knowledge graphs. Find out  
more at neo4j.com.

© 2021 Neo4j. All rights reserved. Front cover image: Tim Gouw on Unsplash. neo4j.com

Questions about Neo4j?

Contact us around the globe: 
info@neo4j.com
neo4j.com/contact-us

Overcoming SQL Strain

Conclusion
The recent proliferation of database technologies is a testament to the fact that relational 
databases are not the right tool for every job. A relational database can be complemented 
effectively by applications running on graph databases. 

Supplement your landscape or replace your relational database: the use case is up to you. 
Because of the natural fit of the graph database model to business domains and processes, 
Forrester Research estimates that at least 25% of enterprises worldwide will use graph 
databases by 2017.

Neo4j is an ACID-compliant, enterprise grade OLTP graph database that is being widely used 
for production applications as a replacement for relational databases. It takes time to build a 
robust database for production use. Work on Neo4j started in 2000, and by 2003, it was the 
first graph database in 24/7 production. Neo Technology continues to lead the industry. It is 
notable that Neo4j is the only graph database included in Gartner’s 2014 Magic Quadrant for 
Operational Databases.

The business won’t wait. Users won’t wait. It’s time to choose the right tool for the job, 
moving applications that show SQL strain to a graph database that reduces query times from 
minutes to milliseconds. And with so many ways to get started quickly, adding graph to your 
skillset is the best investment of time you can make. 

Add Graph to Your Skillset
For DBAs and developers, it’s easy to start experimenting with Neo4j. You can download 
it and get started right away. For starters, you can also attend free GraphAcademy online 
courses and check the SQL to Cypher guide. Don’t forget to join the graph community!

Recent proliferation of 
database technologies 
is a testament to the 
fact that relational 
databases are not the 
right tool for every job.

https://neo4j.com/case-studies/comcast/?ref=cs-pdf
https://neo4j.com/users/nasa/?ref=cs-pdf
https://neo4j.com/case-studies/ubs-case-study/?ref=cs-pdf
https://www.slideshare.net/neo4j/volvo-cars-build-a-car-with-graphs
https://neo4j.com/use-cases/graph-data-science-artificial-intelligence/?ref=cs-pdf
https://neo4j.com/use-cases/fraud-detection/?ref=cs-pdf
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=cs-pdf
https://neo4j.com/use-cases/knowledge-graph/?ref=cs-pdf
http://www.neo4j.com/?ref=cs-pdf
https://unsplash.com/@punttim
https://neo4j.com/?ref=pdf-white-paper-sql-strain
mailto:info%40neo4j.com?subject=
https://neo4j.com/contact-us/?ref=pdf-white-paper-sql-strain
https://neo4j.com/whitepapers/neo4j-coexists-oracle-rdbms/?ref=pdf-white-paper-sql-strain
https://neo4j.com/whitepapers/neo4j-coexists-oracle-rdbms/?ref=pdf-white-paper-sql-strain
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/?ref=pdf-white-paper-sql-strain
http://www.neo4j.com/download/?ref=pdf-white-paper-sql-strain
http://www.neo4j.com/download/?ref=pdf-white-paper-sql-strain
http://neo4j.com/graphacademy/?ref=pdf-white-paper-sql-strain
http://neo4j.com/graphacademy/?ref=pdf-white-paper-sql-strain
https://neo4j.com/developer/cypher/guide-sql-to-cypher/?ref=pdf-white-paper-sql-strain
https://community.neo4j.com/?ref=pdf-white-paper-sql-strain

