
Accelerate Fraud
Detection with
Graph Databases
How Graph Design Patterns Help You Identify and
Investigate Suspicious Activity

Table of Contents

Why Current Fraud Solutions Fall Short. . 3

Enhance Detection With Graph Design Patterns. . 5

Find Suspicious Activity Quickly: Pattern Matching. . 6

Get to Know Your Data Better: Entity Resolution. . 8

Add Meaning to Data: Knowledge Graph. . 10

Detect at the Next Level: Machine Learning. . 12

Go Deep on Known Patterns: Pathfinding and Anomaly Detection . . 13

Stop Connected Fraud: Crawl, Walk, and Run . . 16

Neo4j: Your Enterprise-Strength Graph Database for Uncovering Complex Fraud Patterns. . . . 17

How to Get Started. . 18

This ebook describes how developers and data scientists can use Neo4j Graph Database to
complement their current fraud-detection solutions and improve their results. It explains
six common techniques, called graph design patterns, which you can use to rapidly
match complex patterns in data and relationships, reveal hidden fraud connections and
intermediaries, and find duplicate and suspicious profiles.

Foreword

3

Why Current Fraud
Solutions Fall Short

1 “Occupational Fraud 2022: A Report to the Nations®,” 2022. Association
		 of Certified Fraud Examiners.

Fraud is increasingly costly and

sophisticated. The Association of Certified

Fraud Examiners estimates that fraud

typically goes undetected for 12 months,

costing an average of $8,300 per month.

That translates to 5% of revenue ($4.7

trillion) lost to fraud each year.

Companies in various industries, from

banking and financial services to arts

and entertainment, struggle with fraud

detection. Current solutions lack the speed,

capabilities, data sources, and insights

needed to keep up with new techniques.

Plus, sophisticated syndicates use artificial

intelligence (AI), generative AI, and

deep-fake technology to circumvent

detection and protection tools.

Common fraud-detection methods take

reactive approaches. Either someone

contacts a company to flag suspicious

charges, or predetermined rules built into a

fraud software solution trigger an alert. The

company then investigates the situation on

a case-by-case basis. This method can be

effective; however, many alerts turn out to

be “false positives,” flagging transactions

and activity that aren’t fraudulent. They

often miss more complex fraud schemes,

Relational Databases Lack
Speed and Flexibility

Many of today’s fraud-detection solutions

are based on relational databases. These

databases only provide a superficial

understanding of unusual behaviors and

patterns across customers, devices,

and companies.

Finding connections requires manual and

complex joins between tables, which reduces

query performance. Traditional relational

databases also lack the flexibility necessary

to easily investigate hops or jumps that

connect different entities. This can result in

missing new cases of fraud associated with

a bad entity.

such as creating a false identity that uses

other people’s (or fake) information to

appear authentic.

Ineffective fraud solutions open a

company’s virtual doors to big losses and

put confidential data at risk. Here are some

reasons why current fraud solutions can’t

keep up—and what you can do about it.

https://acfepublic.s3.us-west-2.amazonaws.com/2022+Report+to+the+Nations.pdf

4

Machine Learning Data Models
Rely on Historical Data

Graph Databases Enable More
Accurate Fraud Detection

Machine learning can address some

challenges of more established solutions.

It uses models trained to seek anomalous,

potentially malicious activity. The more data

the models have, the more they improve

fraud detection. While this sophisticated

approach can identify patterns humans

can’t spot, there are still issues. The

datasets that feed into the models can

make them brittle, so their algorithms can’t

adapt to updated or real-time data. These

models also rely on historical data that

includes past fraudulent behavior. If certain

fraud examples aren’t part of the dataset,

models can’t detect them.

Is there a solution that addresses these

fraud-detection shortcomings? The answer

is yes.

Graph databases natively store complex

networks of transactions, accounts, people,

and related data. With this approach,

applications can detect fraud more

accurately and in real time. Graph nodes

represent different data points, such as

phone numbers, IP addresses, and devices.

“Relationships,” also called “edges,” connect

these nodes through activities such as

transactions and shared information.

Graph enhances fraud detection by enabling

you to analyze connections between

many different data points. It supports

semantically rich queries at scale to reveal

suspicious patterns.

For instance, running a projection to

identify nodes with the highest number

of connections helps flag potential fraud

indicators. However, a high number of

connections alone doesn’t necessarily

indicate fraud. Collecting additional

contextual information and analysis can

confirm suspicious activity.

Graph databases also allow you to score

current data to represent similarities and

risks. Scoring helps rank results based

on their resemblance to known fraud

communities. Node-connection analysis,

other relevant factors, and scoring

contribute to a more comprehensive,

effective fraud-detection system.

With a graph database, you can use dynamic

fraud-detection techniques that provide

more accurate, faster results.

5

Enhance Detection With Graph
Design Patterns
A design pattern is an abstract technique that solves a specific

technical challenge. In this paper, we’ll focus on six graph

design patterns that simplify understanding, connecting, and

uncovering activities and behaviors that could indicate fraud.

When you use graph design patterns to enhance existing

fraud-detection solutions or build new ones, you strengthen

the ability to find and stop threats. This reduces false positives,

giving you an opportunity to develop new ways to find and

approach fraud-indicative patterns. To understand how to use

graph design patterns in your fraud applications, learn what

each one can do and how they complement one another.

Pattern matching identifies and matches complex
patterns that link entities.

Entity resolution identifies separate entities that are
really the same.

Knowledge graph stores, organizes, and
accesses interrelated data entities and their
semantic relationships.

Machine learning uses data and algorithms to make
predictions, such as whether an event relates to fraud.

Pathfinding and anomaly detection are well-defined
strategies for finding paths and unusual patterns.
Pathfinding helps uncover paths between entities and
fraud intermediaries, while anomaly detection helps
identify unusual behavior that needs investigation.

6

Pattern Matching
Implementing pattern matching on a graph

database yields comprehensive results

faster. Graph databases handle queries

that cover complex relationships over large

datasets, so they’re well-suited for pattern

matching across millions of transactions or

user accounts. Pattern matching involves

finding shapes and relationships in your

data like trees, rings, paths, or chains.

The pattern-matching graph design

pattern can uncover fraudulent behavior

by displaying the connections and

transactions between thousands of entities.

First, you specify the pattern you’re seeking

in the graph: for example, a sequence of

nodes connected by relationships that meet

defined conditions for account takeovers,

payment card fraud, and identity theft. You

then use Cypher to express this pattern in a

query that finds all matching instances.

Deciphering Cypher

Neo4j created Cypher, a graph query

language, to interact with graph

databases. When someone writes a

query in Cypher, they code a pattern for

what they’re searching. Developers and

data scientists can construct expressive

and efficient queries that create, read,

update, or delete (CRUD) the data in

their graph.

Cypher represents patterns with a

syntax similar to ASCII art: (nodes)-

[:ARE_CONNECTED_TO]->(otherNodes)

using rounded brackets for (nodes), and

-[:ARROWS]-> for relationships.

FIND SUSPICIOUS ACTIVITY QUICKLY

https://neo4j.com/product/cypher-graph-query-language/

7

Your Fraud-Detection Applications—Amplified

Pattern-Matching Use Case: Credit Card Fraud

You can use pattern matching to add more depth to your

fraud-detection solutions. Here are a few examples of

capabilities the graph design pattern supports:

Consider this hypothetical scenario. A financial institution uses a

graph database and the pattern-matching graph design pattern

in a solution that monitors and analyzes credit card transactions.

Each transaction is a node with edges indicating the relationships

between transactions, account holders, merchants, and

geographical locations. Node and edge properties store detailed

information about each transaction, such as amount, timestamp,

and merchant category.

Using Cypher queries, the system searches for predefined patterns

that signal fraud, such as constant changes to home and IP

addresses or rapid departures from typical credit-card behavior.

Unusual pattern detection

Pattern matching reveals transactions or activities that
significantly deviate from a user’s usual behavior—an
indicator of potential fraud.

Ring detection

You can use pattern matching to find shapes in data and
relationships that suggest a fraud ring, such as circular
transaction patterns.

Hidden relationship discovery

With pattern matching, you can find hidden relationships
between seemingly unrelated accounts or entities that
may indicate fraudulent activity.

8

Entity Resolution
Entity resolution is a popular starting

point for graph databases. It enhances the

graph’s data quality, making it easier to

see, understand, and match patterns and

relationships. You can use entity resolution

to merge user profiles, accounts, and

other entities that appear different but are

actually the same. By removing redundant

and irrelevant entities, you can find fakes

and trace them back to the fraudster.

Exposing Fakes and Fraudsters

With the entity-resolution design pattern, you

aggregate and reconcile data from multiple

sources to create comprehensive profiles for

individuals, organizations, and other entities.

These profiles then become part of your

application. For example, when you use the

entity-resolution design pattern with Neo4j

Graph Database, you unify all transactions,

interactions, and relationships associated with

a single profile. By resolving these entities,

you can more effectively map a network of

suspicious activities and connections.

GET TO KNOW YOUR DATA BETTER

9

Entity-Resolution Use Case: When a Claim Isn’t a Claim

A global insurance company developed a fraud detection system that uses

Neo4j Graph Database to analyze claims, policyholder information, and

network connections. Its system uses entity resolution to identify multiple

policyholder nodes with slight variations in names or addresses but with

overlapping contact information or claims history. The system marks these

nodes as individuals who might be trying to defraud the company by filing

claims under different identities. (See Figure 1.)

In another scenario, the system reveals that common entities connect

seemingly unrelated claims with the same policy numbers and types. The

insurance company constructs a clear network of incidents that shows how

different claims are interrelated. For example, it could uncover a pattern where

a particular group of individuals is involved in a series of accidents under

suspicious circumstances, suggesting staged incidents.

Figure 1: Entity resolution

Person

Policy
Vehicle

Claim

State
CityAddress

Vendor

Person
Attributes

INSURES_ PERSON

H
A

S
_ATTR

IB
U

TES

INSURED_IN_POLICY

C
LA

IM
_FILED

_FO
R

FILED_UNDER

HAS_WITNESS

HAS_PASSENGER

CLAIM_FILED_BY

IS_ASSIGNED
HAS_AGENT

HAS_ADDRESS
HAS_VENDOR

HAS_CITY

LOCATED_AT

HAS_C
ITY

HAS_SATEVEDOR_A
DDRESS

Fraud

SIMILAR

SIMILAR

Driver

Agent

Witness

10

Knowledge Graph
Knowledge graph is a design pattern used to

store, organize, and access interrelated data

entities and semantic relationships between

different pieces of information. It enables a

more sophisticated understanding of data

as well as better reasoning across the data.

Knowledge graphs incorporate organizing

principles that include your institutional

knowledge and domain expertise. The model

describes every aspect of your business which

you can use to better detect and investigate

fraud. You start building a knowledge graph

the first day you begin storing and organizing

data in a graph database.

Identifying Sophisticated Fraud:
It’s Layered

Organizing your data into a knowledge graph

helps you view organizational and data layers

within a single data model. You can traverse

the data layer and uncover new relationships

by examining the organizational layer. By

centralizing the organizing principles in your

knowledge graph, you can reuse them across

multiple applications and services instead of

implementing them separately.

With knowledge graphs storing and

organizing data and relationships, applications

can better identify sophisticated fraud

schemes. By providing context through

explicit relationships, the knowledge-graph

design pattern enriches data. This is crucial

for fraud-detection solutions because it

considers a broader network of interactions.

Enriched data simplifies identifying

differences between usual and suspicious

behaviors in fraud-detection applications.

Building knowledge graphs using Neo4j

Graph Database enables real-time

performance, which helps you prevent fraud.

ADD MEANING TO DATA

11

Application

Driver’s
License AddressEmail

FraudRing

Phone

Cell Phone

Device

Merchant Txn
IP Address

Merchant

Status
History

Bank Account

NationalID

IS_MEMBER_OF

CURRENT_EMAIL

C
U

R
R

EN
T_LIC

EN
S

E

APPLICATION_EMAIL

A
PPLIC

ATIO
N

_LIC
EN

S
E

C
U

RR
EN

T_
A

D
D

RE
SS

A
PP

LI
CA

TI
O

N
_A

D
D

RE
SS

APPLI
CATI

ON_N
ATL

ID

CURRENT_NATLID

CURRENT_CELLPHONE

CURRENT_PHONE

APPLICATION_IPADDRESS

CURRENT_IPADDRESS

APPLICATION_CELLPHONE

TXN_DEVICE

TXN_MERCHANT

DEVICE_FIRST_T
XN

DEVICE_LAST_TXN

DEVICE_CELLULAR

DEVICE_IPADDRESS

APPLICATION_TXN

FIRST_TXN
LAST_TXN

CURRENT_DEVICE_APADDRESS

C
U

R
R

EN
T_D

EV
IC

E
A

PPLIC
ATIO

N
_D

EV
IC

E

CURRENT_DEVICE_CELLULAR

APPLICATION_PHONE

IS
_L

IS
TE

D
_P

H
O

N
E

APPLICATION_STATUSCURRENT_STATUSCURRENT_ACCOUNT

APPLICATION_ACCOUNT

MERCHANT_TXNS

NEXT_DEVICE...

NEXT_TXN

NEXT_STATUS

With this comprehensive view, the credit

issuer can evaluate transactions beyond

individual instances in a web of related

activities. This view identifies sophisticated

fraud schemes easier. For example, it can

reveal multiple unrelated accounts with

identical deposits, or a person with a low

fraud risk score who has connections to a

Figure 2: Knowledge graph

community with a high-risk score. The credit

issuer can flag these credit applications for

further investigation. As you start identifying

fraud, you can incorporate that information

into the organizing principles comprising

your knowledge graph. Then you can use

that metadata to identify the same pattern in

other areas.

Knowledge-Graph Use Case:
Don’t Give Just Anyone Credit

A fraud-detection solution using the

knowledge-graph design pattern can more

easily identify credit fraud. The knowledge-

graph design pattern aggregates and

organizes complex data into a comprehensive

view of a customer’s behavior and history.

(See Figure 2.)

12

Machine Learning
You may already use machine learning in

your fraud-detection pipeline. However,

if you’re not using a graph database with

your machine learning, you’re missing an

opportunity to bring valuable relationships

into your models.

By combining machine learning with

Neo4j Graph Database, you gain access to

relationships and signals encoded in the

data that you wouldn’t otherwise get. This

helps you identify new features you can add

to your existing fraud-detection models.

The machine-learning design pattern finds

contextual information in the patterns and

the signals encoded in those relationships.

It contributes to feature engineering by

discovering signals that improve model

accuracy, drive better results, and catch

fraud before it occurs.

Working in Real Time:
Predictions and Pipelines
That Scale and Flow

Machine-Learning Use Case:
Fintech Fraud Finding x3

Machine-learning models can use the

real-time data flowing into Neo4j Graph

Database to make immediate fraud

predictions or decisions. As the amount of

data grows, the machine-learning graph

design pattern can scale to accommodate

their risk of fraud. The company built the

solution on a graph database. It uses a

machine-learning design pattern to identify

potential fraud patterns from hundreds

of transactions in a second. This solution

replaced a traditional fraud-detection

package, and the difference is stark. The

fintech’s customers report a 200% increase

in fraud detection—three times higher than

the traditional package—with no change in

false positives.

increasing data volume and complexity,

ensuring that machine learning models

keep operating efficiently and effectively

without drifting.

The design pattern also enables Graph

Database to integrate with various

machine-learning frameworks and

platforms. Data scientists can build, train,

and deploy models that use graph data

to create end-to-end machine-learning

pipelines for fraud detection.

DETECT AT THE NEXT LEVEL

https://neo4j.com/
https://neo4j.com/case-studies/todo1/
https://neo4j.com/case-studies/todo1/

13

Pathfinding and Anomoly Detection
Pathfinding identifies patterns connecting two entities,

while anomaly detection helps you discover the unexpected.

Both graph design patterns use well-defined data science

algorithms to dive deeper into data.

Getting From Point to Point
(and the Hidden Middle)

Pathfinding is the process of finding one or more routes from

a starting point to a destination point. (See Figure 3.) It uses

various algorithms, each with its own strengths and use cases.

For example, Dijkstra’s algorithm is well known for finding

the shortest path in graphs without negative edge weights.

Meanwhile, the computer science and gaming industries use

the A* algorithm for its efficiency and ability to incorporate

heuristic estimates that guide searches.

Bradleymouth

Moodytown

Richardberg

Wandaborough

ArrivalWarehouse,
Wandaborough

ArrivalWarehouse,
Davisfort

ArrivalWarehouse,
Sandersshire

Destination,
Sandersshire

Figure 3: Shortest path

GO DEEP ON KNOWN PATTERNS

14

Detecting the Unexpected

Anomaly detection identifies unusual patterns, behaviors, or

outliers in a dataset that do not conform to expected behavior.

Sometimes anomaly detection starts when you find a pattern

that doesn’t make sense and you want to investigate it.

Alternatively, it starts because you’re seeking anomaly types

so you can write code or queries to detect them.

The anomaly detection graph design pattern, together with

Neo4j Graph Database and Cypher queries, can uncover the

unexpected. This could involve a sudden increase in connected

accounts, a surge in transactions, or a huge spike in traffic

from particular IP addresses. These all potentially indicate

fraudulent activities. Using Cypher, you can define what

typical behavior looks like, and then query the graph to find

deviations. The anomaly detection graph design pattern can

quickly identify these deviations by analyzing graph structure

and node relationships. It then displays the results in a

visualization tool like Neo4j Bloom.

The goal of pathfinding is to traverse paths with Cypher by

moving from start to end. When you’re working with huge

datasets for fraud detection, the pathfinding design pattern

can show you hidden bad actors in the middle. It reveals

indirect relationships between entities, such as two individuals

who seemingly have no direct link but are connected through

a series of intermediaries. This can be crucial in detecting

fraud rings, where individuals or entities collaborate to

conduct fraudulent activities.

The pathfinding design pattern can also predict the likelihood

of a future connection between two nodes based on the

existing network structure. This helps you identify potential

fraudulent connections before they fully materialize.

15

Pathfinding and Anomaly Detection Use
Case: Video-Gaming the System

Graph Design Patterns Working Together

An online video-gaming company uses a system with a graph

database to track typical player behavior. The system uses

the anomaly detection graph design pattern to monitor player

logins and in-game activities. It identifies unusual activities,

like logging in at odd hours from different geographical

locations or using new devices, which could suggest

unauthorized account access.

If a player suddenly engages in atypical in-game spending,

transfers valuable in-game items to unknown players, or alters

sensitive account settings, the system flags those activities.

Pathfinding also identifies complex patterns that can indicate

an account takeover, such as a sudden change in the player’s

network of interactions, rapid depletion of in-game assets, or

abrupt changes in player performance.

Graph design patterns for detecting fraud don’t operate in a

vacuum. For example, for insurance fraud, pattern matching,

knowledge graph, entity resolution, and anomaly detection

can incorporate risk scoring into multiple scenarios. They

automate detection and find complex, multi-hop fraud

patterns faster. Together and in tandem, these graph

design patterns provide powerful solutions that identify the

sophisticated tricks that fraudsters use. How does this work?

A look at connected fraud will give you an idea.

16

Stop Connected Fraud:
Crawl, Walk, and Run
When groups or entities from different

industries collude to defraud organizations,

they’re committing connected fraud. For

example, a person files a false insurance

claim, and a physician and auto body shop

substantiate it. The pattern for connected

fraud can be extensive, with complex

interlinks, which contributes to a low

detection rate. However, if you add graph to

your applications and use design patterns

in “crawl, walk, and run” stages, you can

increase your detection rate.

Crawl

Walk

Run

When you first build your graph, start by

using the entity-resolution graph design

pattern to familiarize yourself with the

entities and their relationships. As these

come into focus, you’ll naturally have

questions that simple pattern-matching

queries can help you answer. Log your

discoveries in your knowledge graph to start

capturing the unique semantics and patterns

that make up your business.

Once you’re oriented in your graph data, use

Cypher to expand your search for connected

fraud patterns. Assign scores that signal

risk levels from related entities. Combined

with the rules-based or machine-learning

models you already run in other systems,

those scores will validate your primary

model’s findings. Pathfinding can also help

you better understand connections between

fraudulent actors and different fraud rings.

As you develop your skills with graph,

Cypher, and graph data science, you can

evolve and expand rules, graph design

patterns, and models to identify

connected fraud. For example, use the

machine-learning design pattern to uncover

new features that feed into your graph.

Apply anomaly detection to your knowledge

graph to surface new patterns. Layering

these techniques together can raise your

connected fraud-detection baseline for

immediate results.

Whether you crawl, walk, or run to stop

fraud, Neo4j Graph Database is best suited

for using the six graph design patterns to

improve your results.

17

Neo4j: Your
Enterprise-Strength
Graph Database for
Uncovering Complex
Fraud Patterns
Use the structure of your connected data to

reveal new ways of detecting and stopping

fraud, even as your data grows. Neo4j

Graph Database excels at the six graph

design patterns, significantly enhancing

your fraud-detection solutions and reducing

false positives. By integrating Neo4j Graph

Database into your existing IT architecture,

you can handle higher data volumes, more

users, and concurrent transactions without

creating intersection tables or joins. Neo4j’s

full graph stack delivers powerful native

graph storage, data science, advanced

analytics, and visualization with enterprise-

grade security controls, scalable architecture,

and ACID compliance.

Plus, Neo4j’s data leaders comprise a vibrant,

open-source community across all industries.

Stop fighting fraud alone. Join more than

250,000 developers, data scientists, and

architects across hundreds of Fortune 500

companies, government agencies, and NGOs

to share best practices with graph leaders

across the globe.

AWS and Neo4j: Tackling
Fraud Detection Together

Amazon Web Services (AWS) and

Neo4j combine the best of both

worlds—cloud and data infrastructure,

plus all the benefits of Graph

Database—to help developers create

new, innovative solutions for fraud

detection. Neo4j integrates with AWS

data ingestion and import services

so it can efficiently receive data from

various AWS sources. Graph Database

also complements the AWS tools and

services that developers use to build

applications, enhancing the application

development process on AWS and

reducing development efforts.

Machine-learning tools add intelligent

features such as predictive analytics

or recommendations.

18

Neo4j uncovers hidden relationships and patterns across billions of data

connections deeply, easily, and quickly, making graph databases an ideal

choice for developing robust, scalable, and effective fraud detection

solutions–or augmenting existing ones.

How to Get Started

Learn More

http://

	Page 3
	Page 5
	Page 6
	Page 8
	Page 10
	Page 12
	Page 13
	Page 16
	Page 17
	Page 18

	Button 2:
	Button 6:
	Button 4:
	Button 7:
	Button 10:
	Button 3:
	Button 8:
	Button 11:
	Button 5:
	Button 9:
	Button 12:
	Button 1:

