Modern machine learning demands new approaches. A powerful ML workflow requires more than picking the right algorithms. You also need the right tools, technology, datasets and model to brew your secret ingredient: context.
In his book, Graph-Powered Machine Learning, Dr. Alessandro Negro explores the new way of applying graph-powered machine learning to recommendation engines, fraud detection systems, natural language processing. By making connections explicit, graphs harness the power of context to help you build more accurate, real-time machine learning models.
In this interview with the book’s author, you’ll learn more about:
- The role of graph technology in machine learning applications.
- How graphs provide better context to improve your ML understanding and workflow.
- How graph data science enhances four of the most common recommendation techniques: content-based, collaborative filtering, session-based, and context-aware recommendations.
- Data modeling considerations for graph-based recommendation engines.
- How to approach designing a hybrid recommendation engine that incorporates multiple approaches.



||rich text_406202||
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.