Traditional fraud prevention measures focus on discrete data points such as specific accounts, individuals, devices or IP addresses. However, fraudsters today have sophisticated ways to get away with using collaborative efforts and synthetic identities. To uncover such fraud rings, it is essential to look beyond individual data points to the relationships between them.
Graph data science harnesses the power of connections to analyze data relationships, detect suspicious patterns and prevent fraudulent transactions.
Join us for this webinar on August 27 at 1:00 p.m. AEST for a deep dive into graph analytics for fraud detection where we will discuss:
- How to use graph data science to prevent fraud
- How to improve fraud detection with graph feature engineering
- How graph analytics benefit even non-technical fraud investigators



||rich text_419566||
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed ac purus sit amet nisl tincidunt tincidunt vel at dolor. In ullamcorper nisi risus, quis fringilla nibh mattis ac. Mauris interdum interdum eros, eget tempus lectus aliquet at. Suspendisse convallis suscipit odio, ut varius enim lacinia in. Lorem ipsum dolor sit amet, consectetur adipiscing elit.